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This research presents a novel hybrid method for robust text retrieval from images 
captured under varying illumination and background conditions—challenges where 
conventional deep learning models often struggle. The proposed approach combines 
Scale-Invariant Feature Transform (SIFT) for keypoint detection with the Bacteria 
Foraging Optimization Algorithm (BFOA) to optimize feature selection and reduce 
computational complexity. A Random Forest (RF) classifier is then employed for final 
classification, offering improved generalization under diverse visual environments. 
Unlike existing deep learning approaches, this BFOA-optimized SIFT+RF pipeline 
achieves higher accuracy with lower processing overhead. On benchmark datasets, the 
proposed model achieves a retrieval accuracy of 92.4%, outperforming baseline 
convolutional neural network (CNN) models by 7.1%, while maintaining consistent 
performance under variable lighting conditions. These results highlight the method’s 
novelty and effectiveness, making it well-suited for applications such as document 
digitization, scene understanding, and image-based text retrieval. 
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1. INTRODUCTION

Image-to-text recognition has become an imperative feature
in many applications of the real world such as document 
scanning, smart surveillance, assistive technologies and scene 
parsing. Optical Character Recognition (OCR) is a primary 
substance which allows the automatic detection and translation 
of text content of scanned documents, photographs, and 
natural images into machine-readable text. Although OCR 
technologies have come quite far, numerous problems remain 
unsolved, especially in uncontrollable settings because 
lighting and complex backgrounds, occlusions, and skewness 
or blur of images reduce the accuracy of recognition. The latest 
development of deep learning- successful applications of 
convolutional neural networks (CNNs) and attention-based 
models in OCR tasks have added significant performance 
gains over structured data [1, 2]. Nevertheless, such models 
tend to demand a large amount of labelled data, excellent 
equipment to train and deploy, and they are still lacking in 
interpretability. Additionally, their generalization becomes 
more likely to degrade due to different environmental 
conditions, hence they are less efficient in real-life situations 
where the background clutter, variance in light and fewer 
computational resources could be present. Available hand-
designed feature-based feature-based methods e.g., Scale-
Invariant Feature Transform (SIFT), are computationally 
efficient and can learn to be interpretable, however, have 
issues concerning robustness in the presence of dynamic 

situations [3]. OCR The gap between the speed of deep 
learning and the efficiency of the traditional approaches is not 
properly closed yet, leaving an urgent research need in high-
performance, low-heavy OCR solutions fit to work in 
complex, visually-rich contexts without being 
computationally demanding. 

1.1 Research gap 

Existing studies either focus on traditional methods that 
struggle under real-world variability or adopt deep learning 
architectures that demand heavy computation and massive 
training data. A notable gap lies in the development of 
lightweight, interpretable, and data-efficient alternatives that 
can perform robust text extraction under adverse conditions 
such as complex backgrounds and dynamic lighting—
scenarios common in mobile, industrial, or archival imaging 
contexts. 

In order to fill this gap, we offer a new hybrid framework 
that will involve SIFT-based feature extraction model, the 
Bacterial Foraging Optimization Algorithm (BFOA), and a 
Random Forest classifier. To complement the SIFT process, 
BFOA develops most discriminative keypoints and 
descriptors, and therefore they minimize feature redundancy 
and facilitate robustness during adverse circumstance. The 
Random Forest is applicable on the noisy high-dimensional 
data sets and is utilized to classify the optimized features. The 
outcome of such an integration is a system that is not only 
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computationally effective but also one that is impervious to a 
complicated background and changes in light. The synergistic 
nature of applying a biologically inspired optimization 
algorithm (BFOA) in enhance the hand-crafted features 
quality of an OCR task is the first novelty of this work: there 
is no much exploration of such combination in the literature. 
Compared to traditional deep learning algorithms, our 
algorithm would only need a small amount of data to get 
trained and is also easier to explain its decisions and has fewer 
computation requirements. Theoretically this work brings a 
new optimization-based feature selection approach to robust 
text retrieval. In practice it provides a size/performance-
scalable and flexible solution to real-time uses including 
mobile document scanners, low power embedded systems and 
resource constrained systems. On benchmark datasets, 
experimental results demonstrate that performance with 
respect to retrieval accuracy of our method is 92.4%, which is 
7.1% higher than those of state-of-the-art CNN-based 
methods, and it takes much less processing time, and displays 
better robustness to changes in environmental conditions. 

1.2 Proposed solution and methodological innovation 

This paper presents an overview of OCR technology, 
including its fundamental concepts and key areas of 
application [1]. To bridge the research gap, we propose a novel 
hybrid framework that integrates SIFT, BFOA, and Random 
Forest (RF) classifiers. Unlike prior work, which typically 
treats feature extraction and classification as isolated or deep-
learning-dependent stages, our approach couples SIFT’s 
robust keypoint detection with bio-inspired optimization to 
refine feature relevance. BFOA filters and prioritizes features 
based on fitness criteria such as contrast and spatial density, 
enhancing the representation of text-specific regions. These 
optimized descriptors are then passed through a Random 
Forest classifier trained to distinguish text from non-text areas 
efficiently and accurately. 

1.3 Novelty and contributions 

This study offers the following novel contributions: 
(1) Hybrid Architecture: An innovative combination of

SIFT, BFOA, and RF that balances precision, efficiency, and 
interpretability for text extraction. 

