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Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that impacts 

social behavior, communication, and cognitive functions. Accurate early detection is 

essential for timely intervention and improved developmental outcomes. However, 

ASD identification remains challenging due to feature relevance, class imbalance, noisy 

features, misclassification errors, and variability in symptom presentation across age 

groups. To address these issues, this paper proposes a novel ensemble classification 

framework, Feature-Optimized Imbalanced Data Ensemble (FOIDE). FOIDE 

incorporates a cost-sensitive variant of Extreme Gradient Boosting (XGB) to extract 

weighted features by penalizing misclassification of minority classes. These features 

are further refined through a Multilayer Perceptron (MLP) to capture complex non-

linear patterns. Additionally, a probabilistic nested cross-validation mechanism is 

introduced to rank and select the most discriminative features, improving generalization 

across diverse age groups, including toddlers, children, and adults. FOIDE is evaluated 

on four benchmark ASD screening datasets representing toddlers, toddler-merged, 

children, and adults. Experimental results demonstrate FOIDE’s strong performance, 

achieving 99.98% accuracy on the toddler dataset, 99.12% on the imbalanced toddler 

dataset, 99.97% on the toddler-merged dataset, 99.78% on the children’s dataset, and 

99.81% on the adult dataset. These results outperform existing methods, highlighting 

FOIDE’s effectiveness in handling class imbalance and enhancing age-generalized 

ASD prediction. 

Keywords: 
Autism Spectrum Disorder (ASD), class 

imbalance, ensemble learning, Extreme 

Gradient Boosting (XGB), feature selection, 

machine learning, Multilayer Perceptron (MLP) 

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a lifelong neurological 

and developmental condition that affects how individuals 

communicate, behave, and interact socially. The disorder 

manifests in early childhood, with symptoms that vary 

significantly in severity and expression across different 

individuals [1]. Early diagnosis is essential, as timely 

intervention can lead to substantial improvements in cognitive, 

emotional, and social outcomes. However, conventional 

diagnostic approaches are often manual, reliant on expert 

observation, and time-consuming, making early identification 

difficult, especially in resource-constrained environments [2]. 

Furthermore, ASD behaviors evolve with age, and many 

individuals are either diagnosed late or misdiagnosed entirely, 

which limits access to appropriate support mechanisms [3]. 

Modern machine learning (ML) techniques have shown 

considerable potential in addressing this gap by automating the 

analysis of high-dimensional behavioral and clinical data [4, 

5]. Through data-driven models, patterns indicative of ASD 

can be learned from assessment datasets, enabling earlier and 

more consistent diagnoses. However, despite this promise, 

existing ML-based ASD detection frameworks face several 

significant limitations that prevent their widespread and 

reliable application in real-world scenarios. 

One major challenge lies in the lack of generalizability 

across age groups. Many prior models are tailored to specific 

cohorts, such as children or adults, and do not generalize well 

across diverse developmental stages, including toddlers, 

adolescents, and adults [6, 7]. Behavioral traits and cognitive 

indicators associated with ASD can differ significantly with 

age, and models trained on a narrow subset of the population 

tend to perform poorly when applied to other groups [8]. 

Another critical limitation is the presence of class imbalance 

in ASD datasets. Typically, datasets contain far fewer positive 

ASD samples than non-ASD controls, causing learning 

algorithms to be biased toward the majority class. This leads 

to high false-negative rates, where individuals with ASD are 

wrongly classified as non-ASD, which is particularly 

problematic in clinical settings [9, 10]. Most conventional 

classifiers, including logistic regression (LR), support vector 

machines (SVMs), and decision trees (DTs), do not 

incorporate mechanisms to address this imbalance adequately, 

resulting in misleadingly high accuracy but poor sensitivity 

[11]. 

Additionally, feature selection and interpretability remain 

underdeveloped in most existing frameworks. ASD diagnosis 

often involves a wide array of behavioral, sensory, and 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 8, August, 2025, pp. 2890-2898 

Journal homepage: http://iieta.org/journals/mmep 

2890

https://orcid.org/0009-0005-1376-213X
https://orcid.org/0000-0002-6813-3876
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120830&domain=pdf


 

cognitive variables. Selecting the most relevant features not 

only improves model performance but also aids clinicians in 

understanding which factors contribute most significantly to 

diagnostic decisions. However, many models use static or 

filter-based feature selection techniques, which may not 

account for the interdependencies between features or their 

relevance across age groups [12, 13]. 

