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Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) is an effective 

but complex modulation technique in power electronics, requiring solutions to 

nonlinear equations. Solving these equations is a challenging optimization problem that 

demands high accuracy and significant computational effort. This study introduces the 

multi-strategy improved parrot optimization (MPO) algorithm to solve the nonlinear 

SHE equations for an 11-level inverter. The performance of the MPO algorithm is 

compared with classical and modern optimization techniques, including Newton-

Raphson (NR), Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Parrot Optimizer (PO). The results demonstrate that MPO 

outperforms these methods in terms of solution quality and convergence speed. 

Evaluations were conducted using a suite of benchmark functions, highlighting the 

practical advantage of MPO as a reliable and efficient tool for optimization in SHE-

PWM applications and other power electronics modulation problems.  
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1. INTRODUCTION

Nonlinear equations, often characterized by variables raised 

to varying powers or involved in multiplicative interactions, 

are central to modeling complex systems in engineering, 

physics, and applied mathematics. These equations frequently 

exhibit multiple equilibria, bifurcations, and chaotic behavior, 

presenting significant analytical and numerical challenges [1, 

2]. The solution of such equations is important to the accurate 

modeling of phenomena such as electrical circuit behavior, 

fluid dynamics, and nonlinear control systems. Most nonlinear 

equations cannot be solved by conventional methods of 

analysis, as there are no closed-form solutions. Consequently, 

there has been extensive use of iterative numerical methods, 

which include the Newton-Raphson (NR) method. Although 

NR can converge towards roots quadratically, its convergence 

may not work well in the case of an ill-conditioned Jacobian 

matrix or highly non-convex problems, in that a bad initial 

guess can lead to divergence, or a poor guess may produce 

unwanted answers even when this algorithm converges [3, 4]. 

To answer these solutions, heuristic and metaheuristic 

population-based optimization algorithms have become of 

great importance. Such derivative-free algorithms have also 

been successfully used with nonlinear optimization problems 

because they possess a powerful global search behavior and 

have the intrinsic avoidance of local optima traps. An example 

is the Differential Evolution (DE), which is a very powerful 

evolutionary algorithm capable of preserving the diversity of 

the population and also searching the continuous spaces 

effectively [5, 6]. In the same vein, another method well 

established in performing non-linear tasks optimization is 

Genetic Algorithms (GA) and Particle Swarm Optimization 

(PSO), which may be utilized in Selective Harmonic 

Elimination-Pulse Width Modulation (SHE-PWM) problems. 

Nonetheless, regarding the SHE-PWM problems, there are 

shortcomings related to GA and PSO, including early 

convergence, premature convergence, and stagnation, as well 

as the high computational load that the methods can require [7, 

8]. 

The optimisation algorithm Parrot Optimisation (PO), 

which incorporates social actions of parrots as an inspiration, 

provides a novel usage of nonlinear optimization. This 

dynamic communication and foraging enable PO to journey 

through complex, multimodal search spaces optimally because 

they achieve the required balance between exploration and 

exploitation. Nonetheless, PO suffers from some of the other 

difficulties too, including premature convergence and the 

trapping of local optima, particularly on highly nonlinear and 

locked-up issues like the SHE-PWM [9].  

In order to overcome these drawbacks, an algorithm called 

multi-strategy improved parrot optimization (MPO) was 

invented. MPO is a hybrid method that integrates several 

adaptive methods, including dynamic parameter adjustments, 

opposition-based learning, and Levy flight algorithms to 

enhance the trade-off between exploration and exploitation. 

This improvement enables MPO to keep the population 

diversity, prevent premature stagnation, and converge faster to 

make it a good choice to solve complex nonlinear SHE 

equations in the multilevel inverter systems [10]. 

The originality of the work is the use of the MPO algorithm 
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to solve the SHE-PWM problem, for which its performance 

has been compared with other methods such as the GA, PSO, 

and PO. The MPO algorithm provides a more efficient and 

reliable optimization tool to manage the nonlinearities and 

constraints of multilevel inverter modulation. This paper fills 

the said gaps in research because it proves that MPO is more 

effective than other optimization algorithms in solving a 

problem, its rate of convergence, and its efficiency in 

computation time [11]. Therefore, this work is not just another 

optimization method of SHE-PWM applications but also part 

of the power electronics nonlinear optimization as well. In the 

following section, the methodology applied in this work will 

be outlined, including the algorithms that were tested, along 

with corresponding procedures of benchmarking. 
 

 

2. MATHEMATICAL MODEL OF SHE-PWM 

TECHNIQUE 

 

The SHE-PWM is an advanced modulation technique that 

is widely used in an effort to enhance the output voltage 

characteristics of multilevel inverters [12]. Using exact 

calculation of switching angles in a basic half-cycle, SHE-

PWM is intended to eradicate certain low-order harmonics at 

the inverter output to keep total harmonic distortion to a 

minimum without the use of large passive filtering elements. 

SHE-PWM is the modernized modulation approach that has 

been widely adopted to enhance the quality of the output 

voltage in a multilevel inverter. Through the accurately 

calculated switching angles within any given half-cycle, SHE-

PWM attempts to remove certain low-order harmonics in an 

inverter output and hence limit total harmonic distortion 

without the need for large passive filters [12]. The types of 

SHE-PWM waveforms recorded in the literature are very 

many, with the stepped type being the highest in terms of 

implementation in the multilevel inverters [13-18]. The 

specified waveform is particularly used to synthesize the 

signal at the output that can already take the form of a sinusoid 

with the fail-safe reduction of a low-order harmonic distortion 

[19]. Figure 1 shows an example of the output voltage 

waveform of one phase of an 11-level three-phase multilevel 

inverter. 

 

 
 

Figure 1. Voltage waveform generated by SHE-PWM in an 11-level multilevel inverter 

 

A multilevel inverter output voltage is a nonlinear periodic 

signal that can be broken down into its frequency components 

by the Fourier series. The Fourier series expression of a 

periodic function 𝑣(𝑡) is denoted in Eq. (1): 
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where, ω=2πf is the fundamental angular frequency. The 

coefficients and bn represent the amplitudes of the cosine and 

sine harmonics, respectively. In the context of SHE-PWM, the 

inverter output waveform commonly exhibits half-wave 

symmetry and other symmetries that reduce the harmonic 

content to only odd harmonics, simplifying the Fourier 

representation. 

For an 11-level inverter, the output waveform within one 

quarter cycle is defined by five switching angles θ1 to θ5, 

subject to the constraints of Eq. (2): 
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These switching angles determine the instant at which the 

inverter output changes its voltage level, Eq. (3). The 

amplitude of the nth harmonic component of the output voltage 

can be expressed as Eq. (4): 
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where, Vn is the magnitude of the nth harmonic, Vdc is the DC 

link voltage, n is the harmonic order (odd integers), and k is 

the switching angle. The primary goal in SHE-PWM is to 

ensure that: 

•The fundamental harmonic V1 matches the desired 

reference voltage 𝑉𝑟𝑒𝑓. 

•Specific lower-order harmonics (commonly the 5th, 7th, 

11th, and 13th) are eliminated, i.e., their amplitudes are zero. 
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This leads to a nonlinear system of transcendental 

equations: Eq. (5). 

The modulation index m is a key parameter that defines the 

fundamental output voltage amplitude relative to the DC bus 

voltage; it is given by the ratio of the desired fundamental peak 

voltage V1p to the total DC input voltage, as expressed 

mathematically in Eq. (6). 
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To quantify the harmonic content of the inverter output 

voltage, the Total Harmonic Distortion (THD) is used. THD is 

defined as the ratio of the root mean square (RMS) of all 

harmonic components to the RMS value of the fundamental 

component: V1 is the RMS amplitude of fundamental 

harmonics; Vn are the RMS amplitudes of the higher-order 

harmonics (n=2, 3…). 