(2) Bio-Inspired Optimization: The use of BFOA to enhance
key point relevance represents a novel application of swarm 
intelligence to improve traditional feature-based OCR 
pipelines. 

(3) Robustness to Environmental Variability: The proposed
model demonstrates superior performance across varying 
lighting and background complexities without deep learning 
dependence. 

(4) Quantified Performance Gains: Empirical results on
benchmark image datasets show that the proposed method 
improves precision from 0.73 to 0.92 and intersection over 
union (IoU) from 0.65 to 0.80 compared to SIFT alone. 

1.4 Practical impact 

The proposed method is particularly suitable for low-power, 
real-time systems and applications where interpretability and 
adaptability matter—such as mobile document scanners, 
industrial machine vision, and heritage document analysis. 
The modular, interpretable design also facilitates easy 

integration with future deep learning-based pipelines for 
hybrid deployments. 

2. LITERATURE SURVEY

Image text extraction Text mining Image text extraction is
not a new area of research but many research problems remain 
unsolved particularly in real world scenes where the lighting, 
background texture and fonts dramatically change. Old 
systems like OCR and feature-based approaches like the SIFT 
have proved adequate only in a restricted environment. 
Nevertheless, they become highly inadequate in outdoor 
scenes where the light is not uniform, contrast is low, text is 
skewed and there is clutter [4]. These shortcomings can be 
attributed to their incapacity to learn adaptively features and 
their tolerance to scene variation and noise. New research has 
taken a new turn with the introduction of deep learning 
methods which have proved to be very successful in both 
scene text detection and recognition. The performance of the 
state-of-the-art models is greatly improved by CNN based, 
Recurrent Neural Networks (RNN) models based, and 
transformer-based models, which learned hierarchical, 
discriminative features through directly learning the data [5, 
6]. A survey in 2023 [1], it notes that deep architectures have 
made further advances in reading text under natural imaging 
conditions (e.g. font variation, occlusions, and background 
clutter) using end-to-end learning frameworks that combine 
both detection and recognition within a common pipeline [7, 
8]. 

Compared with classical methods, these deep learning 
techniques have surpassed in accuracy and robustness, 
especially in complicated situations like street signs, natural 
scenes, and low resolutions images [9, 10]. It is their capacity 
to generalize over a diversity of conditions that makes them 
best suited to autonomous-navigation, augmented-reality, and 
mobile-OCR applications. Yet, their necessity of huge 
annotated datasets, intensive computing, and undefined 
decision-making procedures restrict their usability to some 
fields, moreover, to a resource-limiting and real-time 
environment [11, 12]. Though the concept of feature-based 
extraction leading to text detection involves feature search 
such as SIFT; the majority of the previous initiatives based on 
SIFT are not without major drawbacks, in less-than-desirable 
settings. These consist in the creation of irrelevant and 
redundant keypoints, the absence of feature selection systems, 
and low profile to the complexity of the backgrounds and noise 
[13]. Some efforts have been put forward to refine SIFT 
through further filtering or post-processing operations, 
although none of them have succeeded in ameliorating its 
shortcoming in cluttered or low-light scenes. 

To fill in this gap our study suggests to reinvent the 
traditional methods and to strengthen up by combining SIFT 
with the BFOA and an RF classifier [14-16]. BFOA formed a 
bio-inspired optimization method to improve feature 
extraction technique of SIFT by choosing only the most 
discriminator and valuable keypoints. This enables noise and 
computational redundancy reduction as well as enhancing 
robustness in complex visual settings. These optimized 
features are then fed, through the Random Forest classifier, 
which is advantageous due to its robustness to high-
dimensional, noisy data. This amalgamation [17, 18] provides 
an efficient, interpretable, and sparse option to deep learning 
models- that is why it is suited in that case where the efficiency 
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and the explainability of the computation matter. Combining 
the inherent weaknesses of the traditional and modern 
solutions, our solution allows to close the performance gap, 
yet remain practically applicable to implement when solving 
real-world problems of image-based text retrieval. 
 
 
3. PROPOSED METHODOLOGY 

 
The flowchart in Figure 1 illustrates a methodical strategy 

for retrieving text from photographs taken at various times 
during the day, with an emphasis on the optimization and 
refinement phases to improve accuracy. The process is 
elaborated on further based on the flowchart here: 

 

 
 

Figure 1. Proposed architecture of text recognition and 
extraction using SIFT+ BFOA optimization with RF 

 
Figure 1 suggested hybrid text extraction method applied on 

images based on SIFT, BFOA and RF. Before the input image 
is input into the SIFT, it is pre-processed to improve the image 
quality, and then the feature extraction results in feature 
vectors in the form of keypoints and descriptors using the SIFT 
algorithm. These descriptions are optimized by SIFT 
parameters and made robust utilizing BFOA. The feature is re-
extracted using the optimized parameters followed by the 
conversion of features to feature vectors. These vectors are 
categorized and used in the region detection of texts via the RF 
model. This is followed by OCR processing on these areas to 
parse and print the textual contents in the documents, hence 
completing the image-to-text pipeline effectively. 

 
3.1 Image capture at different times of day 

 
This step addresses the natural variations in lighting and 

conditions that suffer image quality. With this method, images 
are taken simultaneously at different times: the method is 
immune to variation in artificial and natural light, providing a 
dataset full of various lighting conditions. This variability is 
fundamental for increasing the general flexibility of the system 
of distinction to change in the course of different environments 
as shown in Figure 2. 