To overcome these challenges, several ensemble learning 

approaches have been proposed in the literature. Ensemble 

models such as Random Forests (RF), AdaBoost (AB), and 

Extreme Gradient Boosting (XGB) aggregate predictions from 

multiple base learners to improve overall accuracy and 

robustness [14, 15]. These methods have been shown to 

outperform individual classifiers in various ASD prediction 

tasks. For instance, studies using XGB and RF have 

demonstrated strong performance in binary classification tasks 

involving children or adult datasets [16]. In other cases, 

combinations of classifiers like LRs, SVMs, and naive Bayes 

(NBs) were evaluated on benchmark datasets such as those 

from the University of California, Irvine (UCI), and Kaggle, 

achieving classification accuracies ranging from 94% to 99% 

for isolated age cohorts [17, 18]. 

Optimization techniques such as Genetic Algorithms, 

Particle Swarm Optimization (PSO), and Cuckoo Search have 

also been employed to reduce feature dimensionality and 

enhance model accuracy [19, 20]. Additionally, some studies 

have incorporated feature transformation methods like 

Quantile Transform, Power Transform, and normalization to 

improve data consistency across samples [21]. These methods, 

while effective to an extent, do not comprehensively address 

the problems of class imbalance, interpretability, and age 

group diversity. 

Some recent work has also considered the use of ensemble 

models in clinical and therapeutic settings. For example, 

multi-class ensemble classifiers have been used to monitor 

therapy effectiveness and evaluate short-term factors 

contributing to ASD progression [22]. These studies 

emphasize the importance of integrating behavioral 

assessments with intelligent diagnostic tools. However, such 

models often lack a robust mechanism for feature selection and 

ranking, particularly in the presence of imbalanced data. 

A few studies have explored federated learning approaches 

for ASD detection, where data collected from multiple clients 

(e.g., hospitals or edge devices) are used to train local models 

without centralizing sensitive information [23]. These 

frameworks demonstrate the feasibility of privacy-preserving 

ASD diagnosis, especially in mobile and remote healthcare 

contexts. However, the core classification models in these 

studies still suffer from the same limitations, namely, 

insufficient handling of imbalanced datasets and a lack of 

cross-age adaptability. 

Motivated by these challenges, this paper proposes a 

comprehensive machine learning framework termed Feature-

Optimized Imbalanced Data Ensemble (FOIDE), specifically 

designed for early and accurate detection of ASD across 

multiple age groups. Unlike previous approaches, FOIDE 

combines cost-sensitive learning, deep neural ensemble 

modeling, and nested cross-validation-based feature selection 

into a unified pipeline. 

The first core component of FOIDE is a weighted XGBoost 

classifier, in which the loss function is modified to impose 

greater penalties on false negatives than on false positives. 

This cost-sensitive approach is particularly valuable in ASD 

detection, where failing to identify a true ASD case can have 

serious consequences [24]. By embedding imbalance 

awareness directly into the learning objective, the model 

becomes more sensitive to minority class instances, improving 

recall without compromising overall accuracy. 

The second component of the FOIDE framework is a 

Multilayer Perceptron (MLP) that receives the output of the 

weighted XGBoost feature transformation. This enables the 

model to learn complex, nonlinear relationships among 

behavioral indicators, which may not be adequately captured 

by tree-based methods alone. The MLP acts as a high-level 

representation learner that refines the decision boundaries 

informed by XGB [25]. 

The third innovation is a nested cross-validation (CV) 

mechanism that is used for both feature selection and model 

generalization. In this approach, the dataset is split into 

multiple folds, and within each fold, an inner-loop validation 

is used to rank features based on their predictive importance. 

This hierarchical evaluation ensures that the selected features 

are robust and not overfitted to any specific partition of the 

data. Moreover, features that consistently appear across 

multiple outer folds are prioritized, improving both model 

interpretability and generalization across age groups [26, 27]. 

