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Production forecasting in hydraulic-fractured shale reservoirs requires reliable 

mathematical models that capture the coupled flow between fractures and the 

surrounding rock matrix. This study develops an analytical solution for distributed 

cross-flow (DCF) in a shale reservoir by formulating and solving a differential-integral 

equation that accounts for pressure evolution under varying boundary conditions. The 

analysis is based on two key assumptions: (1) the study focuses on the steady-state and 

pseudo-steady-state regimes, when boundary effects dominate; and (2) the model 

assumes flow along the x-direction inside the fracture and flow in the y-direction from 

the matrix to the fracture, while horizontal flow within the matrix is neglected. These 

assumptions enable a tractable yet insightful formulation of fluid movement from the 

shale matrix to the fracture network. The analytical approach provides explicit 

expressions for pressure and flow distributions, allowing rapid evaluation of production 

scenarios without reliance on heavy numerical simulations. Results show that under a 

no-flow boundary condition, the cumulative fluid rate is initially higher but declines 

with time due to reservoir depletion, whereas constant-pressure boundaries maintain a 

steady flux. The framework offers both physical clarity and practical advantages, 

including computational efficiency, straightforward sensitivity analysis, and 

adaptability for integration into larger reservoir models. 
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1. INTRODUCTION

1.1 Background 

The development of shale oil and gas resources through 

horizontal drilling and multi-stage hydraulic fracturing has 

transformed the global energy landscape, enabling production 

from formations once considered uneconomic. Hydraulic 

fractures act as highly conductive flow conduits, connecting 

ultra-tight shale matrix systems (often with nano-Darcy-level 

permeability) to the wellbore. This connectivity is critical to 

production performance, but the prediction of well 

productivity relies on accurately modeling how fluids migrate 

from the matrix through complex fracture networks. 

Shale formations are inherently heterogeneous and 

hierarchical. Figure 1 depicts the fractal structure of fluid flow 

in a hydraulically fractured shale reservoir: (i) at the highest 

level, fluids flow from hydraulic fractures into the wellbore; 

(ii) at the next level, microfractures feed into the main

hydraulic fractures; (iii) at a finer scale, fluids flow from pore

channels into microfractures; and (iv) at the smallest scale,

diffusion occurs from the matrix solid into the pore network.

These four levels are presented as a conceptual hierarchy

because they correspond to commonly observed flow domains

reported in core studies, microseismic analyses, and lab-scale

imaging. Each level is controlled by distinct mechanisms:

matrix-to-pore exchange is dominated by diffusion and 

capillarity; pore-to-microfracture transfer is governed by 

capillary imbibition and viscous resistance; microfracture-to-

fracture flow occurs under pressure-driven Darcy flow; and 

fracture-to-wellbore flow is controlled by high-conductivity 

fracture transport. This “four-level” representation is scalable: 

depending on data resolution and rock type, the hierarchy can 

collapse into fewer levels or expand to include nanopores 

within kerogen or natural fractures intersecting the hydraulic 

network.  

Figure 1. Fractal presentation of fluid flow in hydraulic-

fractured shale reservoirs 
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Distributed cross-flow (DCF) is not unique to shale 

reservoirs. Similar phenomena occur in particle filtration 

systems, water movement in unconfined aquifers, and 

multiphase flow in heterogeneous reservoirs. In this study, we 

use DCF analogies selectively and explicitly tie them to shale 

processes. For example, in cross-flow membrane filtration, the 

buildup of a fouling layer is conceptually similar to 

microfracture plugging in shale, where the “sub-stream” 

(pore-scale flow) faces increasing restriction. Likewise, heat 

exchangers provide analytical frameworks for cross-flow 

transfer that mirror the pressure-driven coupling between the 

shale matrix and fracture system. These analogies are used not 

as unrelated examples, but to illustrate how restrictive cross-

domain transfer in shale can be captured analytically. What 

distinguishes shale, however, is the extreme restriction on sub-

stream flow at multiple levels: the transition from matrix to 

pore channels, from pore channels to micro fractures, and so 

forth. Each transition is influenced by capillary forces, viscous 

resistance, and sometimes gravity segregation, creating a 

cascade of restrictive flows. This complex interplay means that 

modeling shale production is not simply a matter of simulating 

flow through fractures as it requires understanding how each 

restrictive DCF interface contributes to overall system 

behavior. 

 

 

2. LITERATURE REVIEW 

 

A variety of approaches have been developed to 

characterize and model flow in hydraulically fractured shale 

reservoirs. The literature can be grouped into three major 

areas: fracture characterization, modeling approaches, and 

DCF research. 

 

2.1 Fracture characterization 

 

Microseismic monitoring with geophones has been widely 

used to track the propagation and geometry of hydraulic 

fractures during stimulation treatments [1, 2]. Microseismic 

data reflect the locations of rock failure events inside shale 

formations and have revealed that event source points rarely 

follow planar geometries in three-dimensional space, 

indicating significant fracture path variability [1]. Warpinski 

[2] reported microseismic data suggesting fracture 

propagation trends perpendicular to the horizontal wellbore, 

though no definitive fracture configuration was derived. 