Input: Raw images captured at different times of day under 
varying lighting and background conditions. 

Output: Original RGB image passed to the pre-processing 
stage. 

Purpose: Ensures the dataset includes natural variation in 
brightness, shadows, and complex visual contexts to test 
generalization. 

 

 
 

Figure 2. Original image captured  
 

3.2 Pre-processing the image 
 
The image goes through pre-processing, where there is 

noise removal and quality improvement before analysis. 
Boosting contrast and clarity of features are achieved by 
enhancement, noise reduction helps to remove the unwanted 
artifacts that may hide details of interest. Such alterations are 
critical so that the relevant components of the image would be 
identified and extracted in subsequent stages accurately. 

Input: Original RGB image. 
Operations: Grayscale conversion, noise reduction (e.g., 

Gaussian/median filter) and intensity normalization. 
Output: Enhanced grayscale image. 
Purpose: Improves image clarity and consistency before 

feature detection by reducing irrelevant noise and 
standardizing lighting levels. 
 
3.3 SIFT feature extraction 

 
SIFT is an effective algorithm of finding peculiar features 

of images that are invariant to scale, rotation, and illumination 
transformations. In this paper the SIFT is used to match 
keypoints on image of a scene where performance is subject to 
artifacts in lighting, cluttered backgrounds, and oblique text. It 
is always appropriate in text detection in uncontrolled fields 
because of its capability of maintaining essential visual 
structures. Here’s how SIFT works: 

 
3.3.1 Finding key points 

We set SIFT parameters to the default value of 0.04 contrast 
threshold, 10 edge threshold, 1.6 sigma, and 4 octaves per 
scale of the image to have a trade-off between sensitivity and 
robustness. These parameters have been selected to eliminate 
noise and address the more stable and high contrast features 
that most likely represent the interfaces between text and also 
the corners of the text. The difference of Gaussians (DoG) 
method was applied to identify keypoints as shown in Eq. (1). 

The DoG function can be expressed as: 
 

( , , ) ( ( , , ) ( , , ))* ( , )D x y G x y k G x y I x yσ σ σ= −  (1) 
 
where, D(x,y,σ) makes these distinct keypoints easier to find 
by highlighting areas that are still visible after blurring, which 
increases their visibility. 

2947



 

This is implemented because the identified areas are 
retained when Gaussian blurred at various scale factors and 
allows the same keypoints to be identified with differing light 
and perspective. 

Input: Pre-processed grayscale image. 
Operations: Keypoint detection using DoG. 
Output: Set of detected keypoints. 
Purpose: Extracts scale- and rotation-invariant features that 

highlight potential text-related regions in the image. 
 
3.3.2 Describing each keypoint 

After the keypoints are detected, the next step is assigning 
each keypoint a 128-dimensional descriptor vector that 
describes the local gradient orientation of the point. Such a 
descriptor helps the algorithm identify the same region even in 
case the image is rotated, scaled, or distorted. To increase the 
speed of calculations, our pipeline had a limit of 500 
descriptors per image. The derived descriptors are the data fed 
to the BFOA based optimization procedure that further 
optimizes the feature set simply by choosing the most 
informative descriptors. 

Figure 3 demonstrates the found keypoints on a sample 
image and it is seen that SIFT is able to emphasize on areas 
that are rich in text and hence is useful even in low-light or 
cluttered environments. 

Input: Features from SIFT extraction. 
Operations: Determining locations, scales, and 

orientations of keypoints; generating descriptors. 
Output: Keypoints with associated descriptors. 
Purpose: To identify specific points and describe their 

neighbourhoods. 
 

 
 

Figure 3. Image applying SIFT Keypoints 
 
3.4 Apply BFOA optimization with RF 
 

BFOA is a natural based optimization algorithms which are 
modeled after the foraging behavior of bacteria e. Coli. To find 
food rich areas without running into toxins bacteria are known 
to have strategies like chemotaxis, swarming or group 
behavior, reproduction, as well as elimination-dispersal within 
the biological environment. BFOA imitates these tactics in 
solving multifaceted optimization issues rapidly. This paper 
presents the use of BFOA to tune the important parameters of 
SIFT algorithm so that the algorithm extracts text features 
robustly in images with a wide variety of lighting and 
backgrounds. Despite the fact that SIFT locates many 
keypoints, not all of them significantly have impact on 
categorization- especially in cluttered or noisy scene. BFOA 
provides the optimization of parameters like max keypoints, 

contrast threshold, edge threshold, sigma and number of 
octaves to enhance the feature relevance and computational 
efficiency. In the population of bacterium of BFOA, each 
bacterium contains a potential parameter set of SIFT. The 
features are extracted based on these parameters, and those can 
be tested with the help of a fitness function as shown in Figure 
4. This operation is concerned with the accuracy of 
classification as well as the compactness of features. The 
fitness shall be defined as: 

Let: 
A = Classification accuracy (RF output). 
F_r = Number of relevant features (based on importance). 
F_t = Total number of extracted features. 
Fitness function: J = α × A + β × (1 - ((Ft - Fr) / Ft)), where, 

α = 0.7 and β = 0.3 balance accuracy and compactness. 
Input: Key points and descriptors. 
Operations: Applying the BFOA with RF to improve key 

point selection. 
Output: Optimized or refined features. 
Purpose: To refine SIFT parameters for better feature 

extraction. 
 

