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This paper introduces a hybrid computational method for characterizing far-field 

electromagnetic radiation from lightning over a perfectly conducting ground. The 

method combines the Finite-Difference Time-Domain (FDTD) technique with 

Sommerfeld integrals to address the high memory demands associated with large 

simulation domains. It enables efficient field mapping by reducing memory usage by 

up to 90% compared to full-domain FDTD, while maintaining high accuracy. The 

approach is computationally scalable, making it well-suited for analyzing complex 

geometries and large-scale scenarios relevant to lightning modeling and 

electromagnetic compatibility (EMC) studies. By significantly lowering the 

computational burden, the method allows for simulations that would be impractical 

using conventional techniques. Future developments will aim to further accelerate the 

computation, incorporate realistic ground conditions, and extend the model to three-

dimensional configurations for broader applicability. 
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1. INTRODUCTION

Several studies focusing on the characterization of 

lightning-induced electromagnetic radiation have primarily 

aimed at developing computational methods to model this 

phenomenon as accurately as possible. The main objective is 

to establish reliable predictive models that can be implemented 

numerically to simulate lightning’s electromagnetic radiation, 

thereby reducing the costs associated with experimentation. 

Two main approaches are commonly distinguished in this 

field: analytical methods, which reduce the problem of 

electromagnetic radiation to the evaluation of specific 

integrals known as "Sommerfeld integrals"—which can be 

challenging in terms of convergence without simplifying 

assumptions (such as the assumption of a perfectly conducting 

ground)—and numerical methods, which solve Maxwell’s 

equations using a predefined spatial mesh. 

One of the major challenges in numerical methods lies in 

the infinite extent of the analysis domain, necessitating 

artificial truncation through the introduction of appropriate 

boundary conditions. These conditions, referred to as 

"Absorbing Boundary Conditions" (ABC), aim to minimize 

non-physical reflections at the boundaries, making them 

nearly transparent to waves propagating outward. These 

conditions are also referred to as transparent, non-reflective, 

radiation, free-space, or open conditions when they are written 

in asymptotic form. 

The assumption of a perfectly conducting ground has 

significantly simplified the electromagnetic field equations 

over distances of a few kilometers, as demonstrated by several 

researchers [1-3]. Two main approaches are used to obtain the 

electromagnetic field waveforms in the time domain: the first 

is based on Maxwell’s equations and the image theory [4], 

while the second involves making the soil conductivity tend 

toward infinity in Sommerfeld integrals [5]. 

In this study, we focus on characterizing the 

electromagnetic radiation of lightning under the assumption of 

a perfectly conducting ground. To achieve this, we have 

developed computational codes within the MATLAB 

environment, utilizing a numerical approach based on the 

Finite-Difference Time-Domain (FDTD) method. The main 

contribution of our work lies in the proposal of a new type of 

absorbing boundary conditions. Unlike conventional 

conditions, these are determined analytically by numerically 

evaluating Sommerfeld integrals at the fictitious boundaries of 

the domain, independently of the internal field values. This 

hybrid approach thus combines an analytical method 

(Sommerfeld integrals) with a numerical method FDTD to 

enhance the modeling of lightning-induced electromagnetic 

fields. 

While several studies have explored hybrid approaches 

combining FDTD and Sommerfeld integrals for lightning field 

simulations, our work introduces an innovative way of 

integrating analytically computed absorbing boundary 

conditions. Unlike conventional techniques such as Mur’s 

ABC or Perfectly Matched Layer (PML) [6-15], our approach 
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enhances the accuracy of wave propagation by rigorously 

defining boundary values. 

This methodology is particularly advantageous for long-

distance simulations, where conventional numerical ABCs 

introduce errors. Furthermore, we demonstrate significant 

memory savings without compromising accuracy, making this 

method suitable for large-scale computations. 

It is worth noting that most previous studies combining the 

FDTD method with Sommerfeld integrals have primarily 

focused on improving far-field calculations or modeling 

multilayered ground structures [6, 7]. However, they have not 

directly addressed how to leverage the analytical structure of 

Sommerfeld integrals to generate boundary conditions 

specifically tailored for FDTD models in the time domain. 

These studies often relied on approximate solutions or 

frequency-domain transformations without explicit analytical 

incorporation in the time domain [8]. This reveals a research 

gap that the present work aims to fill: the lack of a hybrid 

methodology that connects accurate analytical calculations at 

the external boundaries using Sommerfeld integrals with 

numerical computation within the domain using FDTD, in a 

way that ensures high accuracy and physically consistent wave 

propagation. 

The innovative aspect of this work lies in developing a new 

type of absorbing boundary condition, calculated numerically 

through Sommerfeld integrals at the domain boundaries. This 

eliminates the dependence on traditional boundary conditions 

such as Mur or PML and significantly reduces nonphysical 

reflections. Unlike previous approaches that implement these 

two methods separately or approximately, our approach 

integrates them explicitly within the numerical solving loop. 

The potential contributions of this work include, from a 

theoretical perspective, introducing a new framework for 

modeling electromagnetic wave propagation in FDTD 

environments with analytically defined open boundaries. On 

the practical side, the approach enhances simulation 

performance for lightning-induced electromagnetic fields over 

long distances without the need for excessively large 

computational domains or high memory usage. Moreover, the 

methodology enables the development of more accurate 

models for electromagnetic protection system design or 

lightning interference level assessment. 

