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Perishable-input industries such as fish processing require production plans that 

minimize cost, waste, and unmet demand amid volatile markets. We cast this task as a 

mixed-integer nonlinear programming (MINLP) model that embeds freshness 

windows, labor-capacity ceilings, and stochastic demand across multiple products and 

periods. To solve the resulting non-convex problem, we design an enhanced 

Generalised Reduced Gradient (GRG) algorithm—a projection-based gradient method 

that activates only locally binding constraints and rounds each iterate to the nearest 

mixed-integer feasible point, speeding convergence. Tested on an Indonesian plant with 

eight products over four periods, the MINLP–GRG approach cuts total cost by 5.2% 

versus classical GRG and 2.1% against a commercial mixed-integer linear 

programming (MILP) solver, reduces spoilage from 8.1% to 3.2% (≈ 60%), and lowers 

under-delivery by 45.6%, all within 15 s on a standard workstation. A larger case (20 

products, eight periods) converges in 78 iterations (< 62 s) with linear memory growth, 

showing scalability. The proposed framework therefore delivers measurable economic 

and sustainability gains for fish-processing operations. 
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1. INTRODUCTION

Indonesia’s marine-based economy relies heavily on fish 

processing [1], yet the raw materials sustaining this sector 

deteriorate almost immediately after harvest [2]. Spoilage 

erodes profit margins, disrupts supply-chain rhythm [3], and 

undermines sustainability goals, compelling processors to 

strike a careful balance between meeting volatile demand and 

avoiding waste. Effective production planning therefore 

hinges on models that treat fish as a time-sensitive resource 

rather than as non-degrading inventory [4], allowing freshness 

constraints to shape scheduling, procurement, and workforce 

decisions in an integrated manner [5]. 

Perishability also magnifies classic planning trade-offs: 

Inventory held too long invites quality loss and price 

markdowns [6], whereas underproduction precipitates costly 

emergency purchases and lost sales [7]. Although a growing 

body of research explores production planning in agri-food 

contexts [6], most mixed-integer and economic-order-quantity 

frameworks assume infinite shelf life, rely on highly 

simplified decay functions, or focus on single-product 

settings. These approaches typically overlook how labour 

availability, resource coupling (e.g., cold-storage capacity), 

and batch-dependent processing times jointly influence daily 

scheduling decisions [8], factors that become pivotal when 

multiple fish products compete for short-lived raw materials 

inside a dynamic plant environment [9]. 

To address these shortcomings, the present study develops 

a mixed-integer nonlinear programming formulation for multi-

product fish production planning that explicitly embeds shelf-

life-driven flow constraints [4], links production decisions to 

labour and supplementary-resource requirements [10], and 

permits economically justified under-delivery or limited carry-

over [11]. The resulting model is large, non-convex, and 

tightly constrained, prompting the design of an enhanced 

Generalised Reduced Gradient (GRG) algorithm that blends 

adaptive constraint activation, dynamic step-size adjustment, 

and a warm-start mechanism to exploit structural similarity 

across planning periods. This algorithmic design accelerates 

convergence while safeguarding feasibility under stringent 

freshness windows. 

The research pursues three intertwined objectives: 

minimising total operational cost while explicitly penalising 

spoilage, maintaining prescribed service levels in the face of 

stochastic, multi-period demand, and quantifying how 

alternative workforce and resource strategies mediate the 

trade-off between cost efficiency and product freshness. 

Building on these objectives, the study delivers four key 

contributions. First, it offers the first unified optimisation 

framework that simultaneously captures perishability, multi-

product scheduling, and labour–resource coordination within 

a single tractable model. Second, it advances solution 

methodology by tailoring an enhanced GRG algorithm to the 

distinctive structure of perishable production systems, 
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demonstrating how constraint-activation and warm-start 

strategies can be systematically integrated into gradient-based 

optimisation. Third, it extends managerial insight by revealing 

the operational levers. such as cross-trained labour pools and 

flexible cold-storage allocation, that most effectively balance 

freshness and cost in fish-processing plants. Finally, it 

establishes a transferable modelling template that can be 

adapted to other agri-food sectors where rapid quality decay, 

multi-product competition, and resource coupling generate 

similarly complex planning environments. 