Building on microseismic imaging, Abdulaziz [3] mapped 

hierarchical fracture branches in the Barnett Shale, while 

Barati and Liang [4] assumed hydraulic fractures with lateral 

branches in their fracturing fluid system design. Li and Zhang 

[5] presented a fracture network model incorporating fracture 

complexity, and Feng et al. [6] analyzed factors influencing 

fracture system complexity based on energy conservation 

principles. Other researchers have focused on the intersection 

of induced fractures with natural microfractures, forming 

hybrid or tree-like networks [7-10]. Post-fracturing studies 

further confirmed complex fracture evolution and reactivation 

processes [11, 12]. 

While these studies have greatly advanced understanding of 

fracture morphology, the mechanism of oil flow in 

hydraulically fractured shale remains a topic of debate. 

Observations from microseismic data, laboratory experiments, 

and field studies are often reconciled by building mathematical 

models that “fit” production history through parameter tuning, 

rather than deriving relationships grounded in first principles. 

This practice makes it challenging to distinguish whether a 

model’s accuracy reflects true physical understanding or 

merely calibration flexibility. 

 

2.2 Modeling approaches 

 

Classic analytical fracture models laid the foundation for 

modern shale reservoir modeling. Warren and Root’s dual-

porosity model [13] first formalized the concept of matrix–

fracture fluid exchange, while Cinco-Ley and Samaniego-V 

[14] provided semi-analytical solutions for finite- and infinite-

conductivity fractures that remain widely used. Gringarten et 

al. [15] expanded these approaches to include transient flow, 

setting the stage for decades of analytical and semi-analytical 

studies. Building on these foundations, more recent research 

has incorporated discrete fracture network (DFN) modeling 

[16] and stimulated reservoir volume (SRV) concepts to 

represent fracture complexity at field scale. Recent works have 

also explored hybrid physics–data approaches for production 

forecasting (e.g., references [17, 18]), integrating physics-

based understanding with machine learning to improve 

prediction accuracy. 

A broad range of modeling strategies have been developed 

to describe flow in fractured shales, ranging from empirical 

decline curve methods to fully numerical simulators. Hyman 

et al. [19] conceptualized production decline in three distinct 

flow stages (fracture-dominated, damaged zone, and matrix 

contribution) providing a useful qualitative framework. Dai et 

al. [20] applied semi-analytical models assuming fractal 

fracture networks, capturing some of the hierarchical features 

revealed by microseismic data. Hu et al. [21] advanced the 

field by creating discrete fracture network (DFN)–based 

models for gas production, explicitly incorporating fracture 

geometry. Despite these contributions, many models remain 

heavily numerical in nature, requiring extensive tuning of 

poorly constrained parameters (e.g., fracture conductivity, 

stimulated reservoir volume) to match production histories. 

Such models often obscure underlying physics and provide 

limited insight into scaling relationships or sensitivity trends. 

 

2.3 DCF research 

 

The flow between the shale matrix and fractures 

conceptually falls into the broader category of DCF, defined 

as mass transfer between domains driven by a potential 

gradient. In shale systems, this includes flow from matrix to 

pores, pores to microfractures, and microfractures to hydraulic 

fractures, each representing a level of restricted DCF. DCF 

phenomena have been well studied in other engineering 

disciplines, including filtration, aquifer flow, and heat transfer, 

offering valuable analogies for shale modeling. For example, 

Huisman [22] reviewed early work on membrane separations 

and microfiltration; Ferreira and Massarani [23] developed a 

phenomenological model correlating pressure fields, filtration 

rates, and cake thickness in axial cross-flow filtration; and 

Hakami et al. [24] investigated ceramic membrane 

microfiltration for wastewater treatment, focusing on fouling 

and flow restriction. More recent reviews (e.g., reference [25]) 

on microalgal dewatering further highlight the importance of 

DCF in particle filtration systems. 

Other studies moved beyond empirical work into numerical 

and semi-analytical territory. Kazemi et al. [26] conducted 

numerical simulations of cross-flow microfiltration of diluted 
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malt extract suspensions by tubular ceramic membranes, 

showing strong agreement with experimental data—but the 

discretized nature of their solution makes it difficult for 

practitioners to use directly. Park and Nägele [27] presented 

an analytical model for ultrafiltration of permeable particle 

dispersions in hollow fiber membranes, using a semi-analytic 

modified boundary layer approximation. Parasyris et al. [28] 

extended similar concepts to circular filtration modules. While 

useful, these works either over-simplified the coupling 

between mainstream and sub-stream flow or ignored sub-

stream flow restriction—a critical feature of shale systems. 

DCF research in heat transfer also offers partial parallels. 

Bradley [29] presented simplified analytical treatments for 

counterflow, crossflow, and concurrent-flow heat exchangers. 

More recently, Liu et al. [30] developed a distributed 

parameter model for plate-fin heat exchangers (PFHEs) to 

investigate counterflow and cross-flow thermodynamics, 

including the effect of longitudinal conduction. However, 

none of these studies, across filtration, aquifer, or heat transfer 

literature, address the analytical modeling of restrictive DCF 

systems where the sub-stream is strongly coupled to, and 

constrained by, the mainstream flow. 