A lower THD value indicates better waveform quality and 

reduced harmonic distortion. Selective Harmonic Elimination 

PWM focuses on removing specific low-order harmonics, 

resulting in the concept of Error-based Total Harmonic 

Distortion (THDe), which measures the distortion from the 

eliminated harmonics only. It is expressed as Eq. (7): 
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where, the set of targeted harmonics is eliminated by SHE-

PWM (e.g., 5th, 7th, 11th, and 13th). The THDe thus reflects the 

effectiveness of harmonic elimination in the SHE-PWM 

method. 

These metrics are fundamental in evaluating the 

performance of SHE-PWM schemes and guide the design and 

optimization of switching angles to improve inverter output 

quality. 

The equations governing SHE-PWM are highly nonlinear 

and transcendental, making analytical solutions practically 

unattainable. Moreover, the system typically has multiple 

valid solutions corresponding to local minima, which 

complicates the search for the global optimum. Traditional 

numerical methods often struggle with these challenges, 

frequently failing to converge or becoming trapped in 

suboptimal solutions, particularly at higher modulation indices 

or in multilevel inverter configurations. So the most 

specialized numerical optimization methods are required. 

•Efficiently solve this nonlinear system. 

•Enforce the inequality constraints on the switching angles. 

•Ensure effective elimination of targeted harmonics. 

•Achieve an accurate approximation of the desired 

sinusoidal waveform. 
 

 

3. METHODOLOGY 
 

The part specifies the mathematical model of the SHE-

PWM challenge and discusses the optimization techniques on 

which the solution to the acquired nonlinear transcendental 

equations system is reinforced. Because of the nonlinearities 

and multimodal nature of SHE-PWM systems, the traditional 

numerical schemes like Newton-NR and DE performed poorly 

due to the limitations in convergence robustness and speed in 

high-dimensional and constrained optimization problems. 

This study utilized sophisticated population-based 

metaheuristic algorithms (PSO, GA, and PO) to alleviate these 

predicaments due to their effective global search prowess and 

stability to early convergence issues in complicated search 

space. These frameworks were used to build the MPO 

algorithm, where several adaptive mechanisms were put in 

place that dynamically adjust the exploration or exploitation 

phases, thus improving the convergence speed and improving 

the solution quality. The integrated benchmarking procedure 

was carried out by applying a protocol of a consistent suite of 

23 benchmark functions (F1-F23) in order to estimate 

objectively and to compare the performance measures 

regarding PSO, GA, PO, and MPO. The benchmarking 

provided empirical support for the fact that MPO is superior in 

its ability to navigate sequences in complex, nonlinear, and 

multimodal landscapes. Later, MPO has been meaningfully 

used on the 11-level SHE-PWM system to compute the 

optimal switching angle decision, showing that it is feasible 

and clearly efficient in handling the non-linearity of 

modulation in modern power electronic applications. 
 

3.1 Optimization algorithm 
 

The optimization algorithms that are used in this study are 

described in terms of the basic principles and mathematical 

formulations in this subsection. The classical numerical 

methods as well as the nature-inspired metaheuristic schemes, 

are used in order to address the sophisticated, high-

dimensional, and multimodal optimization topographies. The 

strengths of the correlation are selected to complement each 

other with regard to balancing exploration and exploitation of 

the global and local solutions, and efficiency in converging 

and invulnerability to the candidacy of trapping their options 

in local solutions. The latter section goes further to detail how 

such algorithms would be used to address nonlinear 

transcendental equations that are characteristic within the 

SHE-PWM issue setting and the advantages of addressing the 

problem, including the problematic nonlinearities and 

constraints of this modulation scheme. 
 

3.1.1 Newton-Raphson (NR) method 

The Newton-Raphson (NR) [20] method is a0+ widely used 

iterative technique for solving nonlinear equations. It relies on 

derivative information to converge quadratically near the root. 

The method uses the equation Eq. (8): 
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where, xn+1 is the next approximation of the root, xn is the 

current approximation, 𝑓(𝑥𝑛) is the value of the function at 

𝑥𝑛, and 𝑓’(𝑥𝑛) is the derivative of the function at 𝑥𝑛. 

Newton-Raphson offers quadratic convergence near the 

root if the initial guess is sufficiently close. However, for high-

dimensional, constrained, or highly nonlinear problems, the 

computation of the Jacobian inverse and the sensitivity to 

initial conditions can limit its effectiveness. 

 

3.1.2 Differential Evolution (DE) 

DE [21] is an evolutionary algorithm that operates by 

maintaining a population of candidate solutions and applying 

mutation, crossover, and selection operators. DE works by 

creating new candidate solutions by adding the weighted 

difference between two randomly chosen individuals to a 

third. This algorithm is effective for global optimization, 

especially in continuous and high-dimensional spaces, and it 

does not require derivative information. 

In spite of being applicable in global optimization, DE has 

certain shortcomings. DE can suffer slow convergence, 

especially in high-dimensional variables, and can also 

encounter problems in optimization, with many local optima. 

Also, it can be sensitive to the specific parameters being used 

within the algorithm, e.g., mutation factor and crossover rate. 

On the one hand, incorrect tuning of these parameters may lead 

to a bad convergence or an overwhelming amount of 

computational work. DE also suffers from the bias to 

premature convergence, particularly on multimodal 

optimization topographies with complex and diverse natural 

landscapes, where the variety of the population is not well 

sustained. Moreover, DE might have problems controlling 

exploration/exploitation trade-offs, frequently converging to 

poor solutions of very highly constrained problems. 
 

3.1.3 Genetic Algorithm (GA) 

GA [22] mimics the process of natural selection, using 

operators such as selection, crossover, and mutation to evolve 

a population of candidate solutions towards an optimal 

solution. GA is well-suited for complex, multimodal problems 

but is prone to premature convergence, particularly in high-

dimensional search spaces. 
 

3.1.4 Particle Swarm Optimization (PSO) 

PSO [23] is a population based metaheuristic algorithm that 

is based on the flocking behavior of birds or fish. Every 

particle (the candidate solution) updates its position and 

velocity depending on its experience and that of the nearest 

neighbors. Although PSO is not that bad when it comes to the 

convergence rate, it can fall into local minima, particularly in 

cases with very nonlinear and constrained domains. 
 

3.1.5 Parrot Optimizer (PO) 

PO [24] is a nature-inspired algorithm simulating the social 

aspects of parrots, their communication, and their foraging 

patterns. The combination of PO with exploration and 

exploitation balances it, and this dynamic communication 

simulation in a parrot flock enables PO to operate in 

multimodal search tasks with sufficient complexity that it is 

far more effective than either exploration or exploitation alone. 

Though PO has proven effective in performing all kinds of 

nonlinear optimization, it is not without a flaw. The algorithm 

also has a tendency to converge too early, and this can be seen 

in cases of problems that have a lot of local optima, where it 

might not spend time exploring the search space sufficiently. 

Moreover, PO may be caught in the local optima, especially in 

the case of highly nonlinear or constrained problems, so the 

solutions also may not be optimal. Nevertheless, PO is a 

prospective method of optimization, especially in conjunction 

with other approaches so that the exploration capabilities of 

PO increase. Despite the fact that the PO algorithm is a very 

new technique that mimics the natural acts of the parrots, the 

algorithm has a number of inherent weaknesses. Specifically, 

the algorithm can fail to effectively search a substantial part of 

the search space in high-dimensional and complicated 

objective functions, and hence, it ends up stagnating in local 

optima at an early point of the process. The main cause of such 

restraint is the lack of diversity in the population and 

exploration ability. Moreover, the PO algorithm has the 

tendency of slow convergence. Although the possibility of 

simulating behaviors among parrots, including foraging and 

staying, communicating, and stranger fear, is conceptually 

attractive, resolving a high-dimensional problem such that a 

global optimum is achieved may be quite time-consuming. 