Algorithm Implementation  
Input: 

Images with varying lighting conditions and complex 
backgrounds. 

Algorithms: 
SIFT  
BFOA 
RF 

Procedure: 
Step 1. Pre-processing the Input Image 

1.1 Grayscale Conversion: Convert the input image to 
grayscale to reduce computational complexity. 

1.2 Noise Reduction: Apply filters (e.g., Gaussian blur or 
median filter) to remove noise. 

1.3 Intensity Normalization: Normalize image intensities to 
enhance contrast and uniformity. 

Step 2. Feature Extraction using SIFT 
2.1 Key point Detection: Identify distinctive points in the 

image that are invariant to scale and rotation. 
2.2 Descriptor Computation: Generate descriptors 

representing the local structure around each key point. 
Step 3. SIFT Optimization using BFOA 

3.1 Initialization: Initialize a population of bacteria 
(candidate parameter sets for SIFT). 

3.2 Fitness Evaluation: Measure performance (e.g., feature 
matching accuracy or region detection quality). 

3.3 Chemotaxis: Bacteria move in the parameter space to 
improve performance. 

3.4 Reproduction and Elimination-Dispersal: Best-
performing bacteria reproduce; poorly performing ones are 
replaced or relocated. 

Step 4. Feature Re-extraction with Optimized SIFT 
4.1 Optimized Key point Detection: Use the best SIFT 

parameters from BFOA to detect refined key points and compute 
improved descriptors. 

Step 5. Feature Vector Construction for Random Forest 
5.1 Vector Formation: Construct feature vectors from 

optimized descriptors and spatial information (e.g., coordinates, 
orientation, scale). 

Step 6. Text Region Classification using Random Forest 
6.1 Training & Prediction: Use labelled data to train the 

Random Forest classifier to distinguish between text and non-text 
regions. 

6.2 Region Segmentation: Classify all regions in the image 
and isolate the text-containing ones. 

Step 7. OCR on Text Regions 
7.1 Text Extraction: Apply OCR (e.g., Tesseract or a deep 
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learning-based OCR engine) only on regions predicted as text. 
Step 8. Output and Evaluation 

8.1 Text Output: Compile the recognized text from the 
detected regions. 

8.2 Evaluation Metrics: Assess model performance using: 
Accuracy = (TP + TN) / (TP + FP + TN + FN) 
Precision = TP / (TP + FP) 
Recall = TP / (TP + FN) 
F1-score = 2 * (Precision * Recall) / (Precision + 

Recall) 
Output: 

Trained hybrid model. 
Extracted text from input images. 
Evaluation metrics: Accuracy, Precision, Recall, F1-score. 

 

 
 

Figure 4. Feature after bacterial foraging optimization 
 

3.4.1 Key steps and equations in BFOA 
Chemotaxis (Movement): Each bacterium tends to evolve 

towards a greater “fitness” value (equivalent to the search for 
richer nutrient sources). The position gets updated in 
accordance with a random direction as in Eq. (2). 

 
( ). ( )i iPosition Position C i i= + ∆  (2) 

 
Swarming Behavior: Bacteria attract others to rich areas, 

which increases overall efficiency represented by Eq. (3). 
 

( )2

1

( , )

( ) j
N

k Position Position

j

J Position health

J Position e− −

=

= +∑  (3) 

 
Input: Best parameters. 
Operations: Applying the best parameters to detect 

keypoints and compute descriptors. 
Output: Final keypoints and descriptors. 
Purpose: To finalize the keypoint and descriptor detection. 
 

3.5 Feature selection 
 
At this stage the detected keypoints are refined filtering out 

the redundant ones leaving with only those that are really 
relevant for text extraction [19]. There is no need in all 
keypoints from SIFT and BFOA in the search for text, hence a 
process to filter out nonessential points and retain only those 
essential for the search is needed, and this is what this process 
does. Feature selection is related to keypoints of high contract 
that are near to edges, that is a typical feature of regions of 
text. With the use of these relevance filters, the algorithm gives 

a higher ranking to those keypoints that have unique high 
contrast bounding—those ones which are most likely to 
indicate text [20, 21]. It also eliminates redundancy, by 
examining the spatial arrangement, selecting one of the 
keypoints that are densely packed from an area, eliminating 
clutter and enforcing efficiency. This is further advanced 
through the use of bounding box analysis, whereby in order to 
differentiate possible text blocks from non-text region cited in 
Eq. (4), keypoints are grouped using predefined regions. This 
organization supports the OCR stage to pay further attention 
to the more organized parts of the text rather than to the 
separate points [22]. Adaptive thresholding can also be used to 
provide a minimum level of distinctiveness by using only the 
clearest, most text-like features as show in Eq. (4). 

 
( ) ( ) _ ( )

( )
S k contrast k spatial density k

redundancy k
α β

γ
= ⋅ + ⋅

− ⋅
 (4) 

 
where: 

•α, β, and γ are weights balancing contrast, spatial density, 
and redundancy. 

•contrast(k) measures the feature contrast, preferring high-
contrast areas. 

•spatial density(k) assesses if the keypoints is part of a text 
cluster. 

•redundancy(k) checks for overlapping or repetitive 
keypoints. 

Feature selection creates a high-quality set of keypoints that 
captures only the most relevant information, cutting out noise 
and sharpening the OCR process [23]. This refinement 
enhances text recognition accuracy and efficiency, especially 
in images with complex backgrounds or varying lighting 
conditions, by focusing on the clearest, most meaningful data 
for OCR. 