Compared to prior work, FOIDE offers several 

methodological advancements. Unlike reference [16], which 

used a two-stage ensemble model [28] without feature ranking, 

FOIDE integrates feature selection, imbalance handling, and 

ensemble learning within a single, adaptive framework. Unlike 

references [20, 21], which focused on optimization-based 

feature reduction but lacked age group adaptability, FOIDE 

specifically targets cross-age generalization using stratified 

datasets. It also overcomes the limitations of reference [24], 

where misclassification cost tuning was absent, and ensemble 

learners were evaluated in isolation. 

The key contributions of this research are summarized 

below: 

 Introduction of a cost-sensitive XGBoost loss function 

tailored to improve sensitivity for ASD detection in 

imbalanced data environments. 

 Development of a hybrid XGB–MLP ensemble model that 

captures both linear and nonlinear patterns in high-

dimensional behavioral data. 

 Implementation of a nested cross-validation strategy for 

robust feature ranking and selection, improving 

generalizability across toddlers, children, and adults. 

 Comprehensive evaluation across multiple age-stratified 

ASD datasets, demonstrating superior accuracy, reduced false 

negatives, and improved feature interpretability compared to 

existing baselines. 

This work addresses key gaps in the field by providing an 

ensemble-based, interpretable, and imbalance-resilient 

framework for ASD detection. By aligning learning objectives 

with clinical priorities and ensuring that models generalize 

across age groups, FOIDE contributes both technically and 

practically to the evolving field of computational autism 

research. 

The rest of the paper is organized as follows: Section 2 

details the proposed FOIDE methodology, Section 3 presents 

experimental results and comparative analysis, and Section 4 

concludes with insights, limitations, and future research 

directions. 
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2. PROPOSED METHODOLOGY 

 

This section introduces a novel framework named FOIDE 

for effectively detecting ASD among young and adults, as 

shown in Figure 1. In designing an effective framework, the 

work first introduces a novel weight optimization mechanism 

for the XGB algorithm. Then, the extracted feature is trained 

using MLP. Finally, XGB-MLP employs an enhanced cross-

validation mechanism to effectively select and rank the 

features contributing to ASD and build an effective ASD 

predictive classifier.  

 

 
 

Figure 1. Framework for detecting ASD using feature-

optimized imbalanced data-aware ensemble classifier 

 

2.1 Architecture for detection of autism 

 

As shown in Figure 1, the general ASD dataset is defined in 

Eq. (1): 

 

( ) ( ) ( ) 1 1 2 2, , , , , ,m mX a b a b a b=   (1) 

 

where, the parameter 𝑗 = 1,2,3, … , 𝑚, depicts the total ASD 

samples present within the dataset, parameter 𝑎𝑗 defines an n-

dimensional vector defining the respective features of 𝑗, and 

parameter 𝑏𝑗 ∈ {0,1}  represents 𝑗𝑡ℎ  row output. During 

preprocessing, any rows containing missing data are removed 

before training the model. To increase the dataset size and 

balance the distribution, data augmentation is then applied. 

Subsequently, the model determines whether the classification 

task is binary or multi-label based on the dataset labels. The 

ASD dataset is composed of various assessments featuring 

multi-dimensional features. In analyzing and designing ASD 

classifier 𝐺̂, for classifying the actual value of original data 𝐺, 

considering a specific label like the presence of ASD or not is 

expressed in Eq. (2): 

 
:g A B→  (2) 

 

where, 𝐴 represents the observer feature  𝑗  and 𝐵  defines its 

outcome in 𝑗𝑡ℎ row. In this work, an ASD predictive model is 

constructed by minimizing a carefully designed objective 

function, utilizing a hybrid XGBoost-MLP classifier. The 

model incorporates an enhanced cross-validation mechanism 

to ensure robust feature selection and optimal generalization 

performance. 