Also, the algorithm has dependable parameters that do not 

have the flexibility to dynamically change according to the 

problem structure. It requires manual parameter adjustment on 

every new optimization problem and makes the algorithm 

more adjustable, up to third-party intervention. The fact that 

the PO algorithm has the 3 major downfalls, which are 

premature convergence, slow convergence, and no use of 

adaptive parameter controls, restricts the practicality of this 

algorithm greatly. 

 
3.1.6 MPO 

The Chaotic-Gaussian-Barycenter Parrot Optimization 

(CGBPO) [25], which is also known as the MPO, is an 

improved metaheuristic, which was developed to plug the 

significant gaps of the PO algorithm. The first limitation of PO 

is that it shows early convergence to local optimums and slow 

convergence rates, as well as the fact that parameters are fixed. 

The MPO is designed to solve those problems, making the 

algorithm have better exploration and, in general, better 

performance. Three new tactics have been combined into 

MPO in order to accomplish this: (1). The use of chaotic maps 

to initialize a population improves diversity early into the 

practice and subsequent exploration of search space. (2). The 

updating of Gaussian distribution offers flexibility and 

adaptiveness to the movements of the parrots that creates a 

better balance between the exploration and exploitation. (3). 

The weighted barycenter (mass center) method takes 

advantage of the aggregate effect of the best performers and 

drives the population closer to the global optimum. In 

combination, the strategies can greatly improve the ability of 

MPO to approach faster and more accurate solutions, 

especially in high-dimensional and complex optimization 

tasks in which these strategies consistently outperform the 

original PO algorithm. 

 
3.1.7 Chaotic logistic map strategy 

The chaotic logistic map is used to model the dynamic 

behavior of a system and is defined by a simple iterative 

equation in which successive values are interdependent. This 

relationship is presented in Eq. (9) [25]. 

 

1 (1 )i i ix a x x+ =   −  (9) 

 
The chaotic logistic map is a dynamic system that exhibits 

randomness and ergodicity, depending on the initial value and 

the control parameter a. When a=4, the system becomes fully 
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chaotic, and even slight differences in the initial value lead to 

significant divergence in subsequent iterations. 

Compared to Tent and Sine maps, the logistic map offers a 

wider chaotic range, higher sensitivity to initial conditions, 

and a more uniform coverage of the search space. 

Therefore, in the MPO algorithm, the logistic map is used 

to determine the initial positions of the parrots and to introduce 

perturbations. This helps prevent entrapment in local minima, 

enhances global search capability, and improves overall 

optimization performance. 

Since individuals are initialized chaotically rather than 

randomly, the initial population becomes diverse, dispersed, 

and well-distributed. This reduces the risk of getting trapped 

in a local minimum. 

 

3.1.8 Chaotic logistic map strategy 

Gaussian mutation introduces random perturbations 

following a normal distribution into the genetic structure of 

individuals, enabling modifications. As a result, new 

individuals are derived from the existing ones. The 

corresponding Gaussian mutation operation is presented in Eq. 

(10) [25]. 

 

1 ( , )ix N  + =  (10) 

 
The N function is used to generate random numbers that 

follow a normal distribution. Here, μ represents the mean, and 

σ denotes the standard deviation of the Gaussian distribution. 

In other words, the majority of the distribution (99.7%) will 

remain within the [LB, UB] range. 
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In Eqs. (11) and (12), lb and ub represent the lower and 

upper bounds of the search space, respectively. 

Thanks to the chaotic logistic map strategy, the search is 

performed in the surrounding area with small steps. It provides 

better solution accuracy in local convergence. Compared to 

Cauchy or non-uniform mutations, it offers a more stable and 

balanced mutation structure. 

 
3.1.9 Barycenter opposition-based learning strategy 

The strategy of opposition-based learning used in the 

current work is barycenter opposition-based learning. During 

the early generations, when the variability of the individuals in 

the population is high, the creation of mutant parrots helps 

explore a wider area of the search space. In subsequent 

generations, despite a reduced number of offspring in the 

population, the mutant parrots are still able to preserve their 

diversity. The barycenter is the following: the values of the n 

parrots are in the j-th dimension (m1j, m2j, …, m3j). N 

individuals are the population. The barycenter of the parrot 

population in the j-th dimension is done as depicted in Eq. (13) 

and the total population barycenter is as Z = (z1, z2, ..., zj). 

 

1 2 ...j j nj
j

x x x
Z

n

+ + +
=  (13) 

 

Barycenter opposition-based mutation: Xi = (xi1, xi2, …, xiD) 

represents the j-th parrot with a D-dimensional solution. If the 

selected mutation dimension is i, the barycenter opposition-

based solution corresponding to the j-th parrot is xop_i = (xop_i1, 

xop_i2, …, xop_iD), which is calculated as Eq. (14): 

 

_ 2op i j ix k Z x=  −  (14) 

 

Table 1. Pseudo-code of MPO [25] 

 
1: Initialization of MPO parameters 

2: Create initial population by means of chaotic strategy 

3: Weigh the suitability of every agent: 

4: doi = 1 to N 

5: Calculate fitness of agent i 

6: End Of 

7: Repeat res=1 to Max_iter do 

8: Find out what is the greatest and the least agent in the population 

9: Do j = 1 to N 

10: St 10: Random integer {1, 2, 3, 4} 

11: When St = 1 then // Foraging behavior 

12: Updating with foraging mechanism 

13: Otherwise in the case St = 2 then // Staying behavior 

14: Position update mechanism using staying mechanism 

15: Or, when (St == 3) then //Communication behavior 

16: Refresh location with communicating device 

17: Else when St == 4 then // Fear of strangers behavior 

18: Reposition on basis of fear mechanism 

19: End If 

20: Do Gaussian mutation to increase exploration 

21: For End 

22: Use Barycenter Opposition-Based Learning: 

23: repeat i = 1 to N times do 

24: Set current solution fitness 

25: Opposition-based Update position 

26: For 

27: End For 

28: Give back optimal solution found 

 

In this case, k is an arbitrary factor of contraction, a value 

chosen at random over a certain range. In the iteration process, 

on every parrot, a mutation dimension is chosen, and the 

mutation outcome is matched with the position of the earlier 

generation, with the superior mutation being retained. 

Opposition-based learning elite opposition-based learning is a 

well-employed method with optimization algorithms. 

Learning with opposition is a good strategy for causing 

diversity in the populations initially, but can only produce the 

opposite individuals on the individual characteristics and 

search space limits, and thus they might not perform well in 

leper conditions. Opposition-based learning Elite-based 

opposition learning, instead, picks elite individuals with high 

fitness to create opposites, and, as a result, the diversity of the 

population and a risk of premature local optimum trapping 

emerge. The learning method used in the barycenter 

opposition strategy with barycenter information of the entire 

population and random contraction adjustment is, however, 

used to investigate a different solution space, which is opposite 

to the existing individuals in the population. This contributes 

to diversification of the population, better prevention of local 

optima, and global solution space exploration in a more 

efficient way. The entire MPO structure is shown in Figure 2 

and Table 1. These present a roadmap of the whole process of 

improvements, which includes the iterative process along with 

the search strategies involved. 
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Figure 2. Flowchart of MPO [25] 

 

Table 2. Comparison of optimization algorithms 

 

Algorithm Type 
Derivative-

Free 

Global 

Search 
Adaptive 

Population-

Based 

Premature 

Convergence 
Exploration Exploitation 

Convergence 

Speed 

NR 

local search 

(derivative-

based) 

no weak no no high weak strong fast 

DE 

population-

based 

metaheuristic 

yes strong no yes moderate strong balanced moderate 

GA 

population-

based 

metaheuristic 

yes strong no yes moderate balanced strong moderate 

PSO 

population-

based 

metaheuristic 

yes strong yes yes moderate strong balanced 
fast (but can 

be local) 

PO 

population-

based nature-

inspired 

yes moderate no yes high weak strong slow 

MPO 

population-

based nature-

inspired 

yes strong yes yes low strong balanced 
moderate to 

fast 

 

Table 2 shows the comparison between the characteristics 

of different optimization algorithms. In this table, NR, DE, 

GA, PSO, PO, and MPO algorithms are compared according 

to such essential features as derivative-freeness, global search 

rates, adaptation, and population-based activity. The table 

presents the advantages and the drawbacks of all the 

algorithms and enables a reader to see what optimization 

problems they could be better suited for. 