 

2.4 Knowledge gaps 

 

Despite decades of research, analytical modeling of flow in 

fractured shale systems remains underdeveloped. The industry 

relies heavily on numerical simulation tools such as dual-

porosity and dual-permeability models, which can handle 

heterogeneity and multiphase effects but are computationally 

demanding and often obscure the underlying physics. For 

many engineers, these models are essentially “black boxes” 

offering little insight into sensitivity trends or scaling 

behavior. While the DCF concept is widely recognized in 

other engineering disciplines, shale applications have few (if 

any) analytical treatments that capture both fracture flow and 

matrix contribution in a single, closed-form framework. In 

shale, the “sub-stream” (e.g., fluid flow from matrix or 

microfractures) is highly restricted and tightly coupled to the 

“mainstream” flow within hydraulic fractures. Representing 

this interdependency analytically is challenging. In most cases, 

systems must be discretized, and numerical methods are used 

approaches that can be inaccessible to field engineers and 

obscure physical interpretation. The pseudo-steady-state 

period when reservoir boundaries begin to influence pressure 

and production behavior, is critical for production forecasting 

and decline analysis. Yet very few studies explicitly analyze 

how constant-pressure versus no-flow boundaries affect flow 

evolution and flux partitioning in shale systems. Existing 

analytical studies often focus on a single scale (e.g., matrix to 

fracture) and do not explicitly account for the cascading nature 

of DCF from pore channels up to fractures and then to the 

wellbore. 

 

2.5 Objectives 

 

This study aims to fill these gaps by developing an 

analytical solution for DCF between the shale matrix and 

hydraulic fractures using a differential–integral equation 

(DIE) formulation. The solution is derived under two 

simplifying but physically meaningful assumptions: (1) the 

analysis focuses on the pseudo-steady-state regime; and (2) 

flow is assumed to occur along the fracture in the x-direction 

and from the matrix in the y-direction, neglecting horizontal 

flow within the matrix. By incorporating these assumptions, 

we derive closed-form expressions for pressure and flow 

distributions under both constant-pressure and no-flow 

boundaries. This analytical framework provides a transparent 

and computationally efficient alternative to purely numerical 

simulations, offering both conceptual clarity and practical 

utility for reservoir engineers. 

 

 

3. MATHEMATICAL MODELING 

 

Mass or heat DCF in a 2-dimentional domain is depicted in 

Figure 2. The DIE method used in this study involves the 

following procedure: 

Define the flux function in the 2D-domain based on physics 

law (e.g., Darcy’s law for fluid flow in porous media or 

Fourier’s law for heat conduction): 

 

𝑞𝑦(𝑥, 0) = 𝑎
ℎ𝛥𝑥

𝑦𝑓

[𝛷(𝑥, 𝑦𝑓) − 𝛷(𝑥, 0)] (1) 

 

where, 𝑞(𝑥, 0) is the flow rate, 𝛷  is potential function, 𝑎  is 

constant, and other quantities are shown in Figure 3. 

 

 
 

Figure 2. Mass or heat DCF in a 2-dimentional domain 

 

 
 

Figure 3. Velocities at the joint of DCF in a 2-dimentional 

domain 

 

Formulate the flux velocity in y-direction at x by dividing 

flow rate by flow cross-sectional area: 

 

𝑣𝑦(𝑥, 0) =
𝑎

𝑦𝑓

[𝛷(𝑥, 𝑦𝑓) − 𝛷(𝑥, 0)] (2) 

 

Formulate the flow rate in x-direction at x-point by 

2619



 

integrating the influx from x=0 to x: 

 

𝑞𝑥(𝑥, 0) =
𝑎ℎ

𝑦𝑓

∫ [𝛷(𝑥, 𝑦𝑓) − 𝛷(𝑥, 0)]
𝑥

0

𝑑𝑥 (3) 

 

Formulate the flux velocity in x-direction at x by dividing 

flow rate by flow cross-sectional area of the mainstream: 

 

𝑣𝑥(𝑥, 0) =
a

𝑤𝑦𝑓

∫ [Φ(x, 𝑦𝑓) − Φ(x, 0)]
𝑥

0

𝑑𝑥 (4) 

 

Formulate the velocity in x-direction at x in the mainstream 

based on physics law (e.g., Darcy’s law for fluid flow in 

porous media or Fourier’s law for heat conduction): 

 

𝑣𝑥(𝑥, 0) = −𝑏
𝑑𝛷(𝑥, 0)

𝑑𝑥
 (5) 

 

The velocity at point x must be unique. Therefore, the right 

sides of Eq. (4) and Eq. (5) must be equal, i.e., 

 
𝑎

𝑤𝑦𝑓

∫ [𝛷(𝑥, 𝑦𝑓) − 𝛷(𝑥, 0)]
𝑥

0

𝑑𝑥 = −𝑏
𝑑𝛷(𝑥, 0)

𝑑𝑥
 (6) 

 

which is a differential-integration equation to solve. 

Taking derivative of Eq. (6) with respect to 𝑥 gives: 

 

𝑎

𝑤𝑦𝑓

[𝛷(𝑥, 𝑦𝑓) − 𝛷(𝑥, 0)] = −𝑏
𝑑2𝛷(𝑥, 0)

𝑑𝑥2
 (7) 

 

Solve Eq. (7) with boundary conditions for the potential 

function 𝛷(𝑥, 0). 

Submit the potential function back to Eq. (3) and integrate 

the latter will allow for determination of the influx profile 

function. 