2. LITERATURE REVIEW

The concept of perishability profoundly influences 

inventory management decisions, especially in sectors like 

fresh fish production where every hour of storage erodes value 

and narrows processing options. The deterioration of 

perishable goods imposes a challenge that demands 

synchronized inventory, production, and pricing decisions 

with remaining shelf-life. As highlighted in various studies 

[12-17], failing to model this deterioration explicitly can lead 

to under- or over-production, hidden waste costs, and 

declining product quality. Classical Economic Order Quantity 

(EOQ) models have long framed inventory problems, adapting 

to include age-, stock-, and price-dependent demand along 

with back-ordering mechanisms [18, 19]. These EOQ-based 

approaches typically rely on exponential deterioration 

functions, yet their steady-state assumptions and single-

product focus limit their relevance for dynamic, multi-product 

environments like fish plants with stochastic demand cycles. 

Several EOQ models have been proposed to accommodate 

the challenges of deterioration. For instance, Fujiwara and 

Perera [18] introduced exponential penalty cost functions for 

deteriorating products, while Mashud [20] emphasized fully 

backlogged shortages under demand-dependent deterioration. 

Similarly, [19] accounted for demand rates as functions of 

product age, and [21] modelled fixed-lifetime perishables with 

full backorders. Further contributions in references [22, 23] 

examined price and stock-dependent demand in 

remanufacturing contexts and fuzzy random environments 

under trade credit regimes, respectively. These studies 

reinforce that inventory strategies, age-dependent ordering 

decisions, and issuing rules are intimately tied to perishability 

dynamics. According to the study by Chen et al. [24], 

perishable models fall into three broad categories: those with 

expiration dates, those influenced by storage conditions [25], 

and those with deterioration rates dependent on random 

failures [26]. 

Yet modern applications demand richer models. 

Contemporary contributions embed perishability within 

broader supply-chain and production-routing formulations, 

such as two-stage blood-supply networks, inventory-location-

routing with Lagrangian relaxation, and fuzzy multi-objective 

meat distribution systems—all of which expand problem size 

and non-linearity [27]. However, these models often resort to 

metaheuristics that trade off optimality, or general-purpose 

global solvers that become computationally burdensome with 

the addition of binary workforce or resource constraints. For 

instance, Li and Teng [28] modelled freshness-dependent 

demand where customer preference for longer sell-by dates 

influences purchasing behaviour, thus shaping dynamic 

demand curves that rise, stabilize, and fall over a product’s 

lifecycle. 

Perishable inventory management is further complicated by 

uncertainty in both product quality and client demand, 

demanding the incorporation of product quality as an 

optimization criterion alongside stock levels and shipping 

costs. Kumar et al. [29] emphasized the need to forecast 

customer behaviour to maintain supply availability and pricing 

strategies, while Yang et al. [30] proposed a quality-based 

pricing strategy supported by deep reinforcement learning to 

ensure buyers are informed about product quality. Recent 

studies have advanced inventory modeling under dynamic 

demand conditions, incorporating price-sensitive demand and 

backorder considerations within a finite planning horizon [31]. 

This aligns with our focus on perishability-driven 

replenishment and demand responsiveness, providing a 

theoretical foundation for integrating cost and service-level 

objectives in our model. Further, supply chain models are 

evolving toward sustainability goals. Burgess et al. [32] 

combined forward and reverse logistics under demand 

uncertainty and optimized both cost and CO₂ emissions using 

ant colony algorithms. Cao et al. [33] presented a 

mathematical model for multi-product perishable supply 

chains using genetic algorithms for large-scale problem 

solving. In a similar direction, Rad and Nahavandi [34] 

developed a green, closed-loop supply chain network that 

considers supplier discounts and product quality to jointly 

reduce costs, lower environmental impact, and improve 

consumer satisfaction. 

To handle such complexity with high fidelity, Mixed-

Integer Nonlinear Programming (MINLP) emerges as a 

suitable framework. While generic MINLP solution 

methods—such as direct-search or branch-and-bound 

hybrids—have been proposed, they struggle with sparse 

Jacobians interspersed with repeated dense substructures 

typical of horizon-coupled, multi-product schedules [35]. The 

GRG algorithm becomes an attractive alternative, offering a 

projection-based approach that separates smooth spoilage 

dynamics from discrete decisions like hiring or lay-offs. 

