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This study delves into the pivotal role of equilibration Monte Carlo steps (𝑖steps) in the 

Stochastic Series Expansion method—a cutting-edge quantum Monte Carlo technique 

known for its precision in simulating low-dimensional quantum systems. The research 

focuses on how varying equilibration steps impact the accuracy and stability of ground 

state energy, sublattice magnetization, specific heat, and susceptibility results, by 

analyzing the effect of equilibration steps on these physical properties across different 

temperatures and lattice sizes. Our findings demonstrate that while ground state energy 

and sublattice magnetization achieve remarkable stability, susceptibility and specific 

heat present variabilities, especially at low temperatures. Ground state energy stabilizes 

after approximately 50 equilibration steps. However, excessive equilibration steps lead 

to unnecessary computational costs without further accuracy improvements. 

Furthermore, increasing the measurement steps significantly reduces error bars, 

enhancing reliability, as demonstrated by a 30% reduction in standard deviation with 

higher counts. Low temperatures exhibit greater variability in specific heat and 

susceptibility due to complex quantum effects. 
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1. INTRODUCTION

The spin-lattice model is a mathematical framework used to 

study interacting spins arranged on a lattice, representing 

quantum systems like magnets [1]. These models are described 

using Hamiltonians, which capture spin interactions and 

quantum properties and are often explored through analytical 

methods (e.g., Bethe ansatz) or numerical techniques (e.g., 

Monte Carlo) [2]. Spin lattice models are crucial for 

understanding quantum phenomena like phase transitions and 

entanglement. The Stochastic Series Expansion (SSE) method 

efficiently handles these models by directly sampling the 

partition function's power series, avoiding discretization errors 

and enabling precise simulations of thermodynamic properties 

[3, 4]. 

The SSE method is a very efficient quantum Monte Carlo 

(QMC) technique widely used in simulating quantum systems 

at finite temperatures [5-7]. This method is valuable in 

studying complex quantum phenomena, especially in low-

dimensional and strongly correlated systems [8]. SSE 

leverages Taylor series expansion on the partition function of 

the system combined with nonlocal Monte Carlo updates [9], 

allowing direct sampling of the partition function expansion in 

powers of the Hamiltonian. This capability enables SSE to 

accurately simulate the thermodynamic properties of quantum 

spin systems, which is crucial in understanding quantum phase 

transitions and magnetic properties. This approach avoids the 

errors associated with time discretization [10]. 

An important factor in the development of QMC techniques 

has been Feynman's path integral formulation of quantum 

statistical mechanics [11]. World-line methods are frequently 

used to refer to techniques based on the path integral in 

imaginary time in the context of spin systems and related 

lattice models [12, 13]. The methods began by using an 

approximation discretization of imaginary time, known as the 

Suzuki-Trotter decomposition of the Boltzmann 

operator  𝑒−𝛽𝐻̂ ; 𝛽  is the inverse dimensionless temperature.

Such methods often introduce systematic errors due to 

discretization [14]; such errors arise because discrete jumps 

approximate the continuous dynamics of the system. This 

means that the true nature of quantum fluctuations is not fully 

captured. Additionally, Trotter-Suzuki Approximation Errors, 

a systematic error occurs because of splitting the exponential 

of a sum of operators into a product of exponentials [15, 16], 

each involving smaller time steps. This error decreases with 

the square of the time steps; however, achieving high-accuracy 

simulation requires smaller time steps, which increases the 

computational cost. SSE effectively avoids such errors by 

directly expanding the partition function in terms of a power 

series of the Hamiltonian operators with discretizing. 

Furthermore, SSE does not require Trotter-Suzuki 

approximations [10]. The progress in the QMC algorithm has 

mainly been made in two areas: (a) by removing the systematic 

error found in the Trotter decomposition and (b) by creating 

loop-cluster algorithms to enable efficient sampling inside the 

configuration space of quantum systems. SSE is a 

generalization of Handscomb’s QMC scheme, which 

combines (a) and (b) with even more speedups for SSE’s loop-

cluster algorithms. Such speedups provide a shorter time for 

autocorrelation than other methods, enabling the studies of 
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larger system sizes [17, 18]. 

Monte Carlo steps play various critical roles in the SSE 

method. They ensure the accuracy of sampling configuration 

space and that the results represent the true equilibrium 

properties of the system. Monte Carlo steps bring the system 

into thermal equilibrium in the first phase of the simulation, 

allowing the system to reach a steady state where the sampled 

configurations represent the system’s equilibrium distribution 

[19, 20]. 