This is how the rest of the paper is organized: In Section 2, 

the electromagnetic field is mathematically modeled, focusing 

on Maxwell’s equations and their adaptation to cylindrical 

coordinates. Section 3 outlines the fundamental principles of 

the FDTD method, including spatial and temporal 

discretization techniques. Section 4 introduces a novel 

approach to absorbing boundary conditions based on 

Sommerfeld integrals, improving the efficiency and accuracy 

of numerical simulations. Section 5 discusses the 

implementation of boundary conditions at the ground plane, 

assuming a perfectly conducting ground to simplify the 

equations. Section 6 presents simulation results and a 

comparative analysis with conventional techniques, 

highlighting memory efficiency improvements. Finally, 

Section 7 concludes the paper by summarizing key findings 

and proposing potential future research directions. 

 

 

2. MODELING OF THE ELECTROMAGNETIC FIELD 

 

Equations of Maxwell’s describe all electromagnetic 

phenomena. The FDTD method [9-13] facilitates their 

resolution within the computational domain by incorporating 

boundary conditions and reformulating them into a system of 

algebraic equations. Solving this system enables the 

determination of the spatiotemporal electromagnetic field 

distribution at a given mesh's nodes. 

 

 
 

Figure 1. Problematic geometry of electromagnetic radiation 

from lightning [9] 

 

For clarity, a consistent notation is adopted for Maxwell’s 

equations and their transformation into cylindrical coordinates 

(see Figure 1). These field equations are formulated as follows 

[9, 14, 15]: 

 

∇⃗⃗ × 𝐸⃗ = −µ.
𝜕𝐻⃗⃗ 

𝜕𝑡
 (1) 

 

∇⃗⃗ × 𝐻⃗⃗ = 𝜎. 𝐸⃗ + 𝜀.
𝜕𝐸⃗ 

𝜕𝑡
 (2) 

 

where: 

𝐸⃗ : is the electric field, 

𝐻⃗⃗ : denotes the magnetic field, 

µ: represents the magnetic permeability, 

𝜀: corresponds to the dielectric permittivity, 

𝜎: denotes the electrical conductivity. 

The following form can be used to express the partial 

differential equations that come from mathematically 

developing Eqs. (1) and (2) using a spatial representation in a 

cylindrical coordinate system: 

 

{
  
 

  
 

𝜕𝐻𝜑

𝜕𝑡
=
1

𝜇
[
𝜕𝐸𝑧
𝜕𝑟

−
𝜕𝐸𝑟
𝜕𝑧
]

𝜎𝐸𝑟 + 𝜀
𝜕𝐸𝑟
𝜕𝑡

=
𝜕𝐻𝜑

𝜕𝑧

𝜎𝐸𝑧 + 𝜀
𝜕𝐸𝑧
𝜕𝑡

=
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐻𝜑)

 (3) 

 

where: 

𝐸𝑟: is the horizontal electric field, 

𝐸𝑧: is the vertical electric field, 

𝐻𝜑: is the azimuthal magnetic field, 

𝑧: is the elevation of the observation site relative to the 

ground, 

𝑟: is the horizontal separation between the lightning channel 

and the observation location. 

The previous expression can be made as follows in the 

computation region (above ground) where 𝜎 = 0, 𝜀 = 𝜀0, and 

µ = µ0 are present: 
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{
  
 

  
 
𝜕𝐻𝜑

𝜕𝑡
=
1

µ0
[
𝜕𝐸𝑧
𝜕𝑟

−
𝜕𝐸𝑟
𝜕𝑧
]

𝜀0
𝜕𝐸𝑟
𝜕𝑡

=
𝜕𝐻𝜑

𝜕𝑧

𝜀0
𝜕𝐸𝑧
𝜕𝑡

=
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐻𝜑)

 (4) 

 

 

3. FUNDAMENTAL PRINCIPLES OF THE FDTD 

STRATEGY 

 

3.1 Discretization in space and time 

 

The FDTD technique is used to solve the system of partial 

differential Eq. (4) [9]. First, we assume a spatiotemporal 

scalar function f(r,z,t) defined at every point p(r,z) belonging 

to a finite space 𝛺 and every time t belongs to a finite interval 

of time 𝜓 in order to illustrate the fundamental idea of this 

resolution: 
 

[𝑝(𝑟, 𝑧)  ∈ 𝛺] ⇔ {
𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥
𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥

 (5) 

 

𝑡 ∈ 𝜓 ⇔ 𝑡𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥 (6) 
 

The spatial discretization (mesh) in 𝑟 and 𝑧 directions with 

space steps 𝛥𝑟  and 𝛥𝑧 , respectively, creates a network of 

nodes whose positions are determined by: 
 

{
𝑟 = 𝑟𝑖 = 𝑟𝑚𝑖𝑛 + 𝑖. ∆𝑟
𝑧 = 𝑧𝑗 = 𝑧𝑚𝑖𝑛 + 𝑗. ∆𝑧

 (7) 

 

The following formula represents the temporal 

discretization with a step 𝛥𝑡: 
 

𝑡 = 𝑡𝑛 = 𝑡𝑚𝑖𝑛 + 𝑛. ∆𝑡 (8) 
 

where, 𝑛: an increase in time. 

As a result, the function 𝑓 can be evaluated as follows at any 

node and at any time: 
 

𝑓(𝑟, 𝑧, 𝑡) = 𝑓(𝑟𝑚𝑖𝑛 + 𝑖∆𝑟, 𝑧𝑚𝑖𝑛 + 𝑗∆𝑧, 𝑡𝑚𝑖𝑛 + 𝑛∆𝑡)
= 𝑓𝑛(𝑖, 𝑗) 

(9) 

 

with: {

0 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥
0 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥
0 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥

. 