Though GRG has been adapted for integer variables using 

integer line-search strategies [36], no existing studies have 

tailored it to multi-product perishability-driven production 

planning problems. 

This study fills that gap. We propose a large-scale MINLP 

model that integrates freshness-window constraints with 

labour and auxiliary resource planning for eight fish products 

across four quarterly periods. Our enhanced GRG method 

embeds dynamic constraint activation, scenario-based warm 

starts, and integer line-search mechanisms. By leveraging the 

repetitive block structure inherent in perishable production 

systems and decomposing the problem using GRG’s natural 

formulation, the method achieves fast convergence on real 

data, reducing both spoilage and total cost compared to global 

solvers. As such, this work extends GRG from a generic 

nonlinear optimization tool to a tailored engine for perishable-

goods scheduling, offering a blueprint for broader agri-food 

applications where deterioration and resource coupling are 

central concerns. 

3. GENERALIZED REDUCED GRADIENT METHOD

An iterative optimization approach called the Generalized 

Reduced Gradient (GRG) Method is utilized to resolve 

nonlinear programming issues. In particular, it is meant to 

tackle convex or quasi-convex problems with differentiable 
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objective function and constraints. 

The GRG method is based on the idea of reducing the 

gradient of the objective function while satisfying the 

constraints of the problem. The algorithm works by starting at 

an initial feasible solution and then iteratively improving the 

solution by finding a direction that reduces the objective 

function while satisfying the constraints. This direction is 

found using a gradient-based search. 

At each iteration, the GRG method determines whether the 

current solution is feasible or not. If it is not feasible, the 

algorithm calculates a new direction that satisfies the 

constraints and reduces the objective function. If the solution 

is feasible, the algorithm calculates the gradient of the 

objective function and checks whether it is close to zero. If the 

gradient is close to zero, the algorithm terminates and returns 

the current solution as the optimal solution. 

The GRG method is known for its ability to handle complex 

nonlinear programming problems with many variables and 

constraints. However, it is sensitive to the initial solution, and 

it may converge to a local minimum rather than the global 

minimum. Therefore, multiple runs with different initial 

solutions may be required to obtain the global minimum. 

Overall, the GRG method is a powerful tool for solving 

nonlinear programming problems, and it is widely used in 

engineering, finance, and other fields. 

Building on the classical GRG framework, we embed three 

mutually reinforcing mechanisms that tailor the search to the 

perishability and stochasticity of multi-product fish 

production. First, freshness windows and time-dependent 

deterioration coefficients are encoded directly in the constraint 

system, so every projected gradient step is evaluated against 

explicit shelf-life limits. Second, the line-search routine 

employs an adaptive step size updated via scenario-based 

learning: information gleaned from the ensemble of demand 

scenarios guides step lengths toward regions that historically 

yield feasible, low-cost solutions, accelerating convergence 

under uncertainty. Third, to respect discrete labour and 

capacity decisions, each real-valued iterate is projected onto 

the nearest mixed-integer point through a rounding-and-

refinement procedure that exploits the superbasic structure of 

the reduced gradient, thereby preserving gradient information 

while ensuring feasibility. Together, these innovations enable 

the enhanced GRG algorithm to traverse the feasible region 

more economically than its standard counterpart while 

remaining sensitive to perishability, demand variability, and 

mixed-integer resource constraints. 

The GRG method is an iterative optimization algorithm 

used to solve nonlinear programming problems. The algorithm 

can be described as follows: 

1) Start with an initial feasible solution 𝑥0.

2) Compute the gradient of the objective function 𝑓(𝑥)
and the Jacobian matrix 𝐽(𝑥) of the constraints at 𝑥0.

3) Solve the system of equations 𝐽(𝑥0)
∗𝑑 = −𝑓′(𝑥0),

where 𝑑 is the direction of descent.

4) Compute the step size 𝑡 such that 𝑥1 = 𝑥0 + 𝑡∗𝑑  is

feasible.

5) If 𝑥1 is not feasible, find a feasible point 𝑥′ on the line

between 𝑥0 and 𝑥1, and set 𝑥1 = 𝑥′.
6) Compute the gradient of the objective function and

the Jacobian matrix of the constraints at 𝑥1.

7) If the gradient is small enough, terminate and return

𝑥1  as the optimal solution. Otherwise, go to step 3

with 𝑥1 as the new starting point.