The total influx at the sink is obtained by integrating the 

influx function from 𝑥 = 0 to 𝑥 = 𝑥𝑓, i.e.,  

 

𝑞𝑥(𝑥𝑓 , 0) =
𝑎ℎ

𝑦𝑓

∫ [𝛷(𝑥, 𝑦𝑓) − 𝛷(𝑥, 0)]
𝑥𝑓

0

𝑑𝑥 (8) 

 

 
 

Figure 4. Fluid DCF from a porous medium to a fracture of 

finite conductivity 

 

Figure 4 depicts fluid DCF from a porous medium to a 

porous fracture in a horizontal plane. Only crossflow on one 

side of the fracture is shown due to symmetry. If the external 

boundary is a no-flow boundary, consider the fluid in a volume 

element V flowing to the fracture. The fluid volume is 

expressed as: 

𝑉 =
1

2
𝜙ℎ𝑆𝑓∆𝑥 (9) 

 

where, 𝜙 is porosity, ℎ is the thickness of the flow domain, 𝑆𝑓  

is the length of the flow domain, and ∆𝑥 is the width of the 

element 𝑉.  

The governing equation for fluid flow in the porous medium 

is: 

 

𝜕2𝑝

𝜕𝑦2
=

𝜙𝜇𝐶

𝑘𝑚

𝜕𝑝

𝜕𝑡
 (10) 

 

where, 𝑝  is pressure, 𝜇  is fluid viscosity, 𝐶  is fluid 

compressibility, 𝑘𝑚  is permeability, and 𝑡 is time.  

 

3.1 Solution under constant-pressure boundary condition 

 

The constant-pressure boundary creates a steady flow, i.e., 

𝜕𝑝/𝜕𝑡 = 0. Then Eq. (10) degenerates to: 

 

𝜕2𝑝

𝜕𝑦2
= 0 (11) 

 

or 

 
𝜕𝑝

𝜕𝑦
= 𝑐0 (12) 

 

where, c0 is a constant and according to Darcy’s law, 𝑐0 =
𝜇𝑞(𝑥)

𝑘𝑚ℎ∆𝑥
. 

 

𝑞(𝑥) =
𝑘𝑚ℎ∆𝑥

𝜇

𝜕𝑝

𝜕𝑦
 (13) 

 

which is integrated to get: 

 

𝑝 =
𝜇

𝑘𝑚ℎ∆𝑥
𝑞(𝑥)𝑦 + 𝑐0

′  (14) 

 

The inner boundary condition is: 

 

𝑝|𝑦=0 = 𝑝𝑓(𝑥) (15) 

 

which is applied to Eq. (14) to give: 

 

𝑐0
′ = 𝑝𝑓(𝑥) (16) 

 

Substituting Eq. (16) into Eq. (14) and evaluating the latter 

at the outer boundary where 𝑦 =
𝑆𝑓

2
 gives: 

 

𝑝𝑒 =
𝜇𝑆𝑓

2𝑘𝑚ℎ∆𝑥
𝑞(𝑥) + 𝑝𝑓(𝑥) (17) 

 

which is arranged to get: 

 

𝑞(𝑥) =
2𝑘𝑚ℎ∆𝑥

𝜇𝑆𝑓

[𝑝𝑒 − 𝑝𝑓(𝑥)] (18) 

 

Note that segment flow rate 𝑞(𝑥) as shown in Eq. (18) only 

considers inflow from a single fracture face and to account for 

both fracture faces, the rate must be multiplied by two. 
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3.2 Solution under no-flow boundary condition 

 

The fluid compressibility is defined as: 

 

𝐶 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
) (19) 

 

which is divided by dt and rearranged to get 

 

𝐶𝑉
𝜕𝑝

𝜕𝑡
= −

𝜕𝑉

𝜕𝑡
= −𝑞(𝑥) (20) 

 

where, 𝑞(𝑥)  is the volumetric flow (flux) rate at point 𝑥 . 

Substituting Eq. (9) into Eq. (20) gives: 

 
𝜕𝑝

𝜕𝑡
= −

𝑞(𝑥)

𝐶𝑉
= −

2𝑞(𝑥)

𝐶𝜙ℎ𝑆𝑓∆𝑥
 (21) 

 

which is substituted into Eq. (10) and integrated to get: 

 
𝜕𝑝

𝜕𝑦
= −

2𝜇𝑞(𝑥)

𝑘𝑚ℎ𝑆𝑓∆𝑥
𝑦 + 𝑐1 (22) 

 

For the no-flow boundary at 𝑦 =
𝑆𝑓

2
, the boundary condition 

is expressed as: 

 

(
𝜕𝑝

𝜕𝑦
)

𝑦=𝑆𝑓/2

= 0 (23) 

 

Applying the boundary condition Eq. (23) to Eq. (22) gives: 

 

𝑐1 =
𝜇𝑞(𝑥)

𝑘𝑚ℎ∆𝑥
 (24) 

 

Substituting Eq. (24) into Eq. (22) yields: 

 

𝜕𝑝

𝜕𝑦
=

𝜇𝑞(𝑥)

𝑘𝑚ℎ∆𝑥
[1 −

2𝑦

𝑆𝑓

] (25) 

 

which is integrated to give: 

 

𝑝 =
𝜇𝑞(𝑥)