Monte Carlo steps used in equilibration [21] are termed 

(𝑖steps) in this paper. Proper equilibration provides unbiased 

results when measurements are taken. Furthermore, each step 

of Monte Carlo simulation proposes an accept or reject of the 

new configuration of the system based on a probabilistic 

criterion; typically, Metropolis and other algorithms are used 

in this process. Efficient sampling ensures that all simulated 

configurations are considered according to their Boltzmann 

weights, accurately estimating physical quantities, such as 

energy, magnetization, and susceptibility. Monte Carlo steps 

are also used in diagonal and loop updates. The term used to 

refer to the Monte Carlo steps taken while measuring system 

properties is 𝑀steps (i.e., measurements taken after the system 

has reached equilibrium). One bin represents the average of all 

individual results obtained at each 𝑀steps.  

This paper studies the impact of Monte Carlo steps used for 

equilibration on the computational cost, stability, and 

feasibility of SSE results for various properties, including 

ground state energy, sublattice magnetization, specific heat, 

and susceptibility for different lattice sizes and temperatures. 

This work aims to investigate the impact of 𝑖steps  on the 

accuracy, stability, and computational efficiency of the SSE 

simulations, particularly for the 1D Heisenberg mode. The 

motivation stems from the crucial role equilibration plays in 

ensuring that Monte Carlo simulations correctly sample the 

equilibrium state of a quantum system. While significant 

progress has been made in understanding Monte Carlo 

methods and their applications, systematic studies quantifying 

the relationship between 𝑖steps , physical observables, and 

computational costs remain limited. 

The study commences with an overview of the foundational 

formulation of the SSE method, including the mathematical 

framework underpinning this approach. Subsequently, the 

results and discussion section present an analysis of the 

simulation outcomes, focusing on computational cost, 

magnetic properties of the system, and data convergence. The 

paper also provides a guide for researchers on selecting 

appropriate simulation parameters to ensure reliable results. 

The study's limitations are then outlined, followed by a 

concluding section summarizing the key findings of the 

research. 

2. FORMULATION OF SSE

The spin-1/2 antiferromagnetic model is described by the 

Hamiltonian in terms of raising and lowering spin operators, 

such that [22, 23]:  

𝐻̂ =
1

2
𝐽 ∑ (𝑆̂𝑖

+𝑆̂𝑗
− + 𝑆̂𝑖

−𝑆̂𝑗
+ + 2∆𝑆̂𝑖

𝑧𝑆̂𝑗
𝑧)⟨𝑖,𝑗⟩ − ℎ ∑ 𝑆̂𝑖

𝑧
𝑖 , (1) 

where, 𝐽  is the coupling constant, and it is positive for 

antiferromagnetic systems [24], ⟨𝑖, 𝑗⟩  represents a pair of 

nearest-neighbor spin sites. 𝑆 
+  and 𝑆 

−  are the raising and

lowering spin operators, respectively. 𝑆̂ 
𝑧  denotes the spin 

operators in the Z direction. ∆ and ℎ are uniaxial anisotropy 

and external magnetic fields, respectively. The following 

Hamiltonian can represent the SSE method for this model:  

𝐻̂ =  −𝐽 ∑ 𝐻̂𝑏
𝑁𝑏
𝑏=1  (𝐽 > 0). (2) 

𝑁𝑏 = 𝑑𝑁 is the number of bonds in a d-dimensional cubic

lattice. We can further form two operators from the bond 

operator: 

𝐻̂𝑏 = 𝐻̂1,𝑏 − 𝐻̂2,𝑏 , (3) 

where, 𝐻̂1,𝑏 and 𝐻̂2,𝑏 are diagonal and off-diagonal operators; 

𝐻̂1,𝑏 = 𝑐 − ∆𝑆̂𝑖(𝑏)𝑆̂𝑗(𝑏)
𝑧 + ℎ𝑏[𝑆̂𝑖(𝑏) + 𝑆̂𝑗(𝑏)

𝑧 ]

𝐻̂2,𝑏 =
1

2
[𝑆̂𝑖(𝑏)

+ 𝑆̂𝑗(𝑏)
− + 𝑆̂𝑖(𝑏)

− 𝑆̂𝑗(𝑏)
+ ],

(4) 

ℎ𝑏 ≡ ℎ/(2𝑑𝐽) is the magnetic field applied to a bond. To

ensure that all elements of the 𝐻̂1,𝑏  matrix are positive the 

constant 𝑐  must be determined. i.e., 𝑐 ≥ ∆/4 + ℎ𝑏 . 𝑐 and 𝑐0

represent: 

𝑐 = 𝑐0 + 𝜖, 𝑐0 =
∆

4
+ ℎ𝑏 , (5) 

where, 𝜖 ≥ 0. For the isotropic case, 𝑐 =
1

4
 and 𝜖 = 0. 