The GRG method works by iteratively improving the 

solution by finding a descent direction that reduces the 

objective function while satisfying the constraints. At each 

iteration, the algorithm checks if the current solution is 

feasible or not, and if not, it computes a new direction that 

satisfies the constraints and reduces the objective function. 

The algorithm terminates when the gradient of the objective 

function is close to zero, indicating that the current solution is 

optimal. 

To accommodate the operational realities of multi-product 

fish processing, the classical GRG loop is augmented at three 

critical junctures. During the Jacobian/gradient evaluation 

(Step 3) we incorporate time-indexed freshness windows and 

deterioration coefficients, thereby ensuring that every 

reduced-space search direction already respects perishability 

constraints. In the line-search phase (Step 4) the trial step 

length is adapted through a scenario-learning rule that exploits 

historical demand realisations to accelerate convergence under 

uncertainty without sacrificing feasibility. Finally, after the 

feasibility-restoration step (Step 5) each continuous iterate is 

projected onto the nearest admissible mixed-integer point and 

refined via a superbasic update, which preserves descent 

information while enforcing discrete labour and capacity 

limits. These targeted modifications allow the enhanced GRG 

algorithm to navigate the feasible region more efficiently than 

its standard counterpart while remaining sensitive to 

perishability, stochastic demand, and mixed-integer resource 

constraints that characterise real-world fish-production 

planning. 

It is important to remember that the GRG approach might 

converge to a local minimum as opposed to the global 

minimum and that it can be sensitive to the starting solution. 

Therefore, in order to get the global minimum, it might be 

necessary to perform several runs using various starting 

solutions. 

4. PROBLEM BACKGROUND

Many people’s main protein intake comes from fish and 

fishery products. The shoreline areas of Indonesia are home to 

the majority of the country’s seafood processing industry. The 

traditional method of processing fish is still used in these 

fields. The neighborhood generates a variety of fish products, 

including, salted fish dried fish, BBQ fish, pressed fish, 

smoked fish, Pinang fish, fish preserved, and fishbowl. 

Indonesia’s Aceh province, on the east coast, is home to a 

seafood processing sector facing scrutiny. These eight fish-

processed items must be produced according to a production 

schedule devised by the industry controlled by the public in 

that region to meet the market’s demand over time 𝑡 , 𝑡 =
1,… , 𝑇 . For that situation, three months equivalent to one 

period. This means that each year will have a total of four 

periods. The model parameters and decision variables used in 

this investigation are described below: 

Sets 

• 𝑇 : Total number of periods 

• 𝑁 : Total number of products 

• 𝑀𝑐 : Class 𝑐 set of raw resources

• 𝑆 : Total number of scenarios 

Variables 

• 𝑋𝑗𝑡 : Amount of product 𝑗 ∈ 𝑁 in period 𝑡 ∈ 𝑇 (ton)

• 𝑢𝑖𝑡 : Supplementary resources amount 𝑖 ∈ 𝑀𝑐 to purchase

in 𝑡 ∈ 𝑇 (unit) 

• 𝑘𝑡 : Total number of workers necessary in period of time
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𝑡 ∈ 𝑇 (man-period) 

• 𝑘𝑡
− : Total number of workers lay-off in period of time 𝑡 ∈

𝑇 (man-period) 

• 𝑘𝑡
+ : Total of supplementary workers in period of time 𝑡 ∈

𝑇 (man-period) 

• 𝐼𝑗𝑡  : Amount of product 𝑗 ∈ 𝑁 to be collected in period of

time 𝑡 ∈ 𝑇 (unit) 

• 𝐼𝑀𝑐𝑡 : Quantity of inventory of raw supplies of class 𝑐  at

time 𝑡 ∈ 𝑇 (unit) 

• 𝐵𝑗𝑡 : Under delivery of product 𝑗 ∈ 𝑁  in period 𝑡 ∈ 𝑇

(unit) 

Parameters 

• 𝐷𝑗𝑡 : Product demand is 𝑗 ∈ 𝑁 in period 𝑡 ∈ 𝑇 (unit)

• 𝑈𝑗𝑡 : Upper limit on 𝑢𝑗𝑡
• 𝑟𝑖𝑗  : Total of supplies 𝑖 ∈ 𝑀𝑐  required to generate single

product 𝑗 ∈ 𝑁 

• 𝑓𝑖𝑡 : Total of supplies 𝑖 ∈ 𝑀𝑐 presented at time period 𝑡 ∈
𝑇 (unit) 

• 𝑎𝑗 : Total of workers required to generate a single product

𝑗 ∈ 𝑁 

• 𝑆𝑀𝑐𝑡 : Class 𝑐 raw supplies total quantity in time period 𝑡 ∈

𝑇 

• 𝛼, 𝛽, 𝛾, 𝛿, 𝜇, 𝜌, 𝜆 are all costs.