 

3.2 Evaluation of algorithm performance on benchmark 

functions 

 

A suite of 23 well-established nonlinear test functions (F1-

F23) was used by researchers in rigorously evaluating the 

performance and stability of the suggested MPO algorithm 

through solid benchmarking tests. Such benchmark functions 

cover a large spectrum of testing optimization landscapes, with 

unimodal, multimodal, and separable as well as non-separable 

optimization problems, thus constituting a strict environment 

to check the convergence rate, the accuracy of the solution, 

and the effectiveness of optimization algorithms. The 

CEC2017 benchmark suite that contains a diverse set of test 

functions, consisting of many classes of functions covering a 

broad range of difficulties, was thoroughly used to test the 

performance of the proposed MPO algorithm. The functions 

that are under consideration are functions with unimodalities, 

simple multimodal, hybrid, composition, and extended 

unimodal functions. The developed algorithm, MPO, had been 

compared with known optimization techniques, including GA, 

PSO, and PO. 

 

3.2.1 Unimodal and simple multimodal functions 

As Table 3 shows, the performance of MPO is always better 

than that of GA, PSO, and PO in the unimodal and simple 
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multimodal functions (F1-F11). The algorithm of the MPO 

regularly delivers minimum, mean, and standard deviation 

values with nearly zero or zero error measurements, implying 

the extreme precision and stability of the algorithm. As an 

example in F1, MPO reached a lowest objective value of 0.00, 

and this is very good when compared with the results of GA 

(8.63E3) and the results of PSO (6.62E2). This demonstrates a 

better convergence behavior and an effective evasion of local 

optima on less complex problem landscapes than MPO has. 

 

Table 3. Test results on CEC2017 (unimodal and simple multi-modal functions) 

 
Function Criteria GA PSO PO MPO 

F1 

std 1.07E+03 2.18E+02 5.09E-38 0.00E+00 

avg 1.01E+04 9.10E+02 1.61E-38 0.00E+00 

min 8.63E+03 6.62E+02 2.20E-75 0.00E+00 

F2 

std 2.44E+00 2.32E+00 5.73E-15 0.00E+00 

avg 3.18E+01 1.42E+01 1.88E-15 0.00E+00 

min 2.84E+01 1.19E+01 1.43E-43 0.00E+00 

F3 

std 2.40E+03 7.75E+02 3.91E-31 0.00E+00 

avg 3.05E+04 3.03E+03 1.84E-31 0.00E+00 

min 1.66E+00 4.93E+00 1.44E-23 0.00E+00 

F4 

std 5.36E+01 1.93E+01 6.33E-24 0.00E+00 

avg 5.16E+01 1.14E+01 1.29E-36 0.00E+00 

min 1.66E+00 4.93E+00 1.44E-23 0.00E+00 

F5 

std 1.61E+06 4.67E+04 6.50E-04 1.17E+00 

avg 1.17E+07 9.11E+04 2.61E-04 1.90E+00 

min 9.11E+06 2.72E+04 2.08E-09 4.21E-01 

F6 

std 1.49E+03 3.55E+02 2.66E-06 3.00E-02 

avg 9.15E+03 7.64E+02 1.55E-06 3.55E-02 

min 7.36E+03 4.28E+02 5.61E-13 4.85E-03 

F7 

std 8.93E-01 1.39E-01 1.23E-05 1.01E-05 

avg 4.81E+00 2.36E-01 1.54E-05 9.16E-06 

min 3.28E+00 7.52E-02 1.04E-06 2.14E-06 

F8 

std 3.81E+02 9.67E+02 1.18E+03 6.46E+02 

avg -9.00E+03 -6.33E+03 -7.60E+03 -7.96E+03 

min -9.77E+03 -7.53E+03 -1.02E+04 -9.41E+03 

F9 

std 7.82E+00 1.75E+01 0.00E+00 0.00E+00 

avg 1.40E+02 7.97E+01 0.00E+00 0.00E+00 

min 1.26E+02 5.55E+01 0.00E+00 0.00E+00 

F10 

std 4.42E-01 9.22E-01 0.00E+00 0.00E+00 

avg 1.50E+01 9.44E+00 8.88E-16 8.85E-16 

min 1.43E+01 8.25E+00 8.88E-16 8.75E-16 

F11 

std 1.13E+01 4.45E+00 0.00E+00 0.00E+00 

avg 8.24E+01 9.36E+00 0.00E+00 0.00E+00 

min 6.36E+01 5.81E+00 0.00E+00 0.00E+00 

3.2.2 Hybrid functions 

The results of the statistical analysis of the hybrid functions 

are given in Table 4. GA, PO algorithm, MPO, and PSO have 

some bad results on hybrid functions, but MPO is always 

better. In particular, in functions F12 to F21, MPO produces 

near-zero or zero error measures of minimum, mean, and 

standard deviation values. In line with that, in function F12, 

perfect performance was shown by MPO with 0.00 values in 

all metrics, which is inexplicably better than GA (6.36101) and 

PSO (5.81). The success of MPO in these functions indicates 

that MPO has a robust capability to converge as well as to 

avoid local minima. Algorithms such as the GA and PSO had 

shown large variance and worse performances in certain 

functions, whereas MPO repeated results many times and 

erred at a much lower percentage. Particularly, on functions 

F13, F14, F15, and others, MPO did not show frequent errors 

and had low values. In summary, the high accuracy of MPO 

on hybrid functions can be regarded as the strength of its local 

search ability and good ability to adapt to the complexity of 

the functions. 

 

Table 4. Test results on CEC2017 (hybrid functions) 

 
Function Criteria GA PSO PO MPO 

F12 

std 2.72E+06 6.57E+00 1.99E-07 1.83E-03 

avg 6.84E+06 1.38E+01 1.73E-07 2.20E-03 

min 1.75E+06 7.05E+00 3.40E-09 6.57E-04 

F13 

std 1.04E+07 2.48E+04 5.82E-07 4.10E-02 

avg 3.39E+07 1.18E+04 3.75E-07 6.13E-02 

min 2.51E+07 1.35E+02 2.63E-10 1.86E-03 

F14 

std 1.62E-06 3.26E+00 3.65E+00 6.42E-15 

avg 9.98E-01 3.36E+00 2.56E+00 9.98E-01 

min 9.98E-01 9.98E-01 9.98E-01 9.98E-01 

F15 

std 8.41E-03 5.05E-04 4.71E-04 1.46E-04 

avg 5.90E-03 6.31E-04 6.76E-04 4.32E-04 

min 8.17E-04 3.07E-04 3.07E-04 3.10E-04 
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F16 