The main focus of applying QMC to a quantum system is 

calculating the quantum mechanical thermal expectation value 

of an observable 𝐴̂,  

⟨𝐴̂⟩ =
1

𝑍
Tr{𝐴̂𝑒−𝛽𝐻̂}, (6) 

where, 𝑍 is the partition function, 

𝑍 = Tr{𝑒−𝛽𝐻̂}. (7) 

In SSE, the above equations are calculated using Taylor 

series expansion and making the traces as sums of diagonal 

matrix components in the basis {|𝛼⟩ = |𝑆1
𝑧, … , 𝑆𝑁

𝑧 ⟩} . The

partition function can be formulated as [23]: 

𝑍 = ∑  𝜑 ∑  ∞
𝑛=0 ∑  𝑆𝑛

(−1)𝑛2𝛽𝑛

𝑛!
⟨𝜑|∏  𝑛

𝑖=1 𝐻̂𝑎𝑖,𝑏𝑖
|𝜑⟩, (8) 

where, 

𝑆𝑛 = [𝑎1, 𝑏1][𝑎2, 𝑏2] … [𝑎𝑛, 𝑏𝑛],
𝑎𝑖 ∈ {1,2}, 𝑏𝑖 ∈ {1, … ,2𝑁}.

(9) 

Is a sequence of index pairs defining the operator string 

∏  𝑛
𝑖=1 𝐻̂𝑎𝑖,𝑏𝑖

, and 𝑛2 represents the total number of index pairs

[𝑎𝑖 , 𝑏𝑖] , where, 𝑎𝑖 = 2(𝑛 = 𝑛1 + 𝑛2)  and 𝑁  represents the

number of sites in the lattice equals 𝐿 × 1 for linear chain. Eq. 

(8) deviate from Handscomb’s technique [25]. A scheme for

importance sampling for terms in the partition function must 

be developed. The configuration (𝜑, 𝑆̂𝑛)  determined by a

basis state |𝜑⟩ and operator sequence.  𝐻̂1,𝑏 and 𝐻̂2, 𝑏 can act

only on antiparallel spins at sites 𝑖(𝑏)  and 𝑗(𝑏) . Diagonal 

operator 𝐻̂1,𝑏  keeps the spin state unchanged, while the off-

diagonal operator flips the spin pair. The following equation 

denotes the propagated state:  
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|𝜑(𝑝)⟩ = ∏𝑝
𝑖=1 𝐻̂𝑎𝑖,𝑏𝑖

|𝜑⟩, |𝜑(0)⟩ = |𝜑⟩. (10) 

(𝜑, 𝑆̂𝑛) must satisfy periodicity condition |𝜑(𝑛)⟩ = |𝜑(0)⟩

so that it can contribute in Eq. (8) For even numbers of spin 

sites in lattice, the total number of off-diagonal operators 𝑛2

should be even, which makes all terms in Eq. (8) positive. 

Furthermore, this can be used as relative probabilities in the 

Monte Carlo importance sampling process. Taylor expansion 

could be truncated at some upper-bound 𝑙 that is automatically 

chosen where the error is negligible. 

The partition function can be represented by the weight of 

(𝜑, 𝑆̂𝑛) configuration as follows:

𝑍 = ∑  𝜑 ∑  𝑆𝑙
𝑊(𝜑, 𝑆𝑙), (11) 

where, all non-zero matrix elements in Eq. (8) equal one, so 

the weight can be written as:  

𝑊(𝜑, 𝑆𝑙) = (
𝛽

2
)

𝑛 (𝑙−𝑛)!

𝑙!
, (12) 

Here, 𝑛 denotes expansion power of the configuration, i.e., 

represents the non-[0,0] operators of 𝑆𝑙.

A Monte Carlo Step (MC step) means performing a series 

of single-diagonal operator swaps at each point in 𝑆𝑙. Then, a

series of off-diagonal updates on each bond will be performed. 

As a result of the constraints being localized in these updates, 

the number of operations (CPU time) per MC step increases 

proportionally with 𝑁 and 𝛽. 

3. RESULTS AND DISCUSSION

The simulation of 1D spin-1/2 antiferromagnetic system 

defined by the Heisenberg model using SSE was analyzed to 

explore the effect of 𝑖steps on the system’s physical properties, 

including ground state energy per spin (𝐸0/𝑁) , specific heat

(𝐶), sublattice magnetization (⟨𝑚2⟩), and susceptibility(𝜒).

The simulations were implemented in FORTRAN90, utilizing 

the Sandvik algorithm to perform the SSE calculations [26]. 