The model 

min∑ ∑ 𝛼𝑗𝑡𝑥𝑗𝑡𝑡∈𝑇𝑗∈𝑁 + ∑ ∑ 𝛽𝑖𝑡𝑢𝑖𝑡𝑡∈𝑇𝑖∈𝑀𝑐
+

∑ 𝜇𝑡𝑘𝑡𝑡∈𝑇 + ∑ 𝛾𝑡𝑘𝑡
−

𝑡∈𝑇 + ∑ 𝛿𝑡𝑘𝑡
+

𝑡∈𝑇 +
∑ ∑ 𝜌𝑗𝑡𝐼𝑗𝑡𝑡∈𝑇𝑗∈𝑁 + ∑ ∑ 𝜆𝑗𝑡𝐵𝑗𝑡𝑡∈𝑇𝑗∈𝑁

(1) 

Subject to 

∑ 𝑟𝑖𝑗𝑥𝑗𝑡𝑗∈𝑁 ≤ 𝑓𝑖𝑡 + 𝑢𝑖𝑡 ∀𝑖 ∈ 𝑀, 𝑡 ∈ 𝑇 (2) 

𝑢𝑖𝑡 ≤ 𝑈𝑖𝑡 ∀𝑖 ∈ 𝑀, 𝑡 ∈ 𝑇 (3) 

∑ 𝑎𝑗𝑥𝑗𝑡𝑗∈𝑁 ≤ 𝑘𝑡 ∀𝑡 ∈ 𝑇 (4) 

𝑘𝑡 = 𝑘𝑡−1 + 𝑘𝑡
+ − 𝑘𝑡

− 𝑡 = 2,… , 𝑇 (5) 

𝑥𝑗𝑡 + 𝐵𝑗,𝑡−1 + 𝐼𝑗𝑡 − 𝐵𝑗𝑡 = 𝐷𝑗𝑡
∀𝑗 ∈ 𝑁, 
∀𝑡 ∈ 𝑇 

(6) 

𝑥𝑗𝑡 , 𝑢𝑖𝑡 , 𝑘𝑡 , 𝑘𝑡
−, 𝑘𝑡

+, 𝐼𝑗𝑡 , 𝐵𝑗𝑡 ≥ 0
∀𝑗 ∈ 𝑁, 
∀𝑖 ∈ 𝑀, 
∀𝑡 ∈ 𝑇 

(7) 

The mathematical model presented in this study aims to 

optimize multi-product fish production planning over multiple 

time periods under demand uncertainty and perishability 

constraints. The formulation addresses multi-product fish 

production planning across several periods by explicitly 

embedding perishability into both the capacity constraints and 

the economic objective. 

Constraint (2) specifies the raw-material balance for each 

product–period pair, requiring that the total quantity processed 

cannot exceed the sum of on-hand inventory and newly 

purchased inputs. Because inventory older than its shelf-life is 

forced to exit the system, the time-index in this balance rules 

out carrying stale stock forward indefinitely and thus 

operationalizes perishability at the material level. 

Constraint (3) imposes an upper limit on additional raw-

material purchases. By capping emergency procurement, the 

model discourages excessive “safety” inventory that would 

otherwise spoil before it can be processed. In effect, the 

constraint approximates shelf-life boundaries and prevents 

costly over-stocking. 

Labor considerations enter through Constraint (4), which 

converts product-specific processing times into period labor 

requirements. Since perishable items lose value rapidly if 

processing is delayed, this constraint guarantees that sufficient 

labor is available to handle the time-sensitive workload in each 

period. Constraint (5) then links successive periods by tracking 

workforce levels, hires and layoffs, ensuring that short-term 

labor adjustments remain feasible while preserving enough 

capacity to protect product freshness throughout the planning 

horizon. 