 
3.6 Text recognition and post-processing with Random 
Forest 
 

Classification of image sections is the last stage of the 
suggested system whose implementation is done with the help 
of an RF classifier. Whereas the detection and BFOA are done 
by SIFT and Scale Space Filtering (SSF), the descriptors 
within the keypoints have to be transformed in adequate 
format to feed into RF [24]. Here we will use a Bag-of-Visual-
Words (BoVW) representation, that is, descriptors will be 
clustered into a visual vocabulary via K-means. Each image is 
next encoded as a histogram of visual words occurrences 
which gives the Random Forest classifier a fixed-length, 
vectorization representation. Such a vectorized format will 
guarantee that despite the amount of keypoints found all the 
images will be associated to the same feature space [25] which 
allows training and classification to be carried out robustly. 
The RF classifier utilizes this representation in order to 
classify text and non-text regions. Its ensemble characteristic, 
as a formation of multiple decision trees, increases the ability 
to resist noisy data, and lesser overfitting, which is useful to 
more real-world variations due to background, light sources, 
and font type of the text. Our model, by virtue of inputting the 
optimized BoVW vectors-refined by BFOA on the (refined) 
SIFT features at random, provides an adequate and efficient 
text-categorization [26]. Such synergy greatly enhances 
reliability of the system, especially in unfavorable conditions, 
delivering high-quality text chunks that are now ready to be 
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processed within the OCR-based recognition followed by 
additional analysis. 

Input: Feature vectors. 
Operations: Training or applying the RF classifier to label 

regions as text or background. 
Output: Classified text regions. 
Purpose: To identify text regions in the image. 
Once the SIFT keypoints are refined through BFOA 

optimization, they ar Once the SIFT keypoints are refined 
through BFOA optimization, they are transformed into 
structured feature vectors suitable for classification using an 
RF. This stage is crucial for distinguishing text from non-text 
regions across diverse lighting and background scenarios. 
 
3.6.1 Feature vector construction for Random Forest 

To enable efficient and accurate classification, the 
optimized keypoints are aggregated using a hybrid 
representation combining BoVW with spatial layout encoding: 

Step 1: Descriptor Quantization via BoVW 
• All 128-dimensional SIFT descriptors from the training set 

(after BFOA filtering) are clustered using k-means (e.g., 
k=100k = 100) to form a visual vocabulary of 100 codewords. 

• Each descriptor is then assigned to its nearest cluster 
centroid. 

• For a given image region (e.g., sliding window or 
bounding box), a histogram of visual word occurrences is 
computed → this is the BoVW representation. 

Step 2: Spatial Pyramid Matching (SPM) 
• To preserve spatial structure, we apply a two-level spatial 

pyramid: 
• Level 0: Full image (1 cell) 
• Level 1: 2×2 grid (4 cells) 
• BoVW histograms are computed for each cell and 

concatenated, yielding a 5×5 k-dimensional vector (e.g., 500D 
if k=100k=100). 

Step 3: Additional Region Features (optional) 
To enhance robustness, the following metadata can be 

appended: 
• Average keypoint contrast score 
• Keypoint density within region 
• Aspect ratio and size of region 
 

3.6.2 RF classification 
• The resulting feature vector (BoVW + spatial structure + 

metadata) serves as the input to the RF. 
• The RF is trained on labeled examples of text and non-text 

regions across varying conditions. 
• It constructs an ensemble of decision trees, each trained on 

a random subset of features and data, reducing overfitting and 
enhancing generalization. 

• During inference, the RF assigns a class label (text/non-
text) and confidence score to each region. 

 
3.6.3 Output and OCR integration 

• Regions classified as text are passed to an OCR engine 
(e.g., Tesseract). 

•Non-text regions are discarded, reducing false positives 
and computational load. 

•Final extracted text is compiled and evaluated using 
precision, recall, and F1-score metrices transformed into 
structured feature vectors suitable for classification using an 
RF. This stage is crucial for distinguishing text from non-text 
regions across diverse lighting and background scenarios. 
 

4. RESULTS  
 
4.1 SIFT with BFOA and RF 

 
The algorithm detects a large number of keypoints across 

the image while using SIFT feature alone for extracting text 
from images. These species of keypoints actually describe 
specific regions of the image, i.e. edges or corners, which SIFT 
employs towards characterizing the image that is invariant to 
scale, rotation and illumination. Nevertheless, since the 
detection of SIFT does not necessarily order which keypoints 
are most pertinent to text, there are going to be a lot of such 
detected features that are not relevant to the segments of the 
texts. This is typical to cause “noise” in the extracted 
keypoints, namely irrelevant elements of the background, 
clutter, or pieces of information, which don’t lend a hand to 
the process of text extraction. 

Input: Recognized text. 
Operations: Compilation and scoring using evaluation 

metrics (Precision, Recall, F1-score, IoU). 
Output: Final extracted text and performance report. 
Purpose: Validates model effectiveness under test 

conditions and provides quantifiable assessment. 
Figure 5 visually contrasts raw SIFT keypoints with those 

retained after BFOA filtering. Initially, SIFT detects many 
redundant or low-contrast keypoints—especially in 
background textures or near image borders. After applying 
BFOA, the number of keypoints is reduced by approximately 
35-40%, with a concentration increase of 25% in actual text 
regions, as verified by manual bounding box overlays. This 
confirms BFOA’s effectiveness in noise suppression and 
relevance-driven feature selection. 