The computational work was executed on a personal computer 

equipped with an AMD Ryzen 7 3700X 8-Core Processor 

(3.60 GHz) and 16 GB of G. Skill Radiant 3600 MHz RAM, 

ensuring the capability to handle the significant computational 

demands of the study. We first present the computational cost 

for a range of temperatures and 𝑖steps. Furthermore, the study 

investigates the stability of the simulation outcomes for 

different temperatures and multiple 𝑖steps counts. Additionally, 

the same conditions but changing the steps were conducted to 

examine if the technique returned converged results and also 

for a range of temperatures. In this study, also we performed 

simulations on relatively large systems and low temperatures 

to examine the effectiveness of SSE on complex conditions. 

3.1 Computational cost 

This study investigates the impact of 𝑖steps on processing 

time and found that they have a significant effect. It's clear that 

processing time increases as the number of 𝑖steps increases, as 

shown in Figure 1. It's worth noting that even if there are zero 

𝑖steps , the processing time is not zero, as 𝑀steps also require 

some time. However, the equilibration of a system with a 

relatively high temperature is achieved faster than a low-

temperature one. The processing time scales approximately 

with lattice size 𝑡 ∝ 𝐿 
𝛼 , where 𝛼 is the slope of each fitted line

in Figure 2. The scaling exponents are above 1 for all 𝛽 

indicating that the processing time grows faster than a linear 

scaling, reflecting the increased computational cost required to 

handle larger systems. At lower temperatures, the processing 

time grows more rapidly with lattice size. While it takes less 

time for higher temperatures (lower 𝛽), this can be seen from 

the smaller 𝛾  of 𝛽 = 1.0 , indicating slower growth of 

processing time with lattice size. This behavior is due to the 

slower equilibration in low temperatures with more 

pronounced quantum effects.  

From the fitting of plots of processing time (𝑡)  with 

simulation parameters, 𝑡 scales as: 

𝑡(𝐿 , 𝛽, 𝑀steps, 𝑖steps) = 𝐿 
𝛼 ∙ 𝛽𝛾 ∙ 𝑀steps

𝛿 ∙

10𝐵2(log 𝑖steps)
2

+𝐵1 log 𝑖𝑠𝑡𝑒𝑝𝑠+𝐵0 ,
(13) 

where, 𝐵1 , 𝐵2 and 𝐵0 are the polynomial coefficients from the

log-log fitting of 𝑖𝑠𝑡𝑒𝑝𝑠 , and 𝛼, 𝛾, and 𝛿  are the scaling

exponents derived from the other parameters, each one of 

these coefficients is shown in the following figures and will be 

discussed individually.  

Note: Here, 𝐿 = 128, 𝛽 = 2 , 𝑀steps = 7 × 104. A direct relation appears,

showing the effect of 𝑖steps on computational cost. 

Figure 1. Relation between 𝑖steps and time in seconds 

Note: The slope (𝛼) of the fitted lines represents the scaling exponent. Each 

curve corresponds to a different 𝛽 values. 

Figure 2. Log-log plot of processing time (𝑡) versus lattice 

size (𝐿) for various values of 𝛽, with 𝑀steps =  106 and

𝑖steps = 104
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We can see that 𝑡  exhibits district scaling behavior with 

various simulation parameters. Figure 2 demonstrates the 

power law relationship between time and lattice size, where 𝛼 

vary slightly with 𝛽. This highlights that computational cost 

increases with system size due to larger configurations 

requiring more extensive calculations. Figure 3 presents the 

relationship between processing time and 𝑖steps . Here we 

applied a second–degree polynomial fitting to capture the non-

linear trend. For small values of 𝑖steps, the negative linear term 

(−0.285. log 𝑖steps) leads to a decrease in the processing time, 

but rapid growth for larger 𝑖steps is observed in the term 

(0.06464 ∙ (log 𝑖steps)
2

) which causes a sharp increase in 𝑡.

The nonlinear scaling underscores the importance of carefully 

selecting 𝑖steps to balance computational cost and accuracy. 

Note: The fitted equation is log 𝑡 = 0.01209 −  0.285 ⋅ log 𝑖steps +

0.06464 ⋅ (log 𝑖steps )
2
, indicating non-linear scaling behavior. The adjusted

𝑅2 = 0.93085 demonstrates a strong fit. 

Figure 3. Log-log plot of processing time versus 𝑖steps  with a 

second-degree polynomial fit 

Note: The slope (𝛿 = 0.81037 ± 0.03141) of the fitted line represents the 

scaling exponent. The high adjusted 𝑅2 value (0.95134) signifies a strong 

linear correlation between log(𝑡) and log(𝑀steps ) 

Figure 4. Log-log plot of processing time versus the number 

of 𝑀steps  for a fixed 𝐿 , 𝑖steps , 𝛽 

Figure 4 shows that time scales with 𝑀steps  with scaling 

exponent 𝛿 = 0.81037 , indicating sublinear growth, thus 

reflecting the computational efficiency of averaging over 

repeated steps. In Figure 5, the processing time increases 

modestly as 𝛽  increases with the scaling exponent (𝛾 =
0.565). The inverse temperature (𝛽) influences the level of 

thermal fluctuations in the system, higher 𝛽  values require 

more computational effort to accurately sample the 

configuration space and achieve equilibration. 