Demand realization and inventory ageing converge in 

Constraint (6). Here, production, purchasing and inventory 

jointly satisfy stochastic market demand. Any shortfall incurs 

a penalty, while excess production remains in inventory 

subject to the same perishability logic that governs Constraint 

(2). The term therefore balances the twin risks of under-

delivery and spoilage. 

Finally, the objective function minimizes the total expected 

cost of production, labor adjustments, emergency 

procurement, inventory holding and under-delivery penalties. 

Because holding and shortage penalties escalate with time and 

quantity, perishability directly influences the optimal trade-off 

surface explored by the enhanced GRG algorithm. Taken 

together, Constraints (2) – (6) and the cost function ensure that 

perishability is treated not merely as a parameter but as a 

fundamental driver of both feasibility and optimality in the 

production plan. 

Perishability is embedded throughout the formulation: 

Constraint (2) enforces an expiry-limited inventory balance, 

Constraint (3) caps procurement to prevent overstocking 

beyond shelf-life, Constraints (4) – (5) guarantee timely labor 

for fresh processing, and the objective’s time-indexed holding 

and shortage costs penalize spoilage. Collectively, these 

elements force every feasible schedule to respect finite shelf-

life while steering the optimization toward plans that minimize 

both waste and unmet demand.  

Since the unpredictable form has been defined by scenario 

and premultiplied by the relevant possibilities in the random 

terms objective functions, the model in expressions (1) 

through (7) is in a deterministic corresponding form. In 

references [37, 38], the approach of converting a stochastic 

programming model to its deterministic counterpart model 

was discussed. 

At this point, we have a mixed integer program for the 

deterministic model. Non-basic variables are released from 

their limits and “active constraint” are utilized to obtain the 

solution. Using this method, non-integer basic variables are 

converted to their nearest integer values. The integer results 

are kept in the set of superbasic variables. Following that, we 

perform an integer line search to improve the integer viable 

solution [39]. 

5. RESULTS AND DISCUSSION

5.1 Analysis of computational results 

The duration of this project is three months, or 𝑇 =
{1,2,3,4}. After conducting an investigation on the premises, 
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we were able to ascertain the market conditions for the eight 

processed fish products. The data for the problem are shown 

in can be found in reference [40]. 

The proposed enhanced GRG algorithm was applied to a 

real-world fish production scenario involving eight products 

over four time periods. The outputs are visualized in Figures 

1-9. Below, we present a more detailed analysis:

Inventory costs increased progressively across periods for

products with lower turnover rates. Product 5 showed a 28.6% 

increase in cost between periods 3 and 4, suggesting 

inefficiencies in inventory holding. This reinforces the need 

for tighter perishability control in slow-moving items (Figure 

1). 

Figure 1. Inventory cost trends 

Figure 2. Extra resources utilization 

Figure 3. Inventory levels of raw supplies 

Resource 4 exhibited the highest supplemental usage, with 

a peak utilization of 38 units in period 1. This aligns with the 

observed production surge for high-demand products during 

that period. Statistical variance in supplemental resource use 

across periods was 12.3 units², indicating significant temporal 

fluctuation (Figure 2). 

The variance in inventory levels showed a skewed 

distribution, with products 2 and 6 consistently exceeding 

planned thresholds. This suggests suboptimal matching 

between production and demand, likely due to inaccurate 

forecasts or conservative safety stock policies (Figure 3). 

The objective function reduced steadily with each iteration, 

reaching convergence in 45 steps, as shown in Figure 4. The 

initial value of 378,000 dropped to 295,800—a 21.7% 

reduction—demonstrating the efficiency of the enhanced 

GRG approach. The convergence profile in Figure 4 confirms 

algorithmic stability. 

Figure 4. Trend of objective function 

Figure 5 illustrates the workforce costs under varying 

demand increase levels (10%, 20%, and 30%) for each 

scenario (Good, Fair, and Poor). This visualization shows how 

workforce costs escalate with rising demand across different 

market conditions, helping to assess budget impacts under 

potential demand growth. 

Figure 5. Workforce costs 

The bar chart in Figure 6 compares the total workforce costs 

under four different strategies: 

• Static Workforce: Maintains a fixed workforce, generally

resulting in higher costs due to underutilization in low-

demand periods.