std 1.54E-04 0.00E+00 1.76E-11 1.95E-12 

avg -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 

min -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 

F17 

std 1.23E-04 0.00E+00 6.20E-10 4.57E-12 

avg 3.98E-01 3.98E-01 3.98E-01 3.98E-01 

min 3.98E-01 3.98E-01 3.98E-01 3.98E-01 

F18 

std 1.78E+00 1.48E-16 3.69E-09 1.02E-11 

avg 3.98E+00 3.00E+00 3.00E+00 3.00E+00 

min 3.00E+00 3.00E+00 3.00E+00 3.00E+00 

F19 

std 1.04E-05 9.00E-16 9.62E-06 1.97E-07 

avg -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 

min -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 

F20 

std 5.01E-02 5.74E-02 6.88E-02 8.08E-02 

avg -3.30E+00 -3.29E+00 -3.29E+00 -3.26E+00 

min -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 

F21 

std -3.16E+00 -3.42E+00 2.46E+00 1.23E-05 

avg -4.16E+00 -5.39E+00 -6.58E+00 -1.02E+01 

min -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 

3.2.3 Composition and extended unimodal functions 

Table 5 will show the statistics of the composition and 

unimodal functions of the extended type. In the studied 

scenario, MPO dominates the rest of the four, such as GA, 

PSO, and PO, in both F22 and F23 functions. MPOs got the 

highest possible objective value of -1.04E+01 in every aspect, 

such as minimum, mean, and standard deviation, and the 

evidence of its excellence in precision and robustness 

compared to the other algorithms. In each case of F22 and F23, 

the optimum value of MPO retained its best value of -

1.04E+01 across runs with a very low standard deviation 

(4.56E-05 for F22 and 8.67E-05 for F23); there were also big 

savings, surpassing 24. These values provide a greater degree 

of certainty as to the consistent outcome of MPO. This can be 

compared with GA, PSO, and PO, which had a bit bigger 

variance and a less steady output in various runs. It can be seen 

that MPO is exponentially convergent, that it does not get 

stuck in local minima, and that it performs very well in finding 

optimal or near-optimal solutions of composition and 

extended unimodal functions. The performance of MPO is 

especially outstanding due to its tendency to display high 

accuracy and low variation, unlike other algorithms used to 

carry out these kinds of functions, which makes it the most 

reliable algorithm. The outcomes of the t-test of the MPO 

values against the remainder of the algorithms still show Not 

a Number (NaN), even with the application of a small 

perturbation. This implies that the data would be similar to an 

extent of catastrophic cancellation/precision loss, thereby 

making the test render invaluable results. The value of the 

MPO is too small or near the range of the other algorithms; 

hence, the t-test does not give valid results. The non-

parametric test option (e.g., the Mann-Whitney U test) would 

fit better in this case. 

 

Table 5. Test results on CEC2017 (composition functions and extended unimodal functions) 

 
Function Criteria GA PSO PO MPO 

F22 

std 3.83E+00 3.71E+00 2.80E+00 4.56E-05 

avg -6.78E+00 -7.58E+00 -7.75E+00 -1.04E+01 

min -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 

F23 

std 3.16E+00 3.42E+00 2.46E+00 1.23E-05 

avg -4.16E+00 -5.39E+00 -6.58E+00 -1.02E+01 

min -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 

Based on the results of the Mann-Whitney U test, the MPO 

algorithm does not perform significantly differently from the 

rest of the algorithms (GA, PSO, PO) on most comparisons. 

The majority of the p-values are based on a comparison of the 

functions  F12-F22 = 1.0, which means that the difference 

between MPO and other algorithms is not insignificant. To 

illustrate this, one can use the F19 dataset and compare MPO 

with GA, in which case the p-value that will be shown is 1.0, 

indicating that the difference between the two algorithms 

cannot be considered to be significant. Likewise, when 

comparing MPO and PO in the case of F21, we ended up with 

a p-value of 0.5, which gives us the answer that the difference 

in the variation is not significant, but it is still higher than the 

threshold of 0.05, indicating that the difference was by chance. 

As a final conclusion of the tests, the statistical significance 

between MPO and the other algorithms is generally not 

different, and it is probable that the difference that is observed 

in performance is merely random. This is an indication that the 

high performance of MPO compared to the other algorithms 

could be what has been considered as a difference in algorithm 

and not the randomness or individual characteristics of the 

problem. According to the information provided in Table 5, 

which gives the results of the statistical test of the F22 and F23 

functions of composition and extended unimodal functions, 

the t-test and the Mann-Whitney U test results indicate that the 

U-statistic becomes 0.0 and the corresponding p-value also 

becomes 1.0 where a comparison is attempted between the 

MPO algorithm and the other algorithms (GA, PSO, and PO) 

in the context of these two functions. The above outcome 

shows that there is no significant difference between the 

performance of MPO relative to the rest of the algorithms. A 

p-value of 1.0 indicates that whatever differences we see 

between the performance of the algorithms are probably not 

significant, which is to say not real or intrinsic, but rather due 

to chance variance. 

In conclusion, based on the analysis of the composition and 

extended unimodal functions (F22 and F23) in Table 5, it can 

be concluded that the performance differences between MPO 

and the other algorithms (GA, PSO, and PO) are not 

statistically significant. This indicates that MPO's 
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performance advantage does not represent a meaningful or 

reliable improvement over the other algorithms in these 

specific functions. 

 

 

4. APPLICATION OF OPTIMIZATION ALGORITHMS 

TO SHE AND PWM 

 

This paper uses different optimization algorithms that are 

applied to find the optimal switching angles of SHE and tuning 

the PWM parameters to a minimal harmonic distortion and 

producing high-quality smooth waveforms. Optimization 

algorithms used in this analysis are DE, NR, PSO, GA, PO, 

and MPO. DE and NR have the most effectiveness in the case 

of solution refinement. DE is an evolutionary optimization 

mechanism that is easily applied where a problem solution 

requires fine adjustments with dependencies among variables 

being highly complicated and non-linear. On the contrary, NR 

is a derivative-based optimization technique, which has a fast 

convergence speed and high accuracy in determining optimal 

solutions; this last feature is particularly useful in tasks that 

demand extreme accuracy. Globally, better search capability 

by PSO and GA is well known, and it does not fall in local 

minima and is therefore able to optimize SHE and PWM very 

well. PO and MPO, which offer improved exploration and 

exploitation capabilities, are especially useful in solving high-

dimensional optimization problems that are comprised of 

complex constraints, which is the case of SHE and PWM 

optimization. The difference in the performances of the 

algorithms will also be associated with random variation and 

not the true performance difference. Tables 6 to 11 show the 

switching angles calculated using NR, DE, GA, PSO, PO, and 

MPO algorithms against the modulation index. In Table 6, the 

NR algorithm did not produce valid values for any modulation 

index. The best performance of the NR algorithm was 

observed in the modulation index range of 0.6 to 1.0. In 

contrast, the other algorithms (DE, GA, PSO, PO, and MPO) 

provided valid solutions in the modulation index range of 0.1 

to 1.0.