𝑘𝑚ℎ∆𝑥
[𝑦 −

𝑦2

𝑆𝑓

] + 𝑐2 (26) 

 

The inner boundary condition is expressed as: 

 

𝑝|𝑦=0 = 𝑝𝑓(𝑥) (27) 

 

which is applied to Eq. (26) to give: 

 

𝑐2 = 𝑝𝑓(𝑥) (28) 

 

Substituting Eq. (28) into Eq. (26) and evaluating the latter 

at the outer boundary where 𝑦 =
𝑆𝑓

2
, gives: 

 

𝑝𝑒 = 𝑝𝑓(𝑥) +
𝜇𝑞(𝑥)

𝑘𝑚ℎ∆𝑥
[
𝑆𝑓

2
−

𝑆𝑓
2

4
𝑆𝑓

] (29) 

 

which is arranged to get: 

𝑞(𝑥) =
4𝑘𝑚ℎ∆𝑥

𝜇𝑆𝑓

[𝑝𝑒 − 𝑝𝑓(𝑥)] (30) 

 

which is a doubled rate compared to Eq. (18). 

 

3.3 Cumulative flow rate formulation 

 

For the no-flow boundary solution, the influx velocity is 

expressed as 

 

𝑣(𝑥) =
𝑞(𝑥)

ℎ∆𝑥
=

4𝑘𝑚

𝜇𝑆𝑓

[𝑝𝑒 − 𝑝𝑓(𝑥)] (31) 

 

The cumulative flux rate from 2 fracture faces is counted as: 

 

𝑄(𝑥) = 2 ∫ 𝑣(𝑥)
𝑥

0

ℎ𝑑𝑥 = ∫
8𝑘𝑚ℎ

𝜇𝑆𝑓

[𝑝𝑒 − 𝑝𝑓(𝑥)]𝑑𝑥
𝑥

0

 (32) 

 

The next step is to determine the expression of the fracture 

pressure function 𝑝𝑓(𝑥). The fluid velocity inside the fracture 

is expressed as: 

 

𝑣𝑓(𝑥) =
𝑄(𝑥)

𝑤ℎ
 (33) 

 

Now consider the Darcy flow inside the fracture. The Darcy 

velocity is written as: 

 

𝑣𝑓(𝑥) = −
𝑘𝑓

𝜇

𝑑𝑝𝑓(𝑥)

𝑑𝑥
 (34) 

 

where, 𝑘𝑓  is fracture permeability. Because the fluid viscosity 

at a given point is unique, substituting Eq. (34) into Eq. (33) 

yields: 

 
𝑄(𝑥)

𝑤ℎ
= −

𝑘𝑓

𝜇

𝑑𝑝𝑓(𝑥)

𝑑𝑥
 (35) 

 

Substitution of Eq. (32) into Eq. (35) gives: 

 
𝑑𝑝𝑓(𝑥)

𝑑𝑥
= − ∫

8𝑘𝑚

𝑘𝑓𝑤𝑆𝑓

[𝑝𝑒 − 𝑝𝑓(𝑥)]𝑑𝑥
𝑥

0

 (36) 

 

which is the differential-integral equation for fracture 

pressure. To solve the equation for the fracture pressure 

distribution, taking derivative of the equation with respect to 

distance x yields: 

 

𝑑2𝑝𝑓(𝑥)

𝑑𝑥2
= −

8𝑘𝑚

𝑘𝑓𝑤𝑆𝑓

[𝑝𝑒 − 𝑝𝑓(𝑥)] (37) 

 

Solution of this ODE is (see derivation in Appendix A): 

 

𝑝𝑓(𝑥) = 𝑝𝑒 − (𝑝𝑒 − 𝑝𝑤)𝑒√𝑐(𝑥−𝑥𝑓) (38) 

 

where, 𝑝𝑤 is the pressure at the sink and 

 

𝑐 =
8𝑘𝑚

𝑘𝑓𝑤𝑆𝑓

 (39) 

 

Substituting Eq. (38) into Eq. (32) gives: 
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𝑄(𝑥) = ∫
8𝑘𝑚ℎ

𝜇𝑆𝑓

(𝑝𝑒 − 𝑝𝑤)𝑒√𝑐(𝑥−𝑥𝑓)𝑑𝑥
𝑥

0

 (40) 

 

which is integrated for the no-flow boundary condition, 

resulting in 

 

𝑄(𝑥) =
8𝑘𝑚ℎ

𝜇𝑆𝑓√𝑐
(𝑝𝑒 − 𝑝𝑤)(1 − 𝑒−√𝑐𝑥) (41) 

 

An expression of the total DCF flux rate for the no-flow 

boundary condition is obtained by setting 𝑥 = 𝑥𝑓  as follows: 

 

𝑄(𝑥) =
8𝑘𝑚ℎ

𝜇𝑆𝑓√𝑐
(𝑝𝑒 − 𝑝𝑤)(1 − 𝑒−√𝑐𝑥𝑓) (42) 

 

Following the same procedure, the DCF for the constant-

pressure condition can be derived as: 

 

𝑄(𝑥) =
4𝑘𝑚ℎ

𝜇𝑆𝑓√𝑐
(𝑝𝑒 − 𝑝𝑤)(1 − 𝑒−√𝑐𝑥) (43) 

 

and 

 

𝑄(𝑥) =
4𝑘𝑚ℎ

𝜇𝑆𝑓√𝑐
(𝑝𝑒 − 𝑝𝑤)(1 − 𝑒−√𝑐𝑥𝑓) (44) 

 

where, 𝑐 =
4𝑘𝑚

𝑘𝑓𝑤𝑆𝑓
 for constant pressure condition. 