• Flexible Workforce: Adjusts the workforce each period

based on demand, often balancing costs efficiently.
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• Buffered Workforce: Uses a core workforce with a buffer

to avoid frequent hiring and layoffs, reducing variability in

costs.

• Outsourcing: Relies on partial outsourcing, adding extra

costs for outsourced production but potentially reducing

the internal workforce expense.

This comparison highlights the cost implications of each

strategy under a “Fair” demand scenario. 

Figure 6. Comparison of workforce costs 

Figure 7. Comparison workforce costs under various 

strategies 

Figure 7 compares workforce costs under various strategies, 

highlighting the impact of layoffs in the Flexible (With 

Layoffs) scenario. This comparison shows that including 

layoffs can increase total costs due to layoff-related expenses, 

despite potential savings from adjusting workforce levels. 

Each strategy offers different cost implications: 

• Static Workforce: High costs due to maintaining a fixed

workforce.

• Flexible (No Layoffs): Moderate costs with no layoff-

related expenses, allowing dynamic workforce

adjustments.

• Flexible (With Layoffs): Additional costs from layoffs,

which can offset savings from workforce adjustments.

• Buffered Workforce: Balanced costs with core workforce

and a small buffer.

• Outsourcing: Relies on partial outsourcing, adding extra

expenses but potentially reducing internal costs.

Under a 30% demand increase, workforce costs rose from

IDR 51 million to IDR 66 million (+29.4%). The Buffered 

Workforce strategy achieved a 12% cost saving over Static 

Workforce strategy, balancing flexibility with cost stability. 

The Flexible with Layoffs approach reduced short-term costs 

but incurred higher long-term costs due to layoff penalties. 

The line graph in Figure 8 illustrates workforce trends over 

time across different strategies. The Static Workforce 

maintains a consistent size regardless of demand, while the 

Flexible Workforce adjusts dynamically, and the Buffered 

Workforce shows greater stability. Outsourcing relies on 

lower internal workforce levels, with external resources 

covering demand peaks. This visualization emphasizes the 

adaptability and long-term cost implications of each strategy. 

Figure 9 presents hiring trends alongside seasonal 

workforce variations: 

• Original Demand and Seasonal Adjusted Demand lines

show the baseline and seasonally adjusted workforce needs.

• Hiring Needed bars indicate periods where workforce

demand rises, necessitating additional hiring to meet

seasonal peaks.

Figure 8. Workforce trends 

Figure 9. Seasonal workforce 

Seasonal hiring showed sharp increases in periods 2 and 4. 

The coefficient of variation in hiring was 0.22, indicating 

moderate demand variability. Hiring spikes aligned with 

seasonal demand peaks and reinforced the importance of 

dynamic labor planning in perishable product environments. 

5.2 Benchmark comparison 

To assess the performance of the enhanced GRG algorithm, 

we benchmarked it against a standard GRG implementation 

(no perishability adaptation) and a MILP model. The results 

are summarized in Table 1. 
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Table 1. Comparative performance 

Method 

Total 

Cost 

(IDR) 

Avg. Under-

Delivery (units) 

Runtime 

(s) 

Spoilage 

(%) 

Enhanced 

GRG 

(proposed) 

295,800 4.3 15.2 3.2% 

Standard 

GRG 
312,000 7.9 13.7 8.1% 

MILP 

(CPLEX 

solver) 

302,400 5.2 45.9 6.5% 

The line graph in Figure 8 illustrates workforce trends over 

time across different strategies: 

• Static Workforce: Maintains a consistent workforce size,

unaffected by demand changes.

• Flexible Workforce: Adjusts dynamically based on

demand, showing variations across periods.

• Flexible with Layoffs: Adapts to demand changes but

includes additional workforce retained due to layoff costs.

• Buffered Workforce: Shows a stable trend with a buffer to

minimize frequent workforce adjustments.

• Outsourcing: Keeps internal workforce lower (80% of

demand), relying on outsourcing to handle additional

demand.

This visualization highlights the adaptability and cost

implications of each strategy over time. 

The enhanced GRG algorithm outperforms both 

benchmarks by reducing total cost and spoilage while 

maintaining reasonable runtime. Under-delivery was cut by 

45.6% compared to standard GRG, demonstrating improved 

perishability handling. 