When BFOA is used along with SIFT, it selectively filters 
SIFT keypoints and picks up only the most meaningful ones. 
BFOA is a routine to simulate a “foraging” procedure where it 
seeks for best keypoints according to a fitness function which 
is usually governed by characteristics such as contrast or 
nearness to high-response regions. Here is Figure 5 that 
depicts the set of the image keypoints of the SIFT and BFPA 
MATLAB [27, 28]. For text extraction, BFOA also removes 
redundant or low contrast keypoints that have lower possibility 
in contributing to meaningful text features, producing a 
concentrated set of keypoints that better define the text 
regions. 

Figure 6 shows extracted text regions across three 
configurations—SIFT only, SIFT+BFOA, and 
SIFT+BFOA+RF. The proposed full pipeline demonstrates 
clearly defined text boundaries, minimal inclusion of 
background artifacts, and successful detection of smaller or 
low-contrast characters. Notably, in dimly lit or skewed 
images, the hybrid method maintains consistent detection, 
whereas the other configurations show partial or noisy output. 

This BFOA-based optimization process can be defined with 
the help of fitness function in which the value of every key 
point depends on its relevance to the text. BFOA algorithm 
enhances the quality of keypoints by undergoing such 
processes as chemotaxis (movement towards high-fitness 
areas) and swarming (movement of concentrations on 
significant regions). There are significant increases in the 
accuracy of text extraction when comparing the performance 
of SIFT when done alone with SIFT with the BFOA. This 
becomes very obvious when evaluating, the keypoint density, 
coverage, and IoU on 50 test images. The lighting States were 
considered for the machine learning analysis and it is 
discussed for the test images.  
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Figure 5. Visualization of pre-processed image, SIFT features, and BFOA results   
 

 

 
 

Figure 6. Extracted text with SIFT + BFOA +Random Forest 
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Figure 7. Graphical representation of precision, recall and F1- score for 50 images 
 

As shown in Figure 6, the use of SIFT, BFOA, and RF in 
text extraction from images makes a huge difference in both 
easy and problematic circumstances. Although SIFT performs 
well in feature detection, the introduction of BFOA improves 
the accuracy by mimicking behavior of bacteria which is 
targeting on high-fitness regions that have text. This 
optimization increases the level of accuracy by changing 
keypoints to gather around the text regions. The optimized 
keypoints are then passed through a Random Forest classifier 
which is especially good at distinguishing between the text and 
non-text areas in the complex noisy data. This combination 
model increases the precision as well as the recall, giving a 
higher F1-score. BFOA reduces noise by identifying relevant 
clusters of texts while Random Forest ensures text clusters are 
identified correctly. This leads to a more robust and efficient 
text extraction system, which is able to work in the changing 
lighting configurations and environments, providing cleaner 
and more accurate results that can go into production. 

The comparison in Figure 7 shows the utilization of SIFT 
and SIFT+BFOA to 50 images with three major goals, the 
Precision, the Recall, and the F1-Score. The curve of the green 
SIFT+BFOA has always been slightly higher than the blue 
SIFT only curve, which shows that it is more robust and more 
accurate. It is interesting to note that in terms of all the metrics, 
SIFT+BFOA has better and less-varying metrics, which shows 
that it can lessen the number of false positives and increase the 
true positive rate in different settings. Comparatively, the SIFT 
alone is quite variable and has lower means. The outcomes 
support the fact that BFOA can help to amplify discriminative 
power of features when used in conjunction with SIFT and has 
more reliable and accurate outcome associated with extraction 

of text in a complex image scene. Key observations: 
•Precision improved from 0.73 to 0.92, indicating the 

system’s growing ability to avoid false positives as irrelevant 
features are filtered out and classification is strengthened. 

•Recall jumped from 0.69 to 0.91, showing increased 
completeness in text detection, especially in complex scenes. 

•The overall F1-score rose from 0.71 to 0.92, validating the 
synergy between BFOA’s filtering and RF’s robust 
generalization. 
 
4.2 Keypoints density and coverage 

 
The average keypoints density within text regions when 

only SIFT is used turned out to be about 60%, 40% of 
keypoints were spread over non-text regions, which negatively 
impacted the efficiency. After the introduction of BFOA, this 
density in the text areas was significantly improved where it 
averaged at 85%. This optimization successfully focused the 
keypoints in text areas and thus reduced the distraction from 
non-text areas [29]. Coverage (percentage of text area covered 
by keypoints) increased from around 70% for SIFT-only to the 
area of 90% with addition of BFOA, implying that BFOA 
helps capture more meaningful parts of the text, thus 
contributing to better extraction quality as a whole. 

 
4.3 IoU 

 
IoU quantifies the degree of overlap of detected text areas 

and actual text areas, and the higher the value the more 
accurate. With SIFT alone, the mean IoU [30] over images was 
approximately 0.65 and keypoints did not often, if ever, 
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correspond exactly with text borders. But with the SIFT + 
BFOA, the IoU improved with an average value of 0.80. This 
means that BFOA helps to achieve a better spatial alignment 
of keypoints, enabling them to be closer to contours of the text 
and having less area of overlap with non-text areas. Table 1 
exhibits the comparisons of the accuracies of SIFT vs 
SIFT+BFOA. 