Figure 6 shows that lower temperatures (where the quantum 

phenomena are dominant) require longer processing time. Yet 

the effect of equilibration 𝑖steps  is obvious for lower 

temperatures, too. Thus 104 𝑖steps took 222 seconds but more

than 5000 seconds were taken for 106 𝑖steps for the same

temperature. On the other hand, the processing time of all five 

cases of 𝑖steps was the same for higher temperatures., i.e., they 

required fewer equilibration steps.  

Note: The slope ( 𝛾 = 0.56508 ) of the fitted line represents the scaling 

exponent. The high 𝑅2 value (0.9409) indicates a strong linear relationship. 

Figure 5. Log-log plot of processing time versus inverse 

temperature (𝛽) for a lattice size 𝐿 = 128, 𝑀steps = 106, and

𝑖steps = 104

Note: Here 𝐿 = 1024, 𝛽 = 2, and 𝑀steps = 7 × 104. Higher temperatures 

require smaller processing time, however, 𝑖steps effect on processing time 

appears in lower temperatures. 

Figure 6. Processing time in seconds for a range of 

dimensionless temperatures, for multiple 𝑖steps 

3.2 Magnetic properties with different 𝒊steps

We investigated the outcomes of different system properties 

in various temperatures and for different cases of 𝑖steps. Ground 

state energy of quantum spin-1/2 chain increases with 

temperatures, as shown in Figure 7. A match of all the 

outcomes is noticed for all the 𝑖steps cases, indicating that the 
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studied system's equilibration reached all 𝑖steps counts, and the 

results were nearly the same. We can see from Table 1 that the 

standard deviation (𝜎) is larger for lower number of 𝑖steps, and

the results deviate from the exact solution. By using a low 

temperature (𝛽 = 64) , the system approaches the zero-

temperature limit, allowing the results to approximate the 

exact ground-state energy per spin calculated using the Bethe 

ansatz, which is defined for absolute zero temperature [27].  

The magnetization shows higher values at low temperatures 

(see Figure 8), reflecting strong correlation between spins. As 

the temperature increases, thermal fluctuations dominate, 

leading to a gradual decrease in the property. The result is 

consistent across different 𝑖steps , i.e., the system reaches 

equilibrium and is not influenced by varying 𝑖steps. 

The susceptibility peaks at intermediate temperatures as 

shown in Figure 9, representing the formation of short-range 

correlations. In such temperatures, the system transitions into 

the Curie-Weiss behavior [28, 29] due to the paramagnetic 

response of spins. The inset shows minor differences at low 

𝑖steps , but the overall trend is consistent across different 

equilibration steps. In the case of specific heat, Figure 10 

shows that at low temperatures, smaller 𝑖steps introduce greater 

fluctuations, indicating insufficient equilibration. As 

temperature increases, 𝐶 aligns across all 𝑖steps. At 𝑇/𝐽 = 0.5, 

the specific heat reflects the Schottky-like anomaly, associated 

with thermal excitations between spin states. At higher 

temperatures, 𝐶  approaches a constant value, reflecting 

equipartition. 

Note: Here 𝐿 = 1024, and 𝑀steps = 104. Energy increases as temperature

increases. All of 𝑖steps results are nearly the same. 

Figure 7. Ground state energy relation with the 

dimensionless temperature at a range of 𝑖steps 

In Table 1, the lattice size 𝐿 = 128 , 𝛽 = 1/64 , and 

𝑀steps = 104. Insufficient 𝑖steps lead to results that have a larger

𝜎 and deviate from the exact solution obtained via Beth 

Ansatz. 

Table 1. Standard deviation (𝜎) of energy results for various 

𝑖steps, calculated with 𝑁bins = 10 

𝒊steps 𝝈𝑬𝟎/𝑵 𝝈from exact

10 0.197682899 0.319404056 

104 0.050776845 0.000128659 

105 0.050906944 0.000101979 

Note: Where L = 1024, and 𝑀steps = 104. No noticeable variance in the

results appears. 

Figure 8. The relation between sublattice magnetization and 

dimensionless temperatures, each point simulated in multiple 

counts of 𝑖steps 

Note: Where 𝐿 = 1024, and Msteps = 104.The results for higher and lower 

temperatures match all the 𝑖steps counts. The inset figure shows a minor 

deviation between 0.5 and 1 temperature. 