 

Table 6. Calculated switching angles with NR versus modulation index 

 

M 
Switching Angle (°)  

θ1 θ2 θ3 θ4 θ5 Fitness 

0.1 NaN NaN NaN NaN NaN NaN 

0.2 NaN NaN NaN NaN NaN NaN 

0.3 NaN NaN NaN NaN NaN NaN 

0.4 NaN NaN NaN NaN NaN NaN 

0.5 NaN NaN NaN NaN NaN NaN 

0.6 35.34241 46.95268 58.57986 72.61202 87.83723 7.70E-08 

0.7 3.58075 38.72273 40.59147 79.59416 88.24212 3.16E-08 

0.8 22.34200 39.27860 52.68666 59.31913 70.96458 2.35E-08 

0.9 7.65923 27.57052 40.78902 52.55991 73.03902 3.20E-08 

1.0 7.85969 19.37252 29.65226 47.67984 63.21208 3.94E-08 

 

Table 7. Calculated switching angles with DE versus modulation index 

 

M 
Switching Angle (°)  

θ1 θ2 θ3 θ4 θ5 Fitness 

0.1 66.87745 90.00000 90.00000 90.00000 90.00000 6.80E+01 

0.2 43.40294 86.62569 90.00000 90.00000 90.00000 2.99E+01 

0.3 44.37724 64.93482 89.24181 89.24181 89.24181 1.31E+01 

0.4 39.06932 56.37971 76.07061 90.00000 90.00000 3.24E+00 

0.5 36.71073 49.63060 65.51395 84.28121 89.99996 5.90E-01 

0.6 35.34639 46.95243 58.58000 72.61352 87.83390 2.55E-05 

0.7 3.54680 19.61564 38.92930 88.53521 89.69297 1.87E-04 

0.8 9.70600 33.43350 43.30186 61.18042 83.59375 3.23E-04 

0.9 7.67237 27.57788 40.80034 52.56281 73.02352 6.35E-04 

1.0 7.85728 19.37792 29.64313 47.67738 63.21774 4.97E-05 

 

Table 8. Calculated switching angles with GA versus modulation index 

 

M 
Switching Angle (°)  

θ1 θ2 θ3 θ4 θ5 Fitness 

0.1 73.59140 86.53116 88.77507 88.94033 89.42759 2.45E+02 

0.2 56.43097 83.69524 85.51045 87.79158 89.66544 2.83E+02 

0.3 39.15064 69.98930 88.46293 89.00127 89.08365 4.96E+01 

0.4 48.69936 52.69994 75.00058 87.76345 89.56451 1.38E+02 

0.5 30.73403 43.28971 73.18132 85.88549 89.26121 1.35E+02 

0.6 35.36076 47.04300 58.68608 72.87854 87.86143 3.39E-01 

0.7 34.20937 44.83793 53.81111 65.79321 77.73272 1.26E-01 

0.8 9.72985 32.98099 43.29371 61.21547 83.90587 1.46E-01 

0.9 15.68887 26.03203 45.14029 59.68781 62.45776 1.18E+00 

1.0 8.21512 19.68559 30.03778 48.66304 63.52940 1.08E+00 
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Table 9. Calculated switching angles with PSO versus modulation index 

 

M 
Switching Angle (°)  

θ1 θ2 θ3 θ4 θ5 Fitness 

0.1 66.95172 89.93190 89.99989 89.99989 90.00000 6.87E+01 

0.2 43.36757 86.89266 89.87690 89.88086 90.00000 3.00E+01 

0.3 45.17798 65.48881 86.65664 90.00000 90.00000 1.69E+01 

0.4 38.66593 59.51616 81.87406 81.87407 90.00000 1.16E+02 

0.5 25.17878 49.37123 66.22901 89.75515 90.00000 3.94E+00 

0.6 12.67486 35.09679 58.33990 87.85075 90.00000 3.26E-01 

0.7 35.20547 44.29895 54.16490 65.07726 77.92172 6.52E-01 

0.8 9.70003 33.43707 43.29479 61.18008 83.59806 3.49E-01 

0.9 16.27231 25.95065 44.80686 61.12850 61.12853 3.64E-01 

1.0 7.77741 19.44091 29.46680 47.61562 63.35493 3.53E-02 

 

Table 10. Calculated switching angles with PO versus modulation index 

 

M 
Switching Angle (°)  

θ1 θ2 θ3 θ4 θ5 Fitness 

0.1 66.52601 90.00000 90.00000 90.00000 90.00000 1.49E+01 

0.2 39.95489 88.91996 90.00000 90.00000 90.00000 4.61E+01 

0.3 43.41066 64.70951 88.59417 90.00000 90.00000 2.78E+01 

0.4 38.53115 55.23116 77.39299 90.00000 90.00000 6.95E+00 

0.5 23.79056 49.72707 65.68991 90.00000 90.00000 1.83E+00 

0.6 35.34241 46.95278 58.57993 72.61213 87.83734 2.65E-11 

0.7 3.58063 38.72337 40.59086 79.59423 88.24206 3.31E-09 

0.8 9.31145 25.40075 42.39083 61.36071 88.07622 8.51E-03 

0.9 7.61467 27.48060 40.92180 52.64664 72.92235 4.34E-02 

1.0 7.85978 19.37250 29.65223 47.67999 63.21216 8.24E-04 

 

Table 11. Calculated switching angles with MPO versus modulation index 
 

M 
Switching Angle (°)  

θ1 θ2 θ3 θ4 θ5 Fitness 

0.1 66.87745 90.00000 90.00000 90.00000 90.00000 6.79E+01 

0.2 43.34711 86.66410 90.00000 90.00000 90.00000 2.99E+01 

0.3 44.56114 64.68998 88.19084 89.62763 89.99945 1.33E+01 

0.4 39.06837 56.39925 76.05447 90.00000 90.00000 3.24E+00 

0.5 36.71314 49.63082 65.51593 84.27774 90.00000 5.97E-01 

0.6 35.34205 46.95254 58.58022 72.61191 87.83768 7.00E-07 

0.7 19.62499 38.94352 56.46641 63.54021 88.21087 8.91E-06 

0.8 22.26677 39.18881 52.68885 59.27126 70.93771 3.14E-07 

0.9 7.66560 27.56387 40.77631 52.57904 73.03351 8.37E-04 

1.0 7.86377 19.39269 29.63815 47.68469 63.20828 7.49E-30 

 

Based on the data from Tables 12 to 17, the switching angles 

and THD minimization performance of different algorithms 

(NR, DE, GA, PSO, PO, and MPO) are compared against 

modulation indices. The NR algorithm failed to provide valid 

results for low modulation indices (M = 0.1, 0.2, 0.3, 0.4), 

often yielding "NaN" values. However, from M = 0.6 onwards, 

NR provided valid results, showing the best performance 

between modulation indices of 0.6 and 1.0. Other algorithms 

(DE, GA, PSO, PO, MPO) were able to offer a broader 

solution range across the 0.1 to 1.0 modulation index range. 

The DE algorithm was particularly effective at low and 

medium modulation indices, while the GA algorithm 

performed better at higher modulation indices. The PSO 

algorithm showed success in lower modulation index ranges, 

whereas the PO algorithm generally provided more stable 

results. The MPO algorithm delivered high accuracy across all 

modulation indices but showed some anomalies at M = 0.9. In 

conclusion, each algorithm exhibited different performances 

at specific modulation indices; the choice of the most suitable 

algorithm depends on the system's requirements.

 

Table 12. NR algorithm for switching angles and THD minimization at various modulation indices 

 
M Vref (rms) V1p (rms) Error (%) THD (%) THDE (%) h5 h7 h11 h13 

0.1 Na N Na N Na N Na N Na N Na N Na N Na N Na N 

0.2 Na N Na N Na N Na N Na N Na N Na N Na N Na N 

0.3 Na N Na N Na N Na N Na N Na N Na N Na N Na N 

0.4 Na N Na N Na N Na N Na N Na N Na N Na N Na N 

0.5 Na N Na N Na N Na N Na N Na N Na N Na N Na N 

0.6 63.64 63.44 3.14E-03 6.84 0.04 0.01 0.01 0.02 0.02 

0.7 74.25 73.96 3.91E-03 7.92 0.08 0.02 0.05 0.04 0.02 

0.8 84.85 84.5 4.12E-03 6.72 0.03 0.01 0.02 0.01 0.01 

0.9 95.46 95.08 3.98E-03 6.34 0.04 0.02 0.03 0.01 0.03 

1.0 106.07 105.6 4.43E-03 5.03 0.04 0.01 0.01 0.03 0.02 
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Table 13. DE algorithm for switching angles and THD minimization at various modulation indices 