 

3.4 Extension to the pseudo-steady state regime 

 

The previous derivations for the no-flow boundary 

condition assumed a constant external boundary pressure 𝑝𝑒. 

However, this assumption is insufficient to capture the 

temporal evolution of the pressure field under true no-flow 

conditions. To address this limitation, we extend the 

formulation by allowing 𝑝𝑒  to evolve with both time and 

location, 𝑝𝑒(𝑥, 𝑡)  under the pseudo-steady state condition. 

This enables incorporation of reservoir depletion effects and 

provides a more realistic description of the no-flow boundary 

behavior. The following modifications and derivations present 

this enhanced mathematical model.  

Based on Eq. (21), the depletion of 𝑝𝑒 can be expressed as 

Eq. (45). 

 
𝑑𝑝𝑒(𝑥, 𝑡)

𝑑𝑡
=

−2𝑞(𝑥, 𝑡)

𝐶𝜙ℎ𝑆𝑓𝛥𝑥
 (45) 

 

Accordingly, the segment flow rate 𝑞(𝑥, 𝑡)  and and the 

fracture pressure 𝑝𝑓(𝑥, 𝑡) can be expressed as Eq. (46) and Eq. 

(47). Substituting Eq. (47) into Eq. (46) yields Eq. (48). 

 

𝑞(𝑥, 𝑡) =
4𝑘𝑚ℎ𝛥𝑥

𝜇𝑆𝑓

(𝑝𝑒(𝑥, 𝑡) − 𝑝𝑓(𝑥, 𝑡)) (46) 

 

𝑝𝑓(𝑥, 𝑡) = 𝑝𝑒(𝑥, 𝑡) − (𝑝𝑒(𝑥, 𝑡) − 𝑝𝑤)𝑒√𝑐(𝑥−𝑥𝑓) (47) 

 

𝑞(𝑥, 𝑡) =
4𝑘𝑚ℎ𝛥𝑥

𝜇𝑆𝑓

(𝑝𝑒(𝑥, 𝑡) − 𝑝𝑤)𝑒√𝑐(𝑥−𝑥𝑓) (48) 

 

By substituting Eq. (48) into Eq. (45) and integrating the 

resulting ordinary differential equation, we obtain the time-

dependent external pressure 𝑝𝑒(𝑥, 𝑡) as shown in Eq. (49). 

 

𝑝𝑒(𝑥, 𝑡) = 𝑝𝑤 + (𝑝𝑒,𝑖 − 𝑝𝑤)𝑒−𝐾𝑡 (49) 

 

where, 𝐾 =
8𝑘𝑚

𝐶𝜙𝜇𝑆𝑓
2 𝑒√𝑐(𝑥−𝑥𝑓)  and 𝑝𝑒,𝑖  is the initial external 

pressure at 𝑡 = 0. 

Finally, by substituting Eq. (49) into Eq. (48), the 

expression for 𝑞(𝑥, 𝑡) can be reorganized as Eq. (50). It should 

be noted that Eq. (50) considers inflow from a single fracture 

face and for a system with two fracture faces, the calculated 

rate must be multiplied by two. 

 

𝑞(𝑥, 𝑡) =
4𝑘𝑚ℎ𝛥𝑥

𝜇𝑆𝑓

(𝑝𝑒,𝑖 − 𝑝𝑤)𝑒√𝑐(𝑥−𝑥𝑓)𝑒−𝐾𝑡 (50) 

 

Therefore, the cumulative flow rate is derived as shown in 

Eq. (51) 

 

𝑄(𝑥𝑓 , 𝑡) = 𝛽(𝑝𝑒,𝑖 − 𝑝𝑤) (𝑒−𝛼𝑡∙𝑒
−√𝑐𝑥𝑓

−𝑒−𝛼𝑡) (51) 

 

where, 𝛼 =
8𝑘𝑚

𝐶𝜙𝜇𝑆𝑓
2 , 𝛽 =

4𝑘𝑚ℎ

𝜇𝛼𝑡𝑆𝑓√𝑐
 and when 𝑡 = 0, 𝑄(𝑥𝑓 , 0) =

8𝑘𝑚ℎ

𝜇𝑆𝑓√𝑐
(𝑝𝑒,𝑖 − 𝑝𝑤) (1 − 𝑒−√𝑐𝑥𝑓). 

 

 

4. RESULTS  

 

A demonstrative case study was conducted to illustrate the 

application of the presented equations. The computational 

parameters used in this example are summarized in Table 1. 
 

Table 1. Parameters used for the demonstrative calculation 
 

Parameter Value 

𝑘𝑚 (m2) 10E-15 

ℎ (m) 20 

𝑤 (m) 0.001 

𝑝𝑤 (Pa) 1E+7 

ℎ (Pa-1) 1E-8 

𝑘𝑚 (m2) 𝑤2/12 

𝜇 (Pa.sec) 0.001 

𝑆𝑓 (m) 100 

𝑥𝑓 (m) 500 

𝑝𝑒,𝑖 (m) 2E+7 

𝜙 0.2 

∆𝑥 (m) 5 

 

A single curve represents the constant-pressure boundary 

condition (black, dashed), while multiple curves show the 

no-flow boundary condition at different times. 