Figure 9. Susceptibility versus dimensionless temperature for 

different 𝑖steps counts 

Note: System size is 𝐿 = 1024, with and Msteps 104. No matter how the istep

increases, lower temperatures show less convergence of results. However, 
the results of higher temperatures for specific heat are the same. 

Figure 10. Specific heat for a range of dimensionless 

temperatures and various 𝑖steps 

2654



Note: Accurate results were achieved after 50 𝑖steps, and they continued to give similar results. The error bars show that more 𝑀steps reduce errors. 

Figure 11. Ground state energy measurements with various 𝑖steps, for two numbers of 𝑀steps, 𝐿 = 1024, 𝛽 = 0.1, 𝑁Bins = 10 

Table 2. Statistical analysis of observables as a function of 𝑖steps 

Observable 𝒊steps ⟨𝑿⟩ 𝝈 𝝈𝟐
𝝈

⟨𝑿⟩

𝑬𝟎

𝑵

10 -1.78003E-01 3.82E-04 1.46E-07 -2.15E-03

104 -3.41552E-01 9.26E-04 8.58E-07 -2.71E-03

5 × 104 -3.41433E-01 6.58E-04 4.33E-07 -1.93E-03

105 -3.41338E-01 6.37E-04 4.05E-07 -1.87E-03

5 × 105 -3.41336E-01 4.53E-04 2.05E-07 -1.33E-03

106 -3.41372E-01 7.83E-04 6.12E-07 -2.29E-03

𝑪 

10 -7.53187E-01 4.90E-03 2.40E-05 -6.50E-03

104 3.49410E-01 2.88E-02 8.31E-04 8.25E-02

5 × 104 3.38704E-01 2.30E-02 5.29E-04 6.79E-02

105 3.44273E-01 3.39E-02 1.15E-03 9.84E-02

5 × 105 3.47675E-01 2.57E-02 6.61E-04 7.40E-02

106 3.50791E-01 2.77E-02 7.69E-04 7.91E-02

⟨𝒎𝟐⟩

10 1.26380E-02 1.86E-04 3.45E-08 1.47E-02 

104 1.43949E-02 9.70E-05 9.46E-09 6.76E-03 

5 × 104 1.43729E-02 7.70E-05 6.00E-09 5.39E-03 

105 1.43487E-02 1.29E-04 1.66E-08 8.99E-03 

5 × 105 1.43276E-02 2.41E-04 5.80E-08 1.68E-02 

106 1.43938E-02 1.49E-04 2.22E-08 1.04E-02 

𝝌 

10 1.87244E-01 3.33E-03 1.11E-05 1.78E-02 

104 1.42351E-01 1.90E-03 3.59E-06 1.33E-02 

5 × 104 1.43882E-01 1.20E-03 1.44E-06 8.34E-03 

105 1.44040E-01 1.96E-03 3.84E-06 1.36E-02 

5 × 105 1.43861E-01 2.01E-03 4.04E-06 1.40E-02 

106 1.42515E-01 2.10E-03 4.43E-06 1.48E-02 

Table 2 lists the average values ⟨𝑋⟩, standard deviation (𝜎), 

variance (𝜎2) , and relative deviation (𝜎/⟨𝑋⟩)  for each

observable. The results demonstrate that 𝑖steps  does not 

significantly influence the convergence of data across multiple 

simulation runs, as evidenced by the relatively constant 

standard deviation and variance. 

3.3 Results accuracy and convergence 

Measurements in the SSE method are taken after the 

equilibration is reached. Several 𝑖steps  are used for this 

purpose. However, those steps take time, as discussed above. 

A threshold of 𝑖steps can be calculated for the system of 

investigation where the results remain similar regardless of the 

number of 𝑖steps added; Figure 11 shows that insufficient 𝑖steps 

count gives inaccurate outcomes as in the incent Figure 11(a), 

the energy in the first two points of the data doesn’t represent 

the actual value of the system. Conversely, more elevated 𝑖steps 

give the same results; Higher 𝑀steps count reduces error bars as 

appears in Figure 11(b). The data in Table 2 clearly show that 

𝑖steps  does not govern the convergence of the results from 

multiple runs of simulation, as 𝜎  and 𝜎2  remains largely
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unchanged across different 𝑖steps. This also indicates that the 

convergence of data is the responsibility of 𝑀steps  which 

ensures proper sampling and reduces variability across runs. 

Nevertheless, 𝑖steps is crucial for the accuracy of results. Proper 

𝑖steps  ensures that the system is equilibrated and the 

measurements reflect the true magnetic behavior of the 

system. This highlights the roles of 𝑀steps  and 𝑖steps  in 

achieving both convergence and accuracy in the simulation 

data.  