 
M VREF (rms) V1p (rms) Error (%) THD (%) THDE (%) h5 h7 h11 h13 

0.1 10.61 10.59 1.89E-03 59.38 55.11 46.64 11.71 21.98 10.70 

0.2 21.21 21.19 9.43E-04 27.95 18.18 12.72 2.68 12.56 1.98 

0.3 31.82 31.72 3.14E-03 21.10 8.09 4.68 3.60 0.48 5.51 

0.4 42.43 42.30 3.06E-03 12.84 3.15 2.37 1.06 1.69 0.57 

0.5 53.03 52.87 3.02E-03 9.07 1.09 0.47 0.34 0.81 0.44 

0.6 63.64 63.44 3.14E-03 6.84 0.04 0.01 0.01 0.02 0.02 

0.7 74.25 73.97 3.77E-03 8.21 0.03 0.02 0.01 0.00 0.01 

0.8 84.85 84.53 3.77E-03 5.64 0.04 0.00 0.03 0.01 0.01 

0.9 95.46 95.05 4.29E-03 6.34 0.04 0.00 0.03 0.01 0.00 

1.0 106.07 105.6 4.43E-03 5.03 0.04 0.01 0.01 0.03 0.02 

 

Table 14. GA algorithm for switching angles and THD minimization at various modulation indices 

 
M VREF (rms) V1p (rms) Error (%) THD (%) THDE (%) h5 h7 h11 h13 

0.1 10.61 10.57 3.77E-03 123.90 103.96 78.46 60.74 26.81 15.55 

0.2 21.21 21.14 3.30E-03 64.86 56.18 34.17 12.91 26.96 33.10 

0.3 31.82 31.74 2.51E-03 25.45 15.18 5.62 12.06 2.38 6.92 

0.4 42.43 42.27 3.77E-03 21.87 18.73 8.14 5.92 14.65 5.89 

0.5 53.03 52.79 4.53E-03 16.62 13.10 3.00 12.66 1.27 0.76 

0.6 63.64 63.27 5.81E-03 6.78 0.22 0.10 0.12 0.10 0.11 

0.7 74.25 73.93 4.31E-03 5.60 0.35 0.09 0.19 0.19 0.21 

0.8 84.85 84.46 4.60E-03 5.80 0.23 0.09 0.10 0.09 0.16 

0.9 95.46 95.07 4.09E-03 6.37 0.73 0.01 0.54 0.39 0.29 

1.0 106.07 105.00 1.01E-02 5.31 0.28 0.15 0.11 0.02 0.21 

 

Table 15. PSO algorithm for switching angles and THD minimization at various modulation indices 

 
M VREF (rms) V1p (rms) Error (%) THD (%) THDE (%) h5 h7 h11 h13 

0.1 10.61 10.61 0.00E+00 59.50 55.21 46.50 12.09 21.65 16.47 

0.2 21.21 21.16 2.36E-03 28.75 18.27 13.02 2.76 12.33 2.12 

0.3 31.82 31.74 2.51E-03 20.47 9.16 7.44 2.10 2.54 4.19 

0.4 42.43 42.28 3.54E-03 21.18 17.97 10.08 10.18 6.72 8.50 

0.5 53.03 52.86 3.21E-03 9.52 2.66 0.86 2.15 0.27 1.27 

0.6 63.64 63.41 3.61E-03 6.87 0.63 0.07 0.09 0.19 0.55 

0.7 74.25 73.97 3.77E-03 5.99 0.79 0.29 0.51 0.06 0.53 

0.8 84.85 84.53 3.77E-03 5.81 0.23 0.06 0.13 0.06 0.15 

0.9 95.46 95.07 4.09E-03 7.12 0.47 0.25 0.15 0.14 0.33 

1.0 106.07 105.6 4.43E-03 5.02 0.12 0.05 0.10 0.05 0.03 

 

Table 16. PO algorithm for switching angles and THD minimization at various modulation indices 

 
M VREF (rms) V1p (rms) Error (%) THD (%) THDE (%) h5 h7 h11 h13 

0.1 10.61 10.72 -1.04E-02 57.75 53.38 44.72 9.79 22.36 15.91 

0.2 21.21 21.17 1.89E-03 27.03 22.57 21.54 0.55 0.28 6.73 

0.3 31.82 31.72 3.14E-03 18.19 8.85 2.13 4.14 1.98 7.27 

0.4 42.43 42.29 3.30E-03 12.82 4.37 0.30 0.99 3.48 2.43 

0.5 53.03 53.1 1.63E-01 6.89 1.61 0.01 1.19 0.65 0.87 

0.6 63.64 63.31 5.19E-03 6.84 0.04 0.01 0.01 0.02 0.02 

0.7 74.25 73.92 4.44E-03 7.92 0.08 0.02 0.05 0.04 0.02 

0.8 84.85 84.52 3.89E-03 6.80 0.08 0.04 0.05 0.01 0.03 

0.9 95.46 134.5 -4.09E-01 6.31 0.15 0.10 0.10 0.01 0.02 

1.0 106.07 105.6 4.43E-03 5.03 0.04 0.01 0.01 0.03 0.02 

 

Table 17. MPO algorithm for switching angles and THD minimization at various modulation indices 

 
M VREF (rms) V1p (rms) Error (%) THD (%) THDE (%) h5 h7 h11 h13 

0.1 10.61 10.57 3.77E-03 59.35 55.17 46.09 11.48 22.31 17.01 

0.2 21.21 21.16 2.36E-03 27.64 18.16 13.13 2.72 12.19 2.19 

0.3 31.82 31.75 2.20E-03 20.06 8.08 4.52 4.24 0.65 5.15 

0.4 42.43 42.27 3.77E-03 12.86 3.03 2.30 0.99 1.62 0.50 

0.5 53.03 52.86 3.21E-03 9.04 1.06 0.50 0.31 0.79 0.41 

0.6 63.64 63.44 3.14E-03 6.84 0.04 0.01 0.01 0.02 0.02 

0.7 74.25 73.98 3.64E-03 5.56 0.05 0.02 0.02 0.03 0.01 

0.8 84.85 84.53 3.77E-03 5.64 0.04 0.00 0.03 0.01 0.01 

0.9 95.46 95.07 4.09E-03 6.34 0.05 0.02 1.00 0.01 0.01 

1.0 106.07 105.6 4.43E-03 5.02 0.04 0.02 0.02 0.01 0.01 
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Figure 3. Convergence curves of the proposed and compared functions on CEC2017 

 

Table 18. Algorithm results for modulation index = 1 

 

Algorithm 
Switching Angle (°)  

θ1 θ2 θ3 θ4 θ5 Fitness 

NR 7.85969 19.37252 29.65226 47.67984 63.21208 3.94E-08 

DE 7.85728 19.37792 29.64313 47.67738 63.21774 4.97E-05 

GA 8.21512 19.68559 30.03778 48.66304 63.52940 1.08E+00 

PSO 7.77741 19.44091 29.46680 47.61562 63.35493 3.53E-02 

PO 7.85978 19.37250 29.65223 47.67999 63.21216 8.24E-04 

MPO 7.86377 19.39269 29.63815 47.68469 63.20828 7.49E-30 

 

Table 19. Simulation results for switching angles and THD minimization at various modulation indices using different 

algorithms (for M=1.0) 

 
Algorithm V1p (rms) Error (%) THD (%) THDe (%) h5 h7 h11 h13 

NR 105.6 4.43E-03 5.03 0.04 0.01 0.01 0.03 0.02 

DE 105.6 4.43E-03 5.03 0.04 0.01 0.01 0.03 0.02 

GA 105.0 1.01E-02 5.31 0.28 0.15 0.11 0.02 0.21 

PSO 105.6 4.43E-03 5.02 0.12 0.05 0.10 0.05 0.03 

PO 105.6 4.43E-03 5.03 0.04 0.01 0.01 0.03 0.02 

MPO 105.6 4.43E-03 5.02 0.04 0.02 0.02 0.01 0.01 

 

Figure 3 illustrates the convergence curves of the proposed 

and compared functions on CEC2017, highlighting the relative 

performance of each function in terms of convergence speed 

and stability. The GA, PSO, PO, and MPO algorithms were 

compared in this context. 