The enhanced GRG-based production planning model 

contributes significantly to both economic efficiency and 

environmental sustainability. By integrating perishability 

constraints, labor flexibility, and responsiveness to dynamic 

demand, the model enables optimized decision-making that 

simultaneously reduces waste, energy use, and operational 

costs. Economically, it lowers total production cost by 5.2% 

compared to the standard GRG and by 2.1% relative to MILP 

baselines. These savings result from improved resource 

allocation, minimized under-delivery penalties, and reduced 

spoilage handling. Inventory holding costs are further 

minimized by avoiding overproduction, particularly in later 

periods where spoilage risk is highest. Labor scheduling 

optimization ensures workforce stability by preventing 

overstaffing and excessive layoffs, thus reducing HR-related 

volatility. 

From an environmental perspective, the model significantly 

reduces product spoilage—over 60% lower than in traditional 

GRG implementations—which in turn decreases organic 

waste and its associated greenhouse gas emissions. The close 

alignment of production with demand also curtails 

unnecessary refrigeration, packaging, and transportation of 

spoiled goods, thereby conserving energy. Moreover, by 

promoting the efficient use of high-impact resources such as 

Resource 4 through just-in-time procurement, the model 

discourages unsustainable bulk stockpiling. Collectively, 

these outcomes support the triple bottom line of economic 

viability, environmental responsibility, and operational 

resilience, reinforcing the model’s relevance to sustainable 

supply chain strategies in the fish processing industry. 

5.3 Scalability discussion 

To evaluate scalability, the enhanced GRG algorithm was 

applied to a substantially larger instance comprising 20 

products, six resource categories, and eight planning periods. 

Despite the three-fold increase in decision variables, the solver 

reached convergence in 78 iterations and finished the run in 

less than 62 s. Both the absolute memory footprint and its 

growth remained approximately linear with problem size, 

indicating efficient handling of additional state information. 

Although total runtime rose by roughly a factor of four, the 

convergence trajectory, optimality gap, and solution accuracy 

were essentially unchanged, confirming that the algorithm’s 

superbasic-variable decomposition absorbs much of the added 

complexity. Collectively, these results demonstrate that the 

proposed approach can be transferred to medium- and large-

scale production settings with only modest performance 

penalties. 

6. CONCLUSIONS

This study proposed an enhanced GRG algorithm to address 

the complex challenges of multi-product fish production 

planning, which involve perishable raw materials, limited 

resources, and stochastic demand. A comprehensive nonlinear 

optimization model was developed and solved with this 

enhanced GRG approach. Key improvements—namely 

perishability-aware constraints, scenario-weighted gradient 

updates, and refined handling of integer variables—enable the 

algorithm to capture real-world production dynamics more 

accurately. 

Computational experiments based on real-world data 

demonstrate that the proposed algorithm outperforms both the 

standard GRG and MINLP benchmarks. Specifically, it 

achieves a reduction in total production cost of up to 5.2%, a 

decrease in product spoilage from 8.1% to 3.2%, and faster 

convergence than commercial solvers. By dynamically 

adapting labor, inventory, and supplemental resources to 

perishability and demand scenarios, the algorithm proves 

effective in volatile and resource-constrained environments, 

yielding benefits for economic planning, environmental 

sustainability, and resilient supply-chain design. The model’s 

capacity to reduce excess production, lower waste, and 

improve energy and labor efficiency contributes directly to 

broader sustainability objectives, including waste reduction, 

carbon-footprint minimization, and sustainable fisheries 

management. 

Future research will pursue several actionable directions. 

First, integrating machine-learning-based demand forecasting 

can enhance scenario accuracy. Second, explicitly 

incorporating carbon-emission metrics into the objective 

function would extend the model’s environmental scope. 

Third, optimizing multi-echelon supply chains—

encompassing production, distribution, and retail phases—

could amplify overall system efficiency. Fourth, implementing 

real-time adaptive scheduling will allow mid-period 

adjustments in response to unexpected demand or supply 

shocks. Finally, validating the framework in other perishable 

domains, such as dairy or agricultural processing, will test its 

generalizability. By providing a practical, scalable, and 

sustainability-oriented optimization framework, this work lays 

a robust foundation for more intelligent and responsive 

production-planning systems across the agri-food sector. 
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