 

2.2 Feature extraction using cost-sensitive Extreme 

Gradient Boosting (XGB) 

 

XGB algorithm is a well-known gradient tree boosting 

methodology used by various standard models for solving 

various classification problems [24]. To handle class 

imbalance and capture initial feature importance, we employ a 

cost-sensitive version of the XGB algorithm. XGB is a robust 

ensemble technique based on gradient tree boosting, which 

constructs a series of decision trees to approximate complex 

functions. The cumulative output for a given input sample 𝑌𝑗 

is expressed as: 

 

( ) ( )
1

ˆ ,
L

j j l j l

l

Z G Y g Y g 
=

= =   (3) 

 

where, 𝑍̂𝑗 defines the classification outcomes of a multi-label 

classification model with a certain dimension, 𝑙𝑡ℎ dimension 

describes the probability that it will be classified as belonging 

to the 𝑙𝑡ℎ  class, and 𝛼  defines a set of decision trees as 

described below: 

 

( ) ( ) t y
g y x = =  (4) 

 

where, every tree 𝑔(𝑦) agree with respect to leaf weight vector 

𝑥  and structure parameter 𝑡 . The objective of the XGB 

classification model is to minimize the regularized loss 

parameter: 

 

( ) ( ) ( )ˆ ,j j l

j l

M G z z g= +   (5) 

 

where, 

 

𝛽(𝑔𝑙) = 𝛿𝑈 + 𝜇‖𝑥‖2 (6) 

 

The first parameter ℒ(𝑧̂𝑗 , 𝑧𝑗)  in Eq. (5), defines the 

prediction loss function between actual and classified 

outcomes. The second parameter 𝛽(𝑔𝑙) in Eq. (5) depicts the 

penalizing term; 𝑈 depicts the leaf size within a tree, 𝛿 and 𝜇 

depict the controlling parameters used for controlling 

computational complexity. The conventional predictive model 
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using the binary cross-entropy model is obtained below: 

 

( ) ( ) ( ) ( )
1

ˆ ˆ ˆ, 1 1
o

j j j j j j

j

z z z log z z log z
=

 − + − −   (7) 

 

However, conventional loss functions do not account for 

class imbalance, which is critical in ASD datasets. Thus, we 

introduce a weighted cost-sensitive negative log probabilistic 

loss function to penalize misclassification more appropriately. 

In addressing these problems in this section, a modified 

feature extraction strategy for XGB is presented in Eq. (8): 

 

ℒ𝑏(𝑧̂𝑗, 𝑧𝑗) = 

− ∑[𝑏 ∙ 𝑧𝑗log(𝑧̂𝑗) + (1 − 𝑧𝑗)log(1 − 𝑧̂𝑗)]

𝑜

𝑗=1

 
(8) 

 

where, 𝑏 is a feature weight parameter that increases the 

penalty for misclassifying minority class samples (ASD-

positive cases). When 𝑏 > 1 , false negatives are penalized 

more heavily, improving sensitivity. The result of this phase is 

a feature-weighted output vector encoding both prediction 

strength and feature relevance, which serves as input for the 

next stage. 

In Section 2.3, acknowledge that Eq. (8) is related to cost-

sensitive learning, but clarify that your enhancement lies in 

joint optimization with deep learning and ranked cross-

validation, not cost-sensitive classification alone. 

 

2.3 Nonlinear feature learning using MLP 

 

The feature outputs generated from the modified XGB 

model are passed into an MLP [29] to model complex, 

nonlinear patterns within the data. MLP further refines the 

representation learned by the XGB, allowing richer 

abstractions across multiple layers. The MLP prediction for a 

given input sample with F features is expressed as: 

 

1 0

ˆ • •
F n

o H

o jp H ij i

i i

z w w x 
= =

  
=   

  
   (9) 

 

where, variables 𝑤𝑖𝑗
𝐻  and 𝑤𝑗𝑝

𝑜  denote the weights associated 

with the hidden and output layers, respectively. The output-

layer activation function is denoted as 𝜇𝑜, while the hidden-

layer activation function is denoted as 𝜇𝐻 . The variable 𝑥𝑖 

represents the 𝑖𝑡ℎ  input feature. This architecture captures 

nonlinear dependencies that are difficult for tree-based models 

to represent, particularly in multi-age ASD behaviors spanning 

toddlers to adults. 

 

2.4 Enhanced cross-validation-based feature selection and 

ranking 

 

To further improve model robustness and identify the most 

influential features contributing to ASD classification, we 

introduce a two-phase nested CV mechanism for feature 

ranking and selection.  

Phase 1: Nested Cross-Validation for Feature Evaluation 

The ASD dataset ℰ  is partitioned into 𝐾  outer folds. For 

each fold 𝑘 , one part 𝐸𝑘  is used for testing, while the 

remaining ℰ−𝑘 is used for training. 