Figure 5 illustrates the profiles of segment flow rate 𝑞 under 

different boundary conditions and production times. Under the 

constant-pressure condition, the segment flow rate gradually 

increases toward the wellbore from the fracture tip. For the 

no-flow boundary, the initial profile at 𝑡 = 0 exhibits a similar 

shape but with a higher magnitude of flow rate. However, as 

production time progresses under the no-flow boundary, this 

expected trend no longer holds: reservoir depletion causes the 

inflow near the wellbore to decline so sharply that, at later 

times, the segment flow rate close to the wellbore can fall 

below the flow rate contributed by segments farther from the 

wellbore. This phenomenon can be explained by Figure 6 that 

illustrates the pressure profiles along fracture length. Notably, 
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flow rate is a volumetric quantity. To calculate the flow rate at 

a given location 𝑥, the fracture length is discretized into 100 

segments, each with a segment length of ∆𝑥 = 50 𝑚. 

 

 
 

Figure 5. Segment flow rate distribution along the fracture 
 

 
 

Figure 6. Profiles of 𝑝𝑒 and 𝑝𝑓 along fracture length for both 

constant pressure and no-flow boundary conditions 

 

In Figure 6, black solid and dashed lines represent the 

distribution of 𝑝𝑒  and 𝑝𝑓  under the constant-pressure 

boundary condition. Because this assumption imposes a fixed 

external boundary pressure, 𝑝𝑒  remains constant across the 

entire fracture length, appearing as a horizontal line. In 

contrast, the fracture pressure 𝑝𝑓 declines from the fracture tip 

toward the wellbore, creating an increasing pressure 

differential (𝑝𝑒 − 𝑝𝑓 ) closer to the wellbore. This growing 

differential explains why the high segment flow rate near the 

wellbore under constant-pressure conditions. However, under 

no-flow boundary conditions, the depletion of 𝑝𝑒  is directly 

linked to the segment flow rate 𝑞. Higher flow rates accelerate 

the depletion of 𝑝𝑒 , which in turn reduces the pressure 

differential ( 𝑝𝑒 − 𝑝𝑓 ) and negatively impacts subsequent 

inflow. In Figure 6, 𝑝𝑒 and 𝑝𝑓 at the same time step are plotted 

using the same color, with solid lines for 𝑝𝑓 and dashed lines 

for 𝑝𝑒 to facilitate comparison. At any given time, a larger gap 

between 𝑝𝑒 and 𝑝𝑓 corresponds to a higher segment flow rate 

at that location. At later times, this gap narrows while 

approaching the wellbore, which aligns with the segment flow 

rate evolution shown in Figure 5. 

Figure 7 presents cumulative flow rate profiles, calculated 

as the integral of segment flow rates along the fracture length 

𝑥𝑓 . Under the constant-pressure boundary condition, the 

cumulative rate remains constant over time, reflecting the 

assumption of an unlimited external pressure source. In 

contrast, for the no-flow boundary condition, the cumulative 

rate starts high but declines significantly over time as reservoir 

pressure depletes, illustrating the nature of fluid flow under 

closed-boundary conditions. 

 

 
 

Figure 7. Comparison of cumulative flow rate profiles at 

different times for the no-flow and constant-pressure 

boundary conditions 

 

A series of sensitivity tests was carried out to evaluate the 

influence of matrix permeability (𝑘𝑚), fluid viscosity (𝜇), and 

fracture aperture (𝑤) on the cumulative flow rate response. 

Figures 8-10 illustrate how variations in these parameters 

affect the cumulative flow rate 𝑄(𝑡) under both no-flow and 

constant-pressure boundary conditions, respectively. In all 

figures, solid lines represent the no-flow solutions, while 

dashed lines represent the corresponding constant-pressure 

solutions. 

 

 
 

Figure 8. Sensitivity of cumulative flow rate 𝑄(𝑡) under no-

flow and constant-pressure boundary conditions to varying 

matrix permeabilities (𝑘𝑚 = 5 × 10−15, 1 × 10−14, 2 ×
10−14 𝑚2) 
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Figure 9. Sensitivity of cumulative flow rate 𝑄(𝑡) under no-

flow and constant-pressure boundary conditions to varying 

fluid viscosities (𝜇 = 5 × 10−4, 1 × 10−3, 2 × 10−3 𝑝𝑎 ∙ 𝑠) 

 

 
 

Figure 10. Sensitivity of cumulative flow rate 𝑄(𝑡) under 

no-flow and constant-pressure boundary conditions to 

varying fracture aperture widths (𝑤 = 5 × 10−4, 1 ×
10−3, 2 × 10−3 𝑚) 

 

Figure 8 examines the effect of matrix permeability on 

cumulative flow rate. Higher permeability values produce 

markedly higher flow rates for both boundary conditions by 

improving connectivity between the matrix and fracture. 