The partial derivatives of function 𝑓 are approximated at the 

first order level as follows [9]: 
 

{
 
 
 
 

 
 
 
 𝜕𝑓(𝑟, 𝑧, 𝑡)

𝜕𝑟
|
𝑖∆𝑟

=
𝑓𝑛 (𝑖 +

1
2
, 𝑗) − 𝑓𝑛(𝑖 −

1
2
, 𝑗)

∆𝑟

𝜕𝑓(𝑟, 𝑧, 𝑡)

𝜕𝑧
|
𝑗∆𝑧

=
𝑓𝑛 (𝑖, 𝑗 +

1
2
) − 𝑓𝑛(𝑖, 𝑗 −

1
2
)

∆𝑧

𝜕𝑓(𝑟, 𝑧, 𝑡)

𝜕𝑡
|
𝑛∆𝑡

=
𝑓𝑛+

1
2(𝑖, 𝑗) − 𝑓𝑛−

1
2(𝑖, 𝑗)

∆𝑡

 (10) 

 

3.2 Dissecting the equations for the electromagnetic field 

 

The elements of the electromagnetic field emitted by 

lightning can be written as follows using the system's partial 

differential Eq. (4) and the basic idea of the FDTD approach 

described in Eq. (10). 

 

𝐸𝑧
𝑛+1 (𝑖, 𝑗 +

1

2
) = 𝐸𝑧

𝑛 (𝑖, 𝑗 +
1

2
) 

+
∆𝑡

𝜀0. 𝑟𝑖 . ∆𝑟

[
 
 
 
 (𝑟

𝑖+
1
2
). 𝐻𝜑

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
) −

(𝑟
𝑖−
1
2
). 𝐻𝜑

𝑛+
1
2 (𝑖 −

1

2
, 𝑗 +

1

2
)
]
 
 
 
 

 

(11) 

 

with: {

0 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥
0 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥 − 1
0 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥 − 1

. 

 

𝐸𝑟
𝑛+1 (𝑖 +

1

2
, 𝑗) = 𝐸𝑟

𝑛 (𝑖 +
1

2
, 𝑗)

−
∆𝑡

𝜀0. ∆𝑧
[𝐻𝜑

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
)

− 𝐻𝜑
𝑛+

1
2 (𝑖 +

1

2
, 𝑗 −

1

2
)] 

(12) 

 

with: {

0 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥 − 1
1 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥

0 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥 − 1
. 

 

𝐻𝜑
𝑛+

1
2 (𝑖 +

1

2
, 𝑗 +

1

2
) = 𝐻𝜑

𝑛−
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
) 

+
Δ𝑡

µ0. Δ𝑟
. [𝐸𝑧

𝑛 (𝑖 + 1, 𝑗 +
1

2
) − 𝐸𝑧

𝑛 (𝑖, 𝑗 +
1

2
)] 

−
Δ𝑡

µ0. Δ𝑧
. [𝐸𝑟

𝑛 (𝑖 +
1

2
, 𝑗 + 1) − 𝐸𝑟

𝑛 (𝑖 +
1

2
, 𝑗)] 

(13) 

 

with: {

0 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥 − 1
0 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥 − 1
0 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥 − 1

. 

Lastly, it should be mentioned that the time step Δ𝑡 and the 

spatial steps 𝛥𝑟  and 𝛥𝑧  must satisfy a stability calculation 

requirement, which is represented by the following equation: 

 

Δ𝑡 <
𝑚𝑖𝑛(𝛥𝑟, 𝛥𝑧)

2𝑐
 (14) 

 

where, 𝑐 represent the light velocity. 

You can also refer to the references [9, 16-25] for additional 

information on the FDTD approach. 

 

 

4. NEW ANALYTICAL CONDITIONS FOR 

ABSORBING BOUNDARY 

 

Restricting the computing domain is required when 

employing finite difference methods to solve time-domain 

electromagnetic field equations in an unbounded space. In 

order to simulate the unbounded environment, the mesh is 

truncated and ABC are applied at its artificial bounds (see 

Figure 2). 

Numerous absorbing border conditions are presented in the 

literature with the goal of minimizing reflections at the 

boundaries of the computational domain. The PML [26], the 

Complementary Boundary Operator (CBO) [27], the Low 

Frequency Boundary Algorithm (LFBA) [28], and Mur's 

boundary conditions [29] are some of the most often utilized. 
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Figure 2. FDTD in cylindrical coordinates for 2D mesh 

 

We suggest a different kind of absorption barrier in this 

study, in which the magnetic field values at the boundaries are 

assessed analytically separately from the field values inside 

the analysis zone. 

Assuming a perfectly conducting ground, the boundary 

calculations will primarily focus on determining the 

Sommerfeld integrals [9] that describe the magnetic field 

(Figure 2). 