Within ℰ−𝑘, a second-level (inner) partitioning into 𝐻 folds 

is performed. Each inner fold ℎ  generates training and 

validation splits ℰ−𝑘ℎ  and ℰ𝑘ℎ , respectively. For each 

hyperparameter configuration 𝜎𝑙  considering grid 𝑙 , a 

candidate model is trained and evaluated: 

 

( )( )ˆ ˆ ˆ, ;
l

kh

j lg g b g −=  (10) 

 

The validation error is computed as: 

 

( )( )ˆ, ;
n

kh

kh

j l

j

P b g 
−

−



=   (11) 

 

The average cross-validation error experienced across inner 

folds for different grid l is: 

 

( ) ( )( )
1

1
ˆ ˆ; , ;

kh

H
kh

l j l

h j Eh

CV g P b g
M

 
−

−

= 

=    (12) 

 

The cross-validation error is further optimized in a repeated 

manner for different grid l, considering S-times, considering 

rows Mh to ensure stability: 

 

( ) ( )( )
1 1

1
ˆ ˆ; , ;

kh

S H
kh

S l j l

s h j Eh

CV g P b g
M S

 
−

−

= = 

=    (13) 

 

The optimal ASD predictive model is selected by 

minimizing error for different l as: 

 

𝜎̂𝑛 = arg min
𝜎∈{𝜎1,𝜎𝑙}

𝐶𝑉𝑆(𝑔̂; 𝜎𝑙) (14) 

 

A binary ranking vector 𝑟(𝑎) is created to indicate whether 

each feature 𝑛𝑗  contributes significantly to the final ASD 

predictive model: 

 

𝑟(𝑎) = 

{

0 𝑖𝑓 𝑛𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑐ℎ𝑜𝑠𝑒𝑛 

1 𝑖𝑓 𝑛𝑗  𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑠 

𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙 𝑗 = 1,2,3, … , 𝑛

 
(15) 

 

The initial feature set selected contributing to ASD is 

obtained as:  

 

𝐹𝑠 = {𝑟(𝑛1), 𝑟(𝑛1), … , 𝑟(𝑛𝑛)} (16) 

 

Then, considering K-folds, the feature with the highest rank 

is selected and chosen as a very important feature contributing 

to ASD, as follows:  

 

𝐹𝑠𝑘
= {𝑟(𝑛1), 𝑟(𝑛1), … , 𝑟(𝑛𝑛)} (17) 

 

Phase 2: Final Feature Filtering 

In this phase, only the features with the highest rank are 

used in designing the final predictive model, as shown in Eq. 

(18).  

 

𝐹𝑠𝑓𝑖𝑛𝑎𝑙={𝑓𝑠(𝑝1),𝑓𝑠(𝑛2),…,𝑓𝑠(𝑛𝑛)} (18) 

 

where, 𝑓𝑠(∙) defines whether the selected 𝑛𝑡ℎ  feature should 

be selected or not, as:  
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𝐹𝑠(𝑎) = 

{
0 if 𝑞𝑗  is chosen lesser than 

𝐾

2
 times, 𝑗 = 1,2,3, … , 𝑛

1 if 𝑞𝑗  𝑖
𝐾

2
 times, 𝑗 = 1,2,3, … , 𝑛

 
(19) 

 

Using Eq. (19) assures that only best feature is chosen for 

constructing the ASD predictive model using the XGB-MLP 

ensemble classifier. This two-phase CV ensures that only 

stable and highly discriminative features are retained, 

improving model robustness across age-diverse and 

imbalanced datasets.  

 

2.5 FOIDE pipeline model 

 

To address the detection of ASD across diverse age groups 

and imbalanced datasets, the FOIDE framework integrates 

three major components in a unified learning pipeline: cost-

sensitive XGBoost, MLP, and enhanced CV. Figure 2 

illustrates the FOIDE pipeline.  

 

 
 

Figure 2. Pipeline model of FOIDE 

 

The step-by-step interaction among the components is as 

follows:  

(1) Feature weight optimization using modified XGB: A 

cost-sensitive variant of XGBoost is employed to handle data 

imbalance using a weighted loss function (Eq. (8)), where 

feature importance is adjusted via the penalty term b. This 

XGB model extracts initial representations and calculates 

weighted feature contributions considering false positive 

against false negative trade-offs.  