We represent from Figures 12-15 a repeated simulation 

results for the same conditions and two different values of 𝑖steps 

to assess the reliability and consistency of the simulation 

outcomes. These figures highlight the impact of varying 𝑖steps 

under extreme temperature, both very high and very low, on 

the studied magnetic properties.  

In Figure 12, 𝐸0/𝑁 demonstrates consistent results across

40 simulation runs for both low and high temperatures. 

However, at low 𝑖steps (Figure 12(a)) the energy values for high 

and low temperatures appear nearly identical, suggesting that 

the system has not yet reached equilibrium. But the higher 

𝑖steps in Figure 12(b), the high temperature simulations yield 

higher energy values as expected from real magnetic system, 

indicating improved precision.  

Figure 12. Results of energy for 40 runs of the same simulation for low and high temperatures with (a) 104 and (b) 106 𝑖steps,

where 𝐿 = 1024, and 𝑀steps = 104

Note: The property has a reverse relation with temperature. And it converges more for higher temperatures. 

Figure 13. Simulation outcomes of sublattice magnetization for low and high temperatures for a system with 𝐿 = 1024 spin 

sites. Each NBin results from averaging 104 𝑀steps, after equilibrating the system by (a) 104 and (b) 106 𝑖steps
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Note: Results of higher temperatures shows less standard deviation 𝜎. 

Figure 14. Susceptibility results for 40 𝑁Bins, for system size 𝐿 = 1024, at each point, susceptibility was measured by 

averaging the results of 104 𝑀stepsafter (a) 104 and (b) 106 equilibration Monte Carlo steps

Note: Lower temperatures (i.e. higher 𝛽) show major fluctuations of results. 

Figure 15. Specific heat of 𝐿 = 1024, where 𝑀steps = 104, each point represents on run of simulation at low and high

temperatures, the 𝑖steps was (a) 104 and (b) 106

Note: A noticeable decrease in 𝜎 value for higher 𝑁Bins simulation. 

Figure 16. Repeating the simulation of the same conditions where 𝐿 = 64, 𝛽 = 0.25, and 𝑀steps = 𝑖steps𝑣 = 104, each point in the

figure represents (a) 1 and (b) 10 𝑁Bins 
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⟨𝑚2⟩ shows higher values and larger standard deviations at

lower temperatures (see Figure 13), consistent with the 

expected stronger ordering in the system. Figure 13(a) and (b) 

both display reliable results across repeated simulations, thus 

increase in the 𝑖steps does not significantly affect the outcomes. 

The results of specific heat and susceptibility, shown in Figure 

14 and Figure 15, exhibit more pronounced temperature 

dependence. At low temperature, the red data points in Figure 

14(a) and (b) oscillate within a wider range (0.01 to 0.05 for 

𝜒), reflecting the challenge of achieving precise convergent in 

this regime. Higher temperature simulations (black data 

points) remain relatively stable, with minimal influence from 

𝑖steps. Similar for 𝐶, low-temperature results show significant 

fluctuations, while high temperatures yield consistent 

outcomes (Figure 15). We can notice that increasing 𝑖steps from 

104 to 106 does not significantly alter the results for 𝐶, thus

the convergence for this property is not governed by 𝑖steps . 

Figure 16 demonstrates the effect of averaging over multiple 

bins on the stability and reliability of the simulation results for 

the ground state energy per spin, where 𝑁𝑏𝑖𝑛𝑠 = 10 in Figure

16(a), the data shows a higher standard deviation ( 𝜎 =
20.3 × 10−4),  By increasing the 𝑁𝑏𝑖𝑛𝑠  to 100 (see Figure

16(b)), 𝜎 significantly decreases to 7.31 × 10−4, reflecting a

more stable and consistent set of results. The reduced 

variability for higher 𝑁𝑏𝑖𝑛𝑠 ensures greater confidence in the

accuracy of the reporter results. 

3.4 Criteria for determining appropriate 𝒊steps

The accuracy and stability of SSE simulations are 

contingent upon selecting an adequate number of equilibration 

steps (𝑖steps) . We outline a systematic frame work for

determining the optimal 𝑖steps. 

1. Preliminary Investigations:

Initial trail simulations should be conducted across a range

of 𝑖steps  to identify the equilibration threshold. Key 

observables, such as 𝐸0/𝑁 and 〈𝑚2〉 should be monitored for

evidence of stabilization. If a plateau appears in these 

observables, then the system has reached equilibrium.  

2. Autocorrelation Analysis:

The auto correlation time of critical observables provides a

quantitative measure of the statistical independence between 

successive configurations. 𝑖steps should must exceed the auto 

correlation time by a factor at least 10. 