One advantage of this boundary type is that it allows the 

lightning channel to be excluded from the analysis region, as 

the internal electromagnetic field values will be adjusted based 

on the pre-calculated values at the boundaries. This property 

is crucial for reducing the size of the matrices involved in the 

calculation. The following expressions illustrate how these 

boundaries are computed: 

 

4.1 In the horizontal direction 

 

𝐻𝜑
𝑛+

1

2 (−
1

2
, 𝑗 +

1

2
)  

=
𝑟
−
1
2

4𝜋
∫

[
 
 
 
 
 
 
 
 𝑖(𝑧′,𝑡

𝑛+
1
2
−

𝑅
−
1
2,𝑗+

1
2

𝑐
)

(𝑅
−
1
2,𝑗+

1
2
)

3 +

1

𝑐

𝜕𝑖(𝑧′,𝑡
𝑛+

1
2
−

𝑅
−
1
2,𝑗+

1
2

𝑐
)

(𝑅
−
1
2,𝑗+

1
2
)

2

𝜕𝑡
]
 
 
 
 
 
 
 
 

𝑑𝑧′
𝐻

−𝐻
  

(15) 

 

and: 

 

𝐻𝜑
𝑛+

1

2 (𝑖𝑚𝑎𝑥 +
1

2
, 𝑗 +

1

2
)  

=
𝑟
𝑖𝑚𝑎𝑥+

1
2

4𝜋
∫

[
 
 
 
 
 
 
 
 𝑖(𝑧′,𝑡

𝑛+
1
2
−

𝑅
𝑖𝑚𝑎𝑥+

1
2,𝑗+

1
2

𝑐
)

(𝑅
𝑖𝑚𝑎𝑥+

1
2,𝑗+

1
2
)

3 +

1

𝑐

𝜕𝑖(𝑧′,𝑡
𝑛+

1
2
−

𝑅
𝑖𝑚𝑎𝑥+

1
2,𝑗+

1
2

𝑐
)

(𝑅
𝑖𝑚𝑎𝑥+

1
2,𝑗+

1
2
)

2

𝜕𝑡
]
 
 
 
 
 
 
 
 

𝑑𝑧′
𝐻

−𝐻
  

(16) 

with: {
0 ≤ 𝑗 ≤ 𝑗𝑚𝑎𝑥 − 1
0 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥 − 1

. 

 

4.2 In the vertical direction 

 

𝐻𝜑
𝑛+

1
2 (𝑖 +

1

2
, 𝑗𝑚𝑎𝑥 +

1

2
) 

=
𝑟
𝑖+
1
2

4𝜋
∫

[
 
 
 
 
 
 
 
 𝑖(𝑧′,𝑡

𝑛+
1
2
−

𝑅
𝑖+
1
2,𝑗𝑚𝑎𝑥+

1
2

𝑐
)

(𝑅
𝑖+
1
2,𝑗𝑚𝑎𝑥+

1
2
)

3 +

1

𝑐

𝜕𝑖(𝑧′,𝑡
𝑛+

1
2
−

𝑅
𝑖+
1
2,𝑗𝑚𝑎𝑥+

1
2

𝑐
)

(𝑅
𝑖+
1
2,𝑗𝑚𝑎𝑥+

1
2
)

2

𝜕𝑡
]
 
 
 
 
 
 
 
 

𝑑𝑧′
𝐻

−𝐻
  

(17) 

 

with: {
0 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥 − 1
0 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥 − 1

. 

The lightning channel's height, represented by 𝑧′ , varies 

between -H and -H. The channel's image, which simulates the 

complete reflection of a perfectly conducting ground, is 

represented by the height's negative values. The elementary 

dipole 𝑑𝑧′ in the lightning channel and the observation point 

with coordinates 𝑟𝑖 and 𝑧𝑗 are separated by 𝑅𝑖,𝑗. 

The expression that follows provides this distance: 

 

𝑅𝑖,𝑗 = √𝑟𝑖
2 + (𝑧′ − 𝑧𝑗)

2
 (18) 

 

𝑖(𝑧′, 𝑡): is how the return stroke current is distributed over 

time and space. It is mathematically expressed through a 

number of "engineering models" that are the most often used 

in the literature [9-13, 30]. In essence, they are predicated on 

a straightforward formulation that connects the time 

dependence of the base channel current to the spatiotemporal 

distribution of the channel current. As a result, it is also 

articulated by a number of models that use time functions as 

representations (see references [9, 13-35] for further 

information). 

One of the best engineering models used in the literature, 

the MTLE (Modified Transmission line with exponential 

decay) model [36], is utilized in this work to depict the current 
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distribution throughout the lightning channel. The Heidler 

Formula [37] is used to simulate the base channel current. This 

work's MTLE model is expressed as follows: 
 

𝑖(𝑧′, 𝑡) = {
𝑖 (0, 𝑡 −

𝑧′

𝑣
) . 𝑒

−𝑧′
𝜆
⁄ 𝑧′ ≤ 𝑣. 𝑡 

0                                        𝑧′ > 𝑣. 𝑡

 (19) 

 

where: 

𝑣: is the current's velocity of propagation across the channel, 

𝜆: is the current's attenuation factor. 

According to Heidler's model, 𝑖(0, 𝑡) is the current at the 

lightning channel's base: 
 

𝑖(0, 𝑡) = ∑ 𝑖𝑘(0, 𝑡)

2

𝑘=1

 (20) 

 

𝑖𝑘(0, 𝑡) = (
𝐼𝑘
𝜂𝑘
) [

(𝑡/𝜏𝑘1)
𝑛𝑘

1 + (𝑡/𝜏𝑘1)
𝑛𝑘
] exp(−𝑡/𝜏𝑘2) (21) 

 

𝜂𝑘 = exp [(−
𝜏𝑘1
𝜏𝑘2
) . (𝑛𝑘

𝜏𝑘2
𝜏𝑘1
)
𝑛𝑘

] (22) 

 

where, 𝜂𝑘 is an exponent with values between 2 and 10, 𝑛𝑘 is 

the amplitude correction factor, 𝐼𝑘 is the current's amplitude, 

𝜏𝑘1  is the front time constant, and 𝜏𝑘2  is the decay time 

constant. 
 