(2) Deep learning enhancement using MLP: The 

intermediate feature vectors generated from the weighted 

XGB trees are passed into an MLP model to capture non-

linear, high-order correlations. The MLP acts as a refiner and 

nonlinear enhancer, ensuring that interactions among features 

(especially for ASD-specific behaviors) are learned robustly. 

Eq. (9) describes the MLP transformation applied to XGB 

feature outputs. 

(3) Feature selection and ranking via enhanced cross-

validation: A two-phase nested cross-validation strategy is 

used to evaluate and rank features: The outer folds (K-fold) 

validate the generalizability of feature selections. Then, Inner 

folds (H-fold) tunes hyperparameters and tracks feature 

frequency. Eqs. (10)-(19) provide a systematic way to quantify 

feature stability and importance across multiple folds and 

repetitions (S). Features appearing in ≥ 𝐾/2 outer folds are 

retained for the final predictive model (Eq. (19)). 

(4) Final ensemble construction: The final XGB-MLP 

ensemble is trained on the optimally selected features  

𝐹𝑠𝑓𝑖𝑛𝑎𝑙
using the previously tuned architecture. This 

ensemble model is designed to improve generalization and 

robustness across imbalanced, multi-age ASD datasets, 

combining the interpretability of XGB and the nonlinearity 

modeling power of MLP. 

Unlike traditional cost-sensitive classifiers, FOIDE 

uniquely integrates weight-adjusted tree boosting with deep 

learning and nested validation-based feature ranking in a 

tightly coupled pipeline. This ensures the final model is both 

interpretable (via XGB) and expressive (via MLP), while also 

being resilient to class imbalance and data noise for detecting 

ASD across different age groups with enhanced accuracy. 

 

 

3. SIMULATION ANALYSIS AND RESULT 

 

This section studies the performance of the FOIDE 

classifier over other existing approaches for detecting autism 

across different age groups such as toddlers, children, and 

adults. All the datasets are collected for UCI and Kaggle like 

work presented in references [23, 24]. The proposed ASD 

predictive and existing ASD predictive are implemented using 

the Anaconda Python 3 framework. The accuracy, precision, 

recall, and F1-score are metrics used for validating ASD 

predictive models using Eqs. (20)-(23), respectively. 

 

TP TN
Accuracy

TP FP TN FN

+
=

+ + +
 (20) 

 

TP
Precision

TP FP
=

+
 (21) 

 

TP
Recall

TP FN
=

+
 (22) 

 

2 Precision Recall
F Score

Precision Recall

 
− =


 (23) 

 

3.1 Dataset details 

 

This study evaluates the performance of the proposed 

FOIDE classifier using four publicly available ASD screening 

datasets sourced from Kaggle and the UCI Machine Learning 

Repository. A summary of these datasets is presented in Table 

1. 

 

Table 1. Dataset description 

 

Category 

Number 

of 

Instances 

Number 

of ASD 

Number 

of Non-

ASD 

Number of 

Attributes 

Toddler 

[30] 
1050 130 920 17 

Toddler- 

Saudi 

Arabia 

[31] 

506 341 265 16 

Toddler-

merged 
1556 471 1085 16 

Children 

[32] 
292 66 226 20 

Adult [33] 704 261 443 20 

 

The Kaggle Toddler dataset [30] contains 1050 instances, 

with 130 positive ASD cases and 920 non-ASD cases, 

resulting in a class imbalance ratio of approximately 1:7.1. The 

dataset includes 17 attributes, encompassing behavioral 

assessments and demographic features. 

The Saudi Arabia Toddler dataset [31], collected via clinical 

screening, comprises 506 samples, of which 341 are ASD-

positive and 165 are non-ASD, yielding an inverse but still 

imbalanced ratio of approximately 2:1. This dataset includes 

16 features, mostly binary responses to ASD-related 

behavioral indicators. 
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The toddler dataset was created by merging two prominent 

publicly available sources from Kaggle [30, 31]. The resulting 

merged toddler dataset contains 1556 instances, of which 471 

are ASD-positive and 1085 are non-ASD, resulting in a class 

imbalance ratio of approximately 1:2.3. This dataset spans 16 

attributes with jaundice factor being eliminated as it is not 

available in Saudi Arabia Toddler dataset [31], incorporating 

both behavioral indicators (e.g., A1-A10 responses) and 

demographic features like age, gender, and caregiver 

relationship. 