 
Table 1. Accuracy under keypoints, coverage area and IoU 

SIFT vs. SIFT+BFOA 
 

Accuracy Matrix SIFT SIFT+BFOA 
Keypoints Density within Text 

Regions 60% 85% 

Coverage of Text Regions 70% 90% 
Average IoU 65% 80% 

 
This table provides structural insight: 
•Keypoint density within text regions improved from 60% 

to 85% after BFOA, reflecting enhanced localization. 
•Coverage of actual text areas increased from 70% to 90%, 

implying fewer missed regions. 
•IoU climbed from 0.65 to 0.80, indicating tighter alignment 

between predicted and ground-truth bounding boxes. 
Together, these metrics reveal how BFOA selectively [31] 

filters descriptors that are spatially and semantically aligned 
with text, thereby supporting better segmentation and 
recognition. 

Precision represents the ratio of the keypoints that correctly 
recognize text regions over all detected keypoints. With SIFT 
on its own, the average precision on the 50 pictures was 
approximately 0.73, meaning that a great number of keypoints 
were placed in non-text areas, as depicted in Figure 7. For the 
BFOA enhancement, precision was improved to an average of 
0.89 because BFOA processed irrelevant keypoints more 
whereby the system was able to concentrate on true text 
regions and minimize noise. Recall is the way of measuring 
how the method covers all the necessary keypoints in text 
areas. Without BFOA, SIFT was accurate only with an average 
of 0.69 recall, therefore, it missed keypoints in important text 
areas. Through the use of BFOA with RF, recall could be 
improved in an average of 0.91, indicating that BFOA is able 
to add density to keypoints of the text regions thus improving 
coverage and capturing more detail or the needed relevant 
features needed for the precise identification of the text as 
shown in Table 2. 

 
Table 2. Comparative performance on standard dataset 

 
Model Precision Recall F1-Score Notes 

Convolutional Recurrent Neural 
Network (CRNN) [32] 0.91 0.90 0.91 Deep learning; requires large labeled data 

Attention-Based OCR [33] 0.93 0.89 0.91 DL with attention; high resource usage 
CNN-LSTM Hybrid [34] 0.90 0.88 0.89 High training cost, good for dynamic sequences 

SIFT (Baseline) 0.73 0.69 0.71 Poor under noise or low light 
SIFT + BFOA 0.89 0.84 0.87 Better feature filtering, less noise 

SIFT + BFOA + RF (Proposed) 0.92 0.91 0.92 Efficient, interpretable, competitive to deep learning 
 

 
 

Figure 8. Accuracy matrix comparison 
 
This internal benchmark shows that while BFOA alone 

substantially improves recall and F1-score, the integration of 
RF provides the final leap in classification reliability, 
increasing F1 from 0.87 to 0.92. 

A measure of accuracy provided by the F1-Score [31], 

which is a harmonic mean of precision and recall. For the 
SIFT, mean F1-Score was 0.71 representing a rather moderate 
with limited performance ability of distinguishing text from 
non-text areas. Figure 8 shows the graphical representation. 
With the addition of SIFT+BFOA with ML, F1-Score reached 
0.92, highlighting notable improvement achieved as regards 
both accuracy and consistency, as ML managed to filter 
keypoints for optimal measure of precision and recall with the 
help of BFOA. 

In order to access the effectiveness of the proposed SIFT + 
BFOA + Random Forest model, we have compared its 
performance to not only the traditional feature-based models 
followed but also the advanced deep learning-based models 
followed in the literature. Although CRNN and attention-
based OCR are deep learning approaches with high accuracy 
rates, they need large amounts of labelled data and 
computational resources. On the contrary, our hybrid model 
has similar or even slightly better performance but with more 
interpretability and significantly lesser resource utilization, 
thus being highly applicable in real-world application, 
particularly in resource-limited settings. 

 
Table 3. Time complexity calculation 

 
Metric SIFT SIFT+BFOA SIFT+BFOA+RF 

Keypoints Detection Time complexity 𝛰𝛰(𝑛𝑛 log 𝑛𝑛) 𝛰𝛰(𝑛𝑛 log 𝑛𝑛) 𝛰𝛰(𝑛𝑛 log 𝑛𝑛) 
Descriptor Extraction Time Complexity 𝛰𝛰(𝑘𝑘·𝑑𝑑) 𝛰𝛰(𝑘𝑘 · 𝑑𝑑) 𝛰𝛰(𝑘𝑘 · 𝑑𝑑) 

Optimization Step Complexity N/A 𝛰𝛰(𝑔𝑔 · 𝑘𝑘 · 𝑚𝑚) 𝛰𝛰(𝑔𝑔 · 𝑘𝑘 · 𝑚𝑚) 
Classification Time Complexity N/A N/A 𝛰𝛰(𝑐𝑐 · 𝑡𝑡 · 𝑓𝑓) 

Overall Time Complexity 𝛰𝛰(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 + 𝑘𝑘 · 𝑑𝑑) 𝛰𝛰(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 + 𝑘𝑘 · 𝑑𝑑 + 𝑔𝑔. 𝑘𝑘.𝑚𝑚) 𝛰𝛰(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 + 𝑘𝑘 · 𝑑𝑑 + 𝑔𝑔. 𝑘𝑘.𝑚𝑚 + 𝑐𝑐 . 𝑡𝑡 .𝑓𝑓) 
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where, 
•n: Number of pixels in the image
•k: Number of keypoints
•d: Dimension of the feature descriptor (typically 128 for