4.3 Numerical evaluation of Sommerfeld integrals 
 

The analytical expressions that define the boundary 

conditions in the proposed hybrid method rely on Sommerfeld 

integrals that are numerically computed using the Gaussian 

quadrature method with a precision of 10-6, by means of 

MATLAB’s built-in “quad function. This function ensures 

adaptive point selection and efficient numerical convergence 

without the need for manual coding of the algorithm. 

In this case, the integration kernel does not exhibit strong 

singularities within the integration domain, so no special 

singularity-handling techniques were required. Moreover, 

since the integration is performed with respect to the spatial 

variable 𝑧′ , which corresponds to the current distribution 

along the channel, no time-shifting or temporal interpolation 

is needed at this stage. The resulting values of these integrals 

are used to compute the magnetic field components at the 

domain boundaries, enabling consistent and accurate coupling 

with the internal FDTD solution. 
 

 

5. GROUND PLANE BOUNDARY CONDITIONS 
 

The tangential electric field at the ground must be zero in 

order for the assumption of a perfectly conducting ground to 

be enforced, as illustrated in Figure 2. The following formula 

represents this boundary condition, also referred to as the 

"Perfect Electrical Conductor" (PEC): 

 

𝐸𝑟
𝑛 (𝑖 +

1

2
, 0) = 0 (23) 

 

with: {
0 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥 − 1
0 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥

. 

Eq. (23) enforces the PEC boundary condition at the ground 

plane, ensuring that the tangential electric field component 

remains zero. While this assumption simplifies numerical 

computation, it may lead to overestimations of field strengths 

compared to real-world situations where the ground has finite 

conductivity. In reality, ground conductivity varies with soil 

composition, moisture content, and frequency factors that can 

significantly affect electromagnetic field propagation. 

Therefore, future research will aim to extend the current model 

to more realistic scenarios involving finitely conducting or 

stratified ground. This may include the use of advanced 

formulations of Sommerfeld integrals, such as the Wait 

approximation, which allows for approximate field 

calculations in multilayered media, or the incorporation of 

correction-based methods reported in the literature to adjust 

boundary field values. Adapting the hybrid method to account 

for non-ideal ground properties is a key priority in our future 

work. 

 

 

6. ALGORITHMIC WORKFLOW OF THE HYBRID 

APPROACH 

 

Based on the mathematical models described in the previous 

sections of this paper, which combine the accurate analytical 

formulation of Sommerfeld integrals at the domain boundaries 

with numerical processing inside the domain using the FDTD 

method, this section presents the main steps used to implement 

the proposed algorithm (Figure 3) within the MATLAB 

environment. These steps are as follows: 
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Figure 3. Algorithmic workflow of the hybrid approach 
 

6.1 Initialization phase 
 

The simulation begins with the initialization of all necessary 

parameters: 

Input Parameters: These include the current waveform 

injected at the base of the lightning channel (as specified in 

Table 1, the parameters of the Modified Transmission Line 

with Exponential decay MTLE model, and relevant physical 

constants. 

Spatial Discretization: The computational domain is 

discretized into a two-dimensional mesh along the radial 𝑟 and 

vertical 𝑧 axes. This meshing determines the resolution of the 

electromagnetic field components. 

Temporal Discretization: The simulation time domain is 

defined, and the temporal step size ∆𝑡  is selected in 

accordance with stability criteria represented by Eq. (14). 

Matrix Initialization: Three-dimensional matrices are 

created and initialized to store the electromagnetic field 

component 𝐸𝑟(𝑟, 𝑧, 𝑡), 𝐸𝑧(𝑟, 𝑧, 𝑡) and 𝐻𝜑(𝑟, 𝑧, 𝑡).  

Indexing Parameters: The number of discrete points along 

each axis 𝑁𝑟 , 𝑁𝑧 and 𝑁𝑡 are computed to set the bounds of the 

iterative loops. 

Stability Check: The condition given by Eq. (14) is verified 

to ensure numerical stability. 
 

Table 1. Parameters of the current at the lightning channel 

base [38] 

 
𝑰𝟏(𝒌𝑨) 𝝉𝟏𝟏(µ𝒔) 𝝉𝟏𝟐(µ𝒔) 𝒏𝟏 𝑰𝟐(𝒌𝑨) 𝝉𝟐𝟏(µ𝒔) 𝝉𝟐𝟐(µ𝒔) 𝒏𝟐 

10.5 0.6 0.9 2 7 1.4 14 2 

 

 

6.2 Time-stepping loop 
 

A main loop iterates over each time step from t=0 to t=tmax. 

Within each time step, the following operations are performed 

sequentially: 

 

6.3 Magnetic field computation 

 

Interior Domain: The angular component of the magnetic 

field is updated over the entire analysis domain, excluding 

boundary cells. The update is based on Eq. (14). 

Boundary Conditions: The subroutine named 

"Sommerfeld", which was previously developed, is invoked 

with all the required input parameters in order to compute the 

accurate numerical values of the magnetic field at the 

horizontal and vertical boundaries of the analysis domain. This 

subroutine performs its calculations based on Eqs. (15)-(17), 

and utilizes the numerical integration function quad provided 

by the MATLAB environment, as previously mentioned in an 

earlier section. 

 

6.4 Vertical electric field computation 

 

The vertical component of the electric field is updated 

across the full computational domain using Eq. (11), 

incorporating the effect of the magnetic field previously 

computed. 

 

6.5 Radial electric field computation 

 

The radial component of the electric field is calculated in all 

interior cells using Eq. (12), except for the cells located at the 

bottom boundary (ground interface), where the PEC condition 

is applied. This condition represents a perfectly conducting 

ground model, as described in Eq. (23). 