Under no-flow conditions, the enhanced permeability results 

in a strong initial surge in flow that declines rapidly as the 

system depletes, while the constant-pressure curves remain 

steady but scale upward with permeability. Figure 9 

investigates the impact of fluid viscosity on cumulative flow 

rate. Lower viscosity promotes significantly higher flow rates 

by reducing hydraulic resistance. Figure 10 explores the role 

of fracture aperture on cumulative flow rate. The constant-

pressure curves rise in magnitude with aperture, while the no-

flow curves reveal sharper early-time surges followed by more 

rapid depletion for the wider fracture scenarios. 

 

 

5. CONCLUSIONS 

 

In this work, analytical models of DCF were successfully 

developed by deriving and solving a differential–integral 

equation that describes fluid transfer from the shale matrix into 

hydraulic fractures. By assuming the pseudo-steady-state 

regime and neglecting horizontal flow in rock matrix, this 

formulation provides a clear mathematical framework for 

evaluating fracture–matrix interactions under different 

boundary conditions. It is important to note that this study is 

fundamentally theoretical: the “validation” discussed here 

refers to the mathematical rigor and internal consistency of the 

solutions, rather than direct comparison with field data. Full-

scale validation using field observations, which would involve 

additional complexities such as reservoir heterogeneity and 

operational variability, remains outside the present scope. 

Future work should apply this analytical framework to field 

data to assess its predictive performance and refine the model 

for practical deployment. Some conclusions can be drawn as 

follows: 

•The analytical solution offers key advantages over purely 

numerical methods. It provides explicit expressions for 

pressure and flow distributions, enabling rapid computation, 

straightforward sensitivity analysis, and intuitive 

understanding of the impact of fracture geometry, boundary 

conditions, and reservoir properties—all without the 

computational burden of fully discretized models. 

•Results from the derived equations clarify the impact of 

boundary conditions on production. Under a no-flow 

boundary, cumulative flow rates start higher than those under 

constant-pressure boundaries due to fluid expansion effects 

but decline over time as reservoir pressure depletes. Constant-

pressure boundaries maintain steady inflow, offering a useful 

contrast for field interpretation and forecasting. 

•The model demonstrates versatility for engineering 

applications. It can be applied to different shale formations and 

fracture configurations and serves as a foundation for hybrid 

workflows, where analytical solutions guide or benchmark 

more detailed numerical simulations.  

Overall, this study demonstrates that carefully constructed 

analytical models can complement numerical simulations by 

offering transparent, efficient, and scalable tools for 

understanding flow mechanisms in hydraulic-fractured shale 

reservoirs. 
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APPENDIX 

 

The differential equation is 

 

𝑑2𝑝𝑑(𝑥)

𝑑𝑥2
= 𝑐𝑝𝑑  (A.1) 

 

and 

 

𝑝𝑑 = 𝑝𝑒 − 𝑝𝑓(𝑥) (A.2) 

 

The boundary conditions are written as follows: 

 

𝑝𝑑|𝑥=𝑥𝑓
= 𝑝𝑑

∗ = 𝑝𝑒 − 𝑝𝑤 (A.3) 

 

and 

 

(
𝑑𝑝𝑒

𝑑𝑥
)

𝑝𝑑=0
= 0 (A.4) 

 

Let 

 

𝑝𝑑
′ =

𝑑𝑝𝑑

𝑑𝑥
 (A.5) 

 

then 

 

𝑑2𝑝𝑑

𝑑𝑥2
=

𝑑𝑝𝑑
′

𝑑𝑥
=

𝑑𝑝𝑑
′

𝑑𝑝𝑑

∙
𝑑𝑝𝑑

𝑑𝑥
= 𝑝𝑑

′
𝑑𝑝𝑑

′

𝑑𝑝𝑑

 ((A.6) 

 

Substituting this equation to Eq. (A.1) gives: 

𝑝𝑑
′

𝑑𝑝𝑑
′

𝑑𝑝𝑑

= 𝑐𝑝𝑑  (A.7) 

 

which is integrated to get: 

 
1

2
(𝑝𝑑

′ )2 =
1

2
𝑐(𝑝𝑑)2 + 𝑐3 (A.8) 

 

Apply the boundary condition given by Eq. (A.5) gives 

𝑐3 = 0. Then Eq. (A.8) is rearranged to yield: 

 
𝑑𝑝𝑑

𝑑𝑥
= √𝑐𝑝𝑑 (A.9) 

 

which is integrated to get: 

 

ln (𝑝𝑑) = √𝑐𝑥 + 𝑐4 (A.10) 

 

Apply the boundary condition given by Eq. (A.3) gives: 

 

𝑐4 = ln(𝑝𝑑
∗ ) − √𝑐𝑥𝑓 (A.11) 

 

Substituting this equation to Eq. (A.10) yields: 

 

ln (
𝑝𝑑

𝑝𝑑
∗ ) = √𝑐(𝑥 − 𝑥𝑓) (A.12) 

 

which gives: 

 

𝑝𝑑 = 𝑝𝑑
∗ 𝑒√𝑐(𝑥−𝑥𝑓) (A.13) 

 

Substituting Eq. (A.4) into Eq. (A.13) results in: 

 

𝑝𝑓(𝑥) = 𝑝𝑒 − (𝑝𝑒 − 𝑝𝑤)𝑒√𝑐(𝑥−𝑥𝑓) (A.14) 
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