Table 18 presents the switching angles and corresponding 

fitness function values calculated by all algorithms for a given 

modulation index. As observed, the MPO algorithm achieved 

the best performance, delivering the lowest fitness value. The 

PO algorithm followed closely, achieving the second-best 

performance. In contrast, the GA algorithm yielded the least 

favorable results, demonstrating the highest fitness value 

among the tested algorithms. This analysis indicates that MPO 

is the most effective algorithm for minimizing the fitness 

function, while PO also performs well. On the other hand, GA 

exhibits less efficiency in comparison to the other methods 

tested. 

The values provided in Table 18 have been applied to the 

inverter in the MATLAB Simulink environment, and the 

simulation results are presented in Table 19. 

In Table 19, the performance of different optimization 

algorithms—NR, DE, GA, PSO, PO, and MPO—is compared 

in terms of several key metrics: V1p(rms), error percentage, 

THD, THDe, and the contributions of specific harmonics (h5, 

h7, h11, h13). 

Based on the results, the NR, DE, PO, and MPO algorithms 

perform similarly in terms of output voltage, error, THD, and 

harmonic components. GA shows a slightly higher error and 

THD, suggesting it performs less efficiently than the other 

algorithms in minimizing these parameters. However, all 
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algorithms exhibit reasonable results, with MPO being 

particularly effective in minimizing harmonic distortion while 

maintaining satisfactory performance across all parameters. 

 

 
 

Figure 4. Convergence graph for a modulation index of 1 

  

Based on the convergence curves in Figure 4, we can 

observe that MPO and PO exhibit the fastest convergence, 

reaching near-zero values in fewer iterations, indicating their 

efficiency in quickly finding optimal or near-optimal 

solutions. Conversely, NR exhibits a more non-linear decline, 

hence taking an extended period to reach smaller convergence 

values, and this implies that it can be slower in arriving at an 

optimal solution. Although it is effective, DE and GA show 

slower convergence than MPO and PO and display observable 

fluctuations in each iteration. The convergent speed of PSO is 

slow compared to MPO and PO, though it will finally arrive at 

a similar outcome. The numbers indicate that MPO and PO are 

most appropriate to those problems where high-speed 

convergence is more relevant, and at the same time, DE, GA, 

and PSO might be preferred to those optimization problems 

that have a complex solution space and where it may be 

necessary to look further in the solution space. In general, 

MPO and PO provide highly efficient and faster convergence, 

so they are most suitable when it comes to time-critical 

optimization objectives. Table 20 contains the details about the 

number of functions called and the computation times of the 

diverse optimization algorithms (NR, DE, GA, PSO, PO, and 

MPO), five times with M=1.0. NR supports the least number 

of functions with an average of 3.60E-04; however, it can only 

be applied in a very specific manner. DE and GA involve more 

calls to functions with means of 1.78E-01 and 2.24E-01, 

respectively, and these values are more spread across runs. 

PSO is more efficient with function calls, with the mean being 

4.99E-02, followed by PO, which also seems to be very much 

comparable to PSO, with a mean of 3.97E-02. MPO uses 

1.58E-01 calls to functions, and in its performance, it is steady 

but not very efficient compared to PSO and PO. Generally, 

PSO and PO present the optimal level of stability and 

efficiency to carry out real-time tasks in optimization. 

 

Table 20. The number of function calls to reach the optimum value and computation time (for M=1.0) 

 

Algorithm 
Run Number 

AVG 
1 2 3 4 5 

NR 1.00E-04 7.00E-04 7.00E-04 1.00E-04 2.00E-04 3.60E-04 

DE 1.84E-01 1.63E-01 1.70E-01 1.74E-01 1.97E-01 1.78E-01 

GA 1.81E-01 2.13E-01 2.53E-01 2.30E-01 2.42E-01 2.24E-01 

PSO 7.54E-02 5.18E-02 3.93E-02 4.43E-02 3.89E-02 4.99E-02 

PO 4.76E-02 4.10E-02 3.71E-02 2.58E-02 4.69E-02 3.97E-02 

MPO 2.01E-01 1.52E-01 1.57E-01 1.27E-01 1.55E-01 1.58E-01 

 

 

5. CONCLUSIONS 

 

In this study, the performance of various optimization 

algorithms—NR, DE, GA, PSO, PO, and MPO—was 

evaluated for switching angle calculation and THD 

minimization at different modulation indices. The results, as 

presented in Tables 8-13, indicate notable differences in the 

performance of these algorithms. NR failed to deliver valid 

results for lower modulation indices (M = 0.1, 0.2, 0.3, and 

0.4), with "NaN" values observed, but performed reasonably 

well between M = 0.6 and M = 1.0. In contrast, other 

algorithms, such as DE, GA, PSO, PO, and MPO, provided 

valid results across the entire range of modulation indices (M 

= 0.1 to 1.0). While DE and PSO excelled at lower modulation 

indices, GA performed best at higher M values. PO and MPO 

provided stable and reliable results across all modulation 

indices. 

Subsequent critique, especially on Table 19, showed that 

MPO was the best-performing algorithm with regard to both 

the calculation of the switching angle and the reduction of 

THD, as well as having the smallest THD value and being 

close to the correct value calculation results in switching 

angles. Comparatively, the lowest performance was seen in 

GA, which recorded maximum errors and THD, especially at 

lower modulation indices. The harmonic contributions were 

also minimal in all indices of modulation in the case of MPO, 

meaning that the harmonic deviation was less when compared 

to GA, which also presented large harmonic deviations. The 

main value added of this research is the illustration of how the 

optimization algorithm that would suit SwA calculation and 

THD minimization is the MPO. It is also able to produce the 

lowest THD and the best switching angle precision. The 

resilient and consistent performance of MPO with iterations of 

modulation indices under consideration does not report failure 

even in some other algorithms, especially GA, hence 

becoming the most optimal algorithm to apply in switching 

angle computation and minimizing THD. The outstanding 

performance received by MPO is explained by the special 

structure and built-in characteristics. In contrast to classical 

optimization approaches, MPO includes a strong search 

scheme that is able to respond to the problem space effectively. 

It converges with fewer steps and correctly in high-

dimensional/difficult tasks because it does not get caught up 

in local minima. MPO shows stable convergence properties 

through all modulation indices and is extremely convenient in 

situations with complex optimization because, as is the case 

with THD, the solution space is nonlinear and multimodal. 

The feasibility of the inverter design is very important in 
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real-time applications, as minimizing THD and the exact 

determination of switching angles are essential. The capability 

of MPO to reduce THD and precisely calculate switching 

angles would increase the efficiency and reliability of inverter 

systems. A low THD culminates in better power quality and 

minimized system losses, leading to optimal performance of 

the system. Also, the modulation flexibility of MPO is suitable 

in many operating scenarios, as it can be utilized under diverse 

modulation indices. MPO incorporated in real-time or 

embedded inverter systems can add tremendously high levels 

of performance to the reliability of such systems so that power 

converters perform to their best. To apply to such systems, 

MPO can be optimized further to decrease the time of 

calculations. To improve the real-time performance of MPO, 

hardware accelerators such as an FPGA or GPU may be used. 

The next step is to look at hybrid models that would hybridize 

MPO and machine learning algorithms in order to predict 

switching angles dynamically, depending on the operating 

conditions, in order to augment the performance of inverter 

systems in industrial settings. 
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