 

6.6 Iteration 

 

The algorithm loops over all spatial grid points in both 

radial and vertical directions at each time step. Once all 

components for the current time step are computed, the 

simulation advances to the next time level. This process 

continues until the entire temporal domain has been simulated. 

 

 

7. SIMULATION RESULTS AND DISCUSSION 

 

This work presents a simulation of the electromagnetic field 

radiated by lightning, employing a hybrid strategy that blends 

the finite difference time domain technique and Sommerfeld 

integral techniques as absorbing boundary conditions. 

To evaluate the scalability of the proposed approach, we 

conducted simulations with varying domain sizes and 

observation points. The computational complexity of the 

method primarily depends on the numerical evaluation of 

Sommerfeld integrals, which scales with FDTD. Compared to 

traditional FDTD with Mur’s ABC, our method significantly 

reduces the required memory by approximately 90%. 

Furthermore, the method exhibits better numerical stability for 

long-distance field calculations due to the elimination of 

artificial reflections at domain boundaries. The simulation, 

implemented in MATLAB, aimed to evaluate the accuracy and 

robustness of this hybrid method under simplified conditions. 

Key parameters included observation distances of r=1 km 
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and r=10 km, with a source height of z=5 m above a perfectly 

conductive ground. The electric and magnetic field 

components were analyzed at these observation points. 

Results show that the hybrid approach minimizes boundary 

reflections more effectively than first-order Mur conditions, 

especially at greater distances. While the differences are 

negligible at r=1 km, significant improvements in stability and 

accuracy were observed at r=10 km. The assumption of 

perfectly conductive soil simplified the computations but may 

have led to an overestimation of field strength compared to 

realistic scenarios. 

In the same context, a comparison was also conducted 

between the results obtained using the proposed method and 

experimental data available in the specialized literature. This 

comparison, carried out for waveforms recorded at distances 

of r=2 km, r=9 km and r=200 km from the lightning channel, 

showed good agreement between the two sets of results. 
 

7.1 Observation point located 1 km from the canal 
 

With the aim of highlighting some advantages of the 

approach for calculating the electromagnetic field radiated by 

lightning, which is based on a combination of the FDTD 

approach and Sommerfeld integral techniques used as 

absorbing boundary conditions, we decided to contrast the 

outcomes of this strategy with those of the identical FDTD 

method, but with first-order Mur absorbing boundary 

conditions. Through this comparison, we aim to demonstrate 

that bringing the vertical boundary of the analysis region 

closer to the observation point, as calculated by first-order Mur 

boundary conditions, introduces a significant error in the 

results. On the other hand, this proximity has an almost 

negligible impact when analytically calculated absorbing 

boundary conditions based on Sommerfeld integrals are used. 

This comparison was conducted in this work as follows: 

Figure 4 presents the time waveform of this current, which 

is characterized by a peak of 12 kA. 

Figures 5-7 respectively show the waveforms of the radial 

electric field, vertical electric field and the azimuthal magnetic 

field evaluated at the observation point (r=1 km, z=5 m). To 

observe the effect of bringing the vertical boundary closer to 

this observation point, each of these waveforms was plotted 

again for the following three cases: 

A boundary sufficiently far from the observation point to 

ensure good accuracy, placed at 𝑟𝑚𝑎𝑥 = 2000 m , and 

calculated using first-order Mur absorbing boundary 

conditions. 

A boundary very close to the observation point, placed at 

𝑟𝑚𝑎𝑥 = 1005 m , and calculated using first-order Mur 

absorbing boundary conditions. 

• A boundary very close to the observation point, placed 

at 𝑟𝑚𝑎𝑥 = 1005 m, and calculated analytically using 

Sommerfeld integrals. 

In this work, the lightning channel is modeled using the 

MTLE approach, with a current propagation speed of v =
0.8 × 108 m/s and a decay rate along the channel of λ=1 km. 

The current at the channel's base is represented as the sum of 

two Heidler functions, with parameters detailed in Table 1 

[38].  

Based on this comparison, assuming that the waveforms 

obtained for the first case, where a Mur's ABC is placed at 

𝑟𝑚𝑎𝑥 = 2000 m, show good accuracy due to the ABC being 

sufficiently distant from the observation point, we can identify 

the significant error introduced in these waveforms when 

considering the second case with the ABC placed at 𝑟𝑚𝑎𝑥 =
1005 m. 

This error is less pronounced for the magnetic field 

waveform since this component remains tangential at the 

analysis region boundaries. In contrast to the waveform 

behavior as the vertical boundary approaches the observation 

point, the curves obtained using boundary conditions 

calculated analytically through the numerical evaluation of 

Sommerfeld’s integrals maintain good accuracy, even when 

these absorbing boundary conditions are computed near the 

observation point. 

 

 
 

Figure 4. Current at the channel's base 

 

 
 

Figure 5. Radial electric field variation at 𝑟 = 1 km and 

𝑧 = 5 m 

 

 
 

Figure 6. Vertical electric field variation at 𝑟 = 1 km and 

𝑧 = 5 m 
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Figure 7. Azimutal magnetic field variation at 𝑟 = 1 km and 

𝑧 = 5 m 

 

To better assess the improvement offered by the proposed 

hybrid method compared to the traditional Mur absorbing 

boundaries, we calculated the Root Mean Square Error 

(RMSE) and the total relative error (TRE) for both approaches 

at a selected observation point, based on the waveforms of the 

three field components Er, Ez, and Hφ, shown respectively in 

Figures 5-7. The calculations were performed using Eqs. (24) 

and (25), and the obtained results are summarized in Table 2. 