The UCI Children dataset [32] includes 292 instances, with 

66 ASD-positive and 226 ASD-negative samples, reflecting an 

imbalance ratio of 1:3.4. This dataset contains 20 attributes, 

covering social, communication, and motor behaviors relevant 

to ASD diagnosis. 

Finally, the UCI Adult dataset [33] consists of 704 samples, 

including 261 ASD-positive and 443 non-ASD entries, with 

an imbalance ratio of approximately 1:1.7. Like the children’s 

dataset, it contains 20 attributes and is derived from 

standardized screening tools. 

Class imbalance is a critical challenge in these datasets, 

especially for the toddler and children’s categories, where 

underrepresentation of ASD-positive cases can lead to biased 

model training and poor sensitivity. The FOIDE framework 

addresses this challenge by integrating weighted loss 

functions, ensemble learning, and enhanced cross-validation 

to improve robustness and generalization across all age groups 

and imbalance levels. 

 

3.2 Classifier performance study for toddler and children 

dataset 

 

The initial evaluation involves the Kaggle dataset, which is 

notably imbalanced with a 1:7.1 ASD to non-ASD ratio. 

FOIDE is compared against conventional classifiers such as 

AdaBoost [23] and SVM-RIPPER [25]. As shown in Figure 3, 

FOIDE outperforms baseline models in accuracy, precision, 

recall, and F1-score, particularly excelling in recall, which is 

crucial in identifying ASD-positive cases under severe class 

imbalance. 

 

 
 

Figure 3. Classification performance for the ASD toddler 

dataset 

 

Case study 2. In this experiment, the Kaggle toddler and 

Saudi Arabia toddler datasets are combined to simulate more 

diverse screening conditions. We compare FOIDE with an 

ensemble-based classifier combining RF and XGB with meta-

feature selection [24]. The results in Figure 4 highlight 

FOIDE's consistent improvement across all performance 

metrics. Notably, FOIDE achieves higher recall and F1-score, 

indicating better handling of minority class prediction. This is 

primarily due to the cost-sensitive loss adjustment in the 

enhanced XGB module and the two-phase feature selection 

mechanism integrated with cross-validation. 

Case study 3. FOIDE is evaluated on the UCI children 

dataset and benchmarked against logistic regression [18], 

Cuckoo Search–based Feature Reduction (FR-CS) [19], 

AdaBoost [23], and Machine Learning Autism Spectrum 

Disorder (ML-ASD) [27]. The ML-ASD employed adaptive 

boosting with feature optimization to design the ASD 

predictive model. As presented in Figure 5, FOIDE 

demonstrates superior generalization, especially under class 

imbalance, achieving improved detection of minority ASD 

cases. This is attributed to its ensemble architecture and 

feature importance ranking based on repeated nested cross-

validation, which reduces overfitting to dominant non-ASD 

classes. 

 

 
 

Figure 4. Classification performance for the ASD toddler-

merged dataset 

 

 
 

Figure 5. Classification performance for the ASD children 

dataset 

 

Table 2 presents a comparative evaluation of classification 

performance across multiple ASD detection approaches on 

both the original and imbalanced versions of the toddler 

dataset. The proposed FOIDE model consistently 

demonstrates superior performance over existing methods [23-

26], achieving a peak accuracy of 100% on the balanced 

dataset and an average accuracy of 99.12% on the imbalanced 

dataset. These results were obtained using 5-fold nested cross-

validation, considering statistical tests conducted with p < 

0.05, and performance is reported as mean accuracy across 

multiple runs to account for variability and model stability. A 

paired t-test between FOIDE and the next-best model [24] 

confirms that the performance difference is statistically 

significant (p < 0.05). 