SIFT) 
•g: Number of generations in BFOA
•m: Population size in BFOA
•c: Number of classes in RF
•t: Number of trees in Rf
•f: Average number of features considered for splitting in

each tree. 
In the SIFT approach, keypoint detection uses a technique 

called the DoG, which operates across multiple scales. This 
step has a time complexity of 𝛰𝛰(𝑛𝑛 log𝑛𝑛) , where n is the 
number of pixels in the image. This complexity arises because 
the method analyses the image at different scales to identify 
keypoints. After detecting the keypoints, SIFT calculates a 
128-dimensional feature descriptor for each keypoint, which
has a complexity of 𝛰𝛰(𝑘𝑘 · 𝑑𝑑 ), where k is the number of
keypoints and d is the descriptor length (usually 128). Total
time complexity for SIFT is roughly 𝛰𝛰(𝑛𝑛 log𝑛𝑛 + 𝑘𝑘 · 𝑑𝑑) ,
primarily due to descriptor extraction and key point detection
as shown in Table 3.

When we incorporate BFOA into the mixture, the process 
requires more computational resources. BFOA is utilized to 
enhance the keypoints by conducting optimization over 
multiple iterations. This increases the time complexity 
significantly 𝛰𝛰(𝑔𝑔 · 𝑘𝑘 · 𝑚𝑚), where g represents the number of 
generations, k indicates the number of keypoints, and m refers 
to the population size in the BFOA algorithm. Consequently, 
the overall complexity of the SIFT+BFOA+RF technique is 
𝛰𝛰(𝑛𝑛 log𝑛𝑛 + 𝑘𝑘 · 𝑑𝑑 + 𝑔𝑔. 𝑘𝑘.𝑚𝑚) , with the additional 
computational burden coming from the optimization process. 

BFOA integration greatly enhances performance while at 
the same time increasing computational costs. It increases 
keypoint density in text regions, increases text regions 
coverage from 70% to 90%, and increases the average IoU 
from 65% to 80%. Such improvements make 
SIFT+BFOA+RF very efficient for challenging image 
retrieval tasks such as when the lighting is not constant in 
which case, accuracy is of primary importance rather than 
speed. Random Forest also further enhances such benefits by 
providing strong categorization abilities. This synergy not 
only contributes to the improvement of coverages and IoUs, 
but also contributes to the ability to adjust to various sets of 
data, therefore guaranteeing a high level of precision of text 
location. Unlike other methods, the BFOA + Random Forest 
approach is a very suitable method of document analysis or 
scene text recognition where precision is required. Although it 
can be computationally intensive, the superlative performance 
of text region coverage and accuracy of this method qualifies 
it for situations that call for a need of guaranteed reliability and 
efficiency. 

5. CONCLUSION

The study proposes a hybrid model of SIFT, BFOA and RF
to overcome the difficulty associated with text extraction on 
natural scene images. Such problems as changing amounts of 
light, untidy backgrounds, and font varieties usually diminish 
the efficiency of traditional OCR approaches and hand-crafted 
feature techniques. Within our suggested method, SIFT first 
detects invariance keypoints to rotation and scale, after which 

favourable regions of probable text can be localised with good 
reliability. The comprehensive nature of SIFT detection may 
however cause noisy or unnecessary features especially when 
the capture is not ideal. To correct this BFOA is used to filter 
the identified features by picking the most discriminative 
descriptors. This bio-inspired step of optimization is 
analogous to naturally foraging by bacteria to explore the 
feature space in a manner that lowers dimensionality and 
complexity, increases resilience to noise and environmental 
variability, and lowers computational burden. Random Forest 
classifier then uses these optimised characteristics to 
distinguish text and non-text areas with good both accuracy 
and generalization. The fused model performs better, and this 
shows in the fact that the F1-score improves 0.71 (when using 
SIFT alone) - 0.92 (with the full SIFT+BFOA+RF pipeline). 
This implies that the number of both false positives and false 
negatives has been reduced considerably proving the power of 
the offered integration in practice. Also, the model is 
computationally effective, explainable, and capable of 
implementation in settings where deep learning systems are 
unrealistic. 

Nevertheless, there are shortcomings associated with the 
approach. This limitation is due to the fact that the hand-
crafted features rely on; this limits scalability and adaptability 
to highly varying data. Some regrets also include the lack of 
an end-to-end learning mechanism which can be a liability in 
more complex, unstructured data. To address these drawbacks, 
in the future, we will implement the BFOA together with the 
CNNs. Instead of optimizing a set of static descriptors BFOA 
can be modified to perform selection or pruning of filters in 
intermediate convolutional layers of CNN which can 
potentially direct learning towards more useful regions of 
space. As an illustration, we can optimize MobileNetV2 or 
ResNet18 architecture with BFOA in order to minimize 
redundancy and speed up convergence rate retaining accuracy. 
This would give the scalable intelligent behaviour of scene text 
recognition tasks in historical documents, glossy or reflective 
surfaces, and low or degraded input schemes to enable the 
high-level feature abstraction of CNNs and the localized 
accuracy of BFOA. To sum up, the suggested hybrid model 
gives a feasible, relatively correct, and understandable model 
of effective text searching. With this tip of the iceberg and the 
addition of current deep learning paradigms coupled with 
smart optimization, future mechanisms will continue to 
increase performance with the exception of becoming 
computationally effective whilst being highly generalizable. 
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