Here, we assume that the time-domain waveforms obtained 

in the first case, where Mur’s ABC was placed at  rmax =
2 km , serve as the reference curves, since the absorbing 

boundary is located far enough to avoid reflections back to the 

observation point. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑚𝑎𝑥
∑ [𝑊(𝑛) −𝑊𝑟𝑒𝑓(𝑛)]

2

𝑛𝑚𝑎𝑥

𝑛=1

 (24) 

 

𝑇𝑅𝐸 (%) =
𝑅𝑀𝑆𝐸

𝑀𝑎𝑥[𝑊𝑟𝑒𝑓(𝑛)]
× 100 (25) 

 

where: 

Wref(n): The reference instantaneous values of one of the 

components Er, 𝐸𝑧, and 𝐻𝜑 . 

W(n): The instantaneous values of one of the components 

Er, 𝐸𝑧, and 𝐻𝜑 . 

 

Table 2. Comparison of RMSE and the total relative error 

TRE between Mur’s ABC and Sommerfeld-based boundaries 

 
W Method RMSE TRE (%) 

𝐸𝑟(V/m) 
Mur ABC 4.04 V/m 27.47 

Sommerfeld ABC 0.35 V/m 1.4 

𝐸𝑧(V/m) 
Mur ABC 131.6 V/m 27.83 

Sommerfeld ABC 2.16 V/m 0.46 

𝐻𝜑(A/m) 
Mur ABC 0.06 A/m 11.24 

Sommerfeld ABC 0.01 A/m 1.88 

 

These results (Table 2) clearly demonstrate that the 

absorbing boundary condition based on Sommerfeld integrals 

provides significantly higher accuracy, especially when the 

vertical boundary is located close to the observation point. In 

addition, computational resource usage was analyzed, and the 

results (as shown in Table 3) indicate that the proposed method 

achieves up to 90% memory savings compared to Mur’s 

approach, confirming its efficiency for large-scale 

simulations. 

Therefore, we can conclude that this method for calculating 

the electromagnetic field radiated by lightning possesses a 

distinctive advantage not found in Mur's ABCs: It ensures high 

accuracy even for nodes located near the boundaries of the 

analysis region. 

 

7.2 Observation point located 10 km from the canal 

 

The objective here is to demonstrate that the advantages of 

this approach become particularly evident when focusing on 

long distances. This is reflected mainly in a significant 

reduction in memory use and, consequently, in computation 

time. This improvement is due to the fact that it is not 

necessary to mesh the analysis region up to the lightning 

channel. This calculation method allows the lightning channel 

to be replaced by magnetic field values obtained on a lower 

vertical boundary using Sommerfeld integrals. 

In this context, we used our MATLAB calculation code, 

developed for this work and based on this approach, to plot 

Figures 8 and 9, which respectively present the waveforms of 

the vertical electric field and the azimuthal magnetic field 

evaluated at the observation point (r=10 km, z=5 m).  

 

 
 

Figure 8. Vertical electric field variation at r=10 km, z=5 m 

 

 
 

Figure 9. Azimutal magnetic field variation at r=10 km, z=5 

m 
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For comparison, we also plotted on each of these two figures 

the waveforms obtained by adopting first-order Mur boundary 

conditions. We can clearly observe in both figures what is 

likely a superposition of a numerically reflected wave through 

Mur boundary conditions, unlike the patterns obtained using 

Sommerfeld integrals. This is one of the advantages of this 

approach. 

Thus, Table 3 illustrates a comparison of matrix sizes 

involved in the calculations for the two cases mentioned above 

(FDTD + Mur ABC and FDTD + Sommerfeld ABC). The 

comparison was made for each component of the radiated 

electromagnetic field. 

 

Table 3. Matrix sizes of three electromagnetic field 

components used in the calculation 
 

Cases Er Ez Hφ 

ABC of Mur 
2000×801 

×10001 

2001×800 

×10001 

2001×801 

×10001 

ABC of 

Sommerfeld 
400×201×4001 401×200×4001 402×201×4001 

 

We can observe from this comparison a significant 

reduction in matrix sizes when using the FDTD approach with 

Sommerfeld ABC. This reduction reaches 90% of the memory 

space used compared to the same FDTD method with Mur 

ABC. This represents a major advantage of this approach for 

studying the far-field radiated electromagnetic field generated 

by lightning. 

In this study, we assume a perfectly conducting ground to 

simplify the computation of electromagnetic fields. However, 

real ground conditions involve varying conductivities, which 

can significantly impact field propagation. Future work will 

extend our model to consider finitely conducting ground using 

more complex Sommerfeld integral formulations. 

Incorporating multi-layer soil conductivity models or using 

experimental validation from field measurements will enhance 

the realism and applicability of this approach. 

Using the numerical code developed in this research, we 

were able to generate time-evolving maps of the vertical 

electric field, providing a more comprehensive and clearer 

representation of the results. 

It is important to note that the analysis area was defined by 

the following spatial limits: 𝑟𝑚𝑖𝑛 = 9 km and 𝑟𝑚𝑎𝑥 = 11 km 

for the vertical dimension, as well as 𝑧𝑚𝑖𝑛 = 0 and 𝑧𝑚𝑎𝑥 =
1 km for the horizontal dimension. The temporal range of the 

study extended from 𝑡𝑚𝑖𝑛 = 30 µ𝑠 to 𝑡𝑚𝑎𝑥 = 50 µ𝑠. 