3. Statistical Validation:

To ensure robust equilibration, the stability of statistical

measures such as the mean and variance of observables should 

be evaluated. Convergence is achieved when the mean value 

stabilizes within a predefined tolerance and the variance 

exhibits no significant dependence on 𝑖steps. 

It is noted that higher temperatures may diminish the 

requisite number of 𝑖steps for equilibration, whereas larger 

systems typically necessitate an increased number of 𝑖steps . 

Statistical methods should be employed to ascertain the 

stabilization of the mean and variance of the measurements, 

thereby ensuring robust and reliable simulation outcomes.  

4. STUDY LIMITATIONS

This study provides valuable insights into the impact of 𝑖steps 

on the accuracy, stability, and computational cost of SSE 

simulations. However, several limitations should be noted: 

• The simulations were limited to relatively small system

sizes. While these sizes are sufficient to demonstrate key

trends and validate the methodology, larger systems could

reveal additional scaling effects and subtleties in the

behavior of magnetic properties.

• The analysis was confined to a one-dimensional system.

Extending this approach to higher-dimensional systems

(e.g., 2D or ladder geometries) could provide a more

comprehensive understanding of the impact of 𝑖steps ,

under varying coordination numbers and

dimensionalities.

• The simulations were conducted on a single workstation

with fixed hardware specifications. Parallelization

strategies or simulations on more advanced computing

clusters could provide deeper insights, particularly for

larger systems or higher-dimensional models.

5. CONCLUSION

This study examines the role of equilibration steps in the 

SSE method for simulating the 1D spin-1/2 antiferromagnetic 

lattice defined by the Heisenberg model. The findings 

highlight the critical importance of equilibration steps in 

achieving stable and reliable simulation outcomes while 

balancing computational cost. The analysis demonstrates that 

ground state energy per spin and sublattice magnetization 

remain stable across different equilibration step counts, 

particularly at low temperatures, closely matching the exact 

Bethe ansatz solution. In contrast, susceptibility and specific 

heat show variability at low temperatures due to dominant 

quantum effects. At intermediate temperatures, susceptibility 

peaks reflect the formation of short-range spin correlations and 

transition into Curie-Weiss behavior at high temperatures. The 

results also emphasize that increasing the number of bins 

significantly enhances result stability by reducing statistical 

deviations. 

Equilibration steps are vital to ensure accurate 

representation of the system’s equilibrium properties, 

particularly at low temperatures where slower equilibration 

leads to greater fluctuations. Measurement steps, on the other 

hand, govern the convergence of results across multiple runs, 

ensuring proper sampling and consistency. 

Future work could explore these findings in higher-

dimensional systems, ladder geometries, or more complex 

spin interactions. An automated algorithm could be developed 

to optimize simulation parameters, such as equilibration and 

measurement steps, based on the system's properties, 

including lattice size and temperature. The algorithm would 

perform several preliminary runs to analyze the system's 

behavior and identify the optimal values for equilibration and 

measurement steps that ensure both accuracy and 

computational efficiency. Additionally, the algorithm could 

factor in the hardware specifications of the system it is running 

on, such as the processor type, available RAM, and 

computational power. The algorithm could adapt to hardware 

capabilities, efficiently allocating resources and 

recommending parameters that balance accuracy and runtime. 

This automation would save time, especially for larger lattices 

or low temperatures, reducing trial-and-error and enabling 

researchers to focus on analyzing results. 
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NOMENCLATURE 

⟨𝐴̂⟩ Thermal expectation value 

𝑆̂+, 𝑆̂− Raising and lowering spin operators 

⟨X⟩ Average 

𝐸0/𝑁 Ground state energy per spin, J 
𝐻̂ Hamiltonian 

𝑀steps Measurement Monte Carlo steps 

𝑁Bins Number of bins 

𝑁𝑏 Number of bonds 

𝑖steps Equilibration Monte Carlo steps 

𝑚 Dimensionless sublattice magnetization 

ℎ External magnetic fields 

𝐵 Polynomial coefficient 

𝐶 Specific heat  

𝐿 Lattice size 

𝑁 The number of sites in the lattice equals 

𝑇 Absolute temperature, K 

𝑊 Weight of configuration 

𝑍 Partition function 

𝑐 Constant number 

𝑡 Processing time 

𝑧 Z-direction

𝜒 Susceptibility, J/T2

𝜖 Proportionality constant

Greek symbols 

 scaling exponent of 𝑡 with 𝐿 

 inverse dimensionless temperature 

𝛾 scaling exponent of 𝑡 with 𝛽 

𝛿 scaling exponent of 𝑡 with 𝑀steps

|𝜑⟩ basis state of the system 

𝜎 Standard Deviation 

∆ uniaxial anisotropy 
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