The FOIDE model’s ability to maintain high performance 

under imbalanced conditions highlights its robustness and 
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generalizability, especially compared to baseline models like 

AdaBoost, RF-XGB, and SVM-based ensembles. While the 

peak accuracy is 100%, the average accuracy and performance 

consistency (as indicated by standard deviation) provide a 

more realistic evaluation, mitigating concerns of overfitting or 

bias due to class imbalance. 

 

Table 2. Comparative study of the toddler dataset 

 

Method 
Feature 

Selection 
Approach 

Accuracy 

(±SD) 

Accuracy 

Imbalanced 

Data 

[23] No 
AdaBoost, 

LDA 

99.25 ± 

0.14 
96.5 

[24] Yes 
RF-XGB 

with MFS 

98.6 ± 

0.13 
97.5 

[25] Yes 

SVM, 

AdaBoost, 

Glmboost 

97.82 ± 

0.21 
94.1 

[26] Yes AdaBoost 
99.85 ± 

0.17 
96.5 

Proposed 

model 
Yes FOIDE 

99.91 ± 

0.8 
99.12 

 

 

4. CLASSIFIER PERFORMANCE STUDY FOR ADULT 

DATASET 

 

The final evaluation is conducted using the UCI adult ASD 

dataset, which has a moderate class imbalance (1:1.7). The 

proposed FOIDE model is compared against prior methods, 

including LR-based [18] and Linear Discriminant Analysis 

(LDA)-based [23]. Although AdaBoost [23] was also 

considered, it showed subpar performance compared to LDA 

and was excluded from graphical comparison for clarity. 

Figure 6 presents the comparative results. FOIDE exhibits 

superior performance across all evaluation metrics, including 

precision, recall, and F1-score. This improvement is especially 

pronounced in recall, affirming FOIDE’s ability to correctly 

identify ASD-positive cases. This robustness stems from its 

enhanced XGB component that incorporates weighted loss 

functions, along with a feature selection mechanism that 

mitigates bias caused by class imbalance. 

 

 
 

Figure 6. Classification performance for the ASD adult 

dataset 

 

The consistently high performance across all age groups and 

datasets reinforces FOIDE’s capacity to generalize well, 

especially when trained on imbalanced datasets a frequent 

characteristic in real-world ASD screening. Key 

enhancements that justify FOIDE's superiority are as follows:  

Imbalance handling: Unlike conventional models, FOIDE 

explicitly incorporates a cost-sensitive optimization strategy in 

XGB to reduce false negatives, a common issue in minority 

ASD class detection.  

Cross-validation aware feature ranking: The nested K-fold 

cross-validation ensures robust feature importance estimation 

and generalization across folds, preventing overfitting to 

dominant class samples.  

MLP-based classification with selected features: By feeding 

XGB-derived features into an MLP with refined weights, 

FOIDE achieves better nonlinear separation and class 

discrimination, enhancing prediction on subtle ASD patterns. 

 

 

5. CONCLUSION 

 

Numerous studies have sought to enhance ASD prediction, 

yet challenges such as class imbalance and generalizability 

across age groups remain unresolved. This study addressed 

these gaps by compiling and analyzing ASD screening 

datasets spanning toddlers, children, and adults. We 

introduced the FOIDE model, which integrates a cost-sensitive 

XGBoost-based feature extractor with an MLP classifier, 

guided by an enhanced nested cross-validation mechanism for 

effective feature selection and ranking. Our experimental 

results demonstrate that FOIDE consistently achieves 

competitive accuracy and robust generalization across all age 

categories when compared to existing machine learning 

baselines, particularly in handling imbalanced datasets. 

However, certain limitations must be acknowledged. FOIDE’s 

computational complexity, due to its ensemble architecture 

and repeated cross-validation, may pose deployment 

challenges in resource-constrained environments such as low-

power edge devices or real-time systems. Additionally, the 

current model relies solely on structured screening data and 

does not incorporate other potentially rich modalities such as 

speech, facial expression, or wearable sensor data. 

Future research will explore extending FOIDE to multi-

modal ASD detection, integrating behavioral signals (e.g., eye 

tracking, voice patterns, physiological data) with structured 

questionnaire responses to improve prediction accuracy and 

explainability. Additionally, efforts will focus on developing 

lightweight variants of FOIDE suitable for real-time or mobile 

health (mHealth) applications in clinical and home 

environments [34, 35]. 
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