In this study, we present some excerpts from these maps for 

the moments 30.6, 34, 37, and 39 µs (see Figure 10). 

The analysis of these results allows us to formulate the 

following observations: 

1- The emergence of a vertical electric field wave through 

the lower vertical boundary of the analysis region (𝑟𝑚𝑖𝑛 =
9 km) at t=30.6 µs demonstrates that the approach used in this 

work to compute this field, unlike traditional absorbing 

boundary conditions, enabled the wave to penetrate the 

analysis region. This occurred despite the lightning channel— 

the source of the electric field— being located outside this 

region. This characteristic is a major advantage of the 

proposed approach, as it allows for flexible reduction of the 

analysis region based on simulation requirements, without the 

constraint of defining it relative to the lightning channel, as is 

necessary with conventional absorbing boundaries. 

 

 

 
 

Figure 10. The time-evolving maps of the vertical electric 

field 

 

2- The vertical electric field wave propagates within the 

analysis region (at t=34 µs) without any distortion in the 

boundaries between its different levels caused by non-physical 

reflections. This demonstrates that the approach used in this 

study effectively prevents such reflections. 

3- The vertical electric field wave begins to exit the analysis 

area at t=37 µs through the maximum vertical boundary 

𝑟𝑚𝑎𝑥 = 11 km  smoothly, without any distortions in the 

separation lines between its different levels, despite being near 

this boundary. This reinforces the findings from Figures 4-6, 

highlighting the effectiveness of the proposed boundary type 

in this research, particularly in regions close to the boundary. 

4- The wave fully exits the analysis area at t=39 µs, 

confirming that the vertical electric field values inside the area 

remain unaffected by any reflections that could introduce 

significant calculation errors. 
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7.3 Experimental validation 

 

The developed computational code was experimentally 

validated by comparing simulation results obtained using our 

implementation of the proposed approach with measurement 

data reported in reference [38], collected during an 

experimental campaign conducted in August 1987 at the 

Kennedy Space Center in Florida. This comparison (see 

Figures 11-13) reveals a good agreement between the 

waveforms calculated and those obtained from the 

experimental measurements at the Kennedy Space Center 

[38]. 

 

 
 

Figure 11. Vertical electric field variation at r = 2 km 

 

 
 

Figure 12. Vertical electric field variation at r = 9 km 

 

 
 

Figure 13. Vertical electric field variation at r = 200 km 

Additionally, we would like to point out that the simulation 

results clearly demonstrated the most prominent 

characteristics of both the near and far electromagnetic fields, 

which have been reported by many researchers specialized in 

this field [39]. The electromagnetic field exhibits, at all 

distances (between 1 km and 200 km), an initial peak whose 

intensity is approximately inversely proportional to the 

distance. At relatively close distances, the electric field shows 

a gradual decay following the initial peak. As for the distant 

electric and magnetic fields (at distances greater than 

approximately 50 km), they essentially share the same 

waveform and exhibit a polarity reversal  a phenomenon 

known as polarity inversion in the far field, which is 

considered one of the most distinctive features of such fields 

the polarity reversal phenomenon in the far-field, which is 

considered one of the most distinctive characteristics of such 

fields.  

It can also be observed in Figure 13 that there are some 

minor high-frequency reflections in the tail of the waveform; 

however, they did not significantly affect the overall shape of 

the wave. The appearance of these reflections is attributed to 

the reduced size of the analysis domain, as well as the large 

time window used relative to the capabilities of the available 

basic numerical tools, considering the computational load 

required.  

 
 
8. CONCLUSION 

 

In this study, we applied our previously proposed hybrid 

approach [9], combining the FDTD method and Sommerfeld 

integrals, to compute the far-field electromagnetic radiation of 

lightning over a perfectly conducting ground. Our objective 

was to reduce memory usage while maintaining accuracy in 

large-scale computations. The results demonstrate a 

significant decrease in allocated memory space, confirming 

the efficiency of the method for far-field electromagnetic field 

mapping. 

Despite the promising results, further improvements can be 

explored. Future work could focus on extending the approach 

to more complex ground conditions, such as finitely 

conducting or stratified media, to enhance realism. 

Additionally, optimizing the algorithm for three-dimensional 

simulations could provide a more comprehensive 

understanding of lightning-induced electromagnetic effects. 

Another avenue for development is the parallelization of 

computations to further improve efficiency and reduce 

execution time. Integrating machine learning techniques for 

adaptive meshing and optimization could also enhance 

computational performance. These improvements would make 

the method more suitable for real-time applications in 

lightning protection, electromagnetic compatibility studies, 

and geophysical investigations. 
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NOMENCLATURE 

 

E Electric field 

Er Radial (horizontal) component of electric field 

Ez Vertical component of electric field thermal  

H Magnetic field 

Hϕ Azimuthal magnetic field component 

I Peak current (Heidler function parameter) 

i(z, t) Lightning return stroke current distribution in time 

and space 

v Propagation speed of lightning current along the 

channel 

c Speed of light 

 

Greek symbols 

 

𝜀 Permittivity (F/m) 

𝜇 Permeability (H/m) 

𝜎 Electrical conductivity (S/m) 

𝜆 Attenuation factor of current along the channel (1/m) 

𝜂 Exponential factor in Heidler function 

τ1, τ2 Front and tail time constants (µs) 

 

Subscripts 

 

r Radial or horizontal direction 

z Vertical direction (elevation) 

ϕ Azimuthal direction (angular) 
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