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This study presents a hybrid Response Surface Methodology (RSM) and Particle 

Swarm Optimization (PSO) framework to optimize hard turning of SKD11 steel under 

Minimum Quantity Lubrication (MQL) using a novel Al₂O₃–SiO₂ hybrid nanofluid in 

canola oil. Conducted with a CBN insert, experiments evaluated surface roughness (Ra) 

and material removal rate (MRR) across cutting speeds (60–100 m/min), feed rates 

(0.10–0.15 mm/rev), depths of cut (0.2–0.6 mm), and nanoparticle concentrations 

(Al₂O₃: 0–2 wt.%, SiO₂: 0–1 wt.%). A predictive RSM model (R² = 99.84%, p < 0.05) 

was developed for Ra. Single-objective PSO optimization yielded a minimum Ra of 

0.5443 µm. Multi-objective optimization achieved a trade-off solution with Ra = 0.584 

µm and MRR = 5230 mm³/min, demonstrating the balance between surface quality and 

productivity. These results confirm the potential of hybrid nanofluid-assisted MQL 

combined with a hybrid RSM–PSO optimization algorithm in enhancing machining 

performance and supporting sustainable manufacturing practices in die and mold 

applications. 
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1. INTRODUCTION

Hard turning of heat-treated steels has emerged as a cost-

effective alternative to grinding for producing high-quality 

components with tight dimensional tolerances and superior 

surface finishes. SKD11 steel, a high-carbon, high-chromium 

cold work tool steel, is widely used in the mold and die 

industry due to its excellent hardness and wear resistance after 

heat treatment [1]. However, machining such hardened 

materials (≥ 55 Rockwell Hardness, Scale C (HRC)) remains 

challenging due to elevated cutting forces, rapid tool wear, and 

the risk of thermal damage to both tool and workpiece surfaces 

[2, 3]. 

To overcome these issues, Minimum Quantity Lubrication 

(MQL) has gained attention as an eco-friendly and efficient 

cooling-lubrication technique [4, 5]. The integration of 

nanoparticles into MQL fluids significantly enhances the 

lubrication and cooling properties by improving heat 

dissipation and reducing friction at the tool–chip interface [6, 

7]. This method not only improves surface quality and tool life 

but also aligns with green manufacturing initiatives [8]. 

Recent studies have explored various strategies to improve 

the machinability of hardened steels under MQL conditions 

using nanofluids. Nanoparticles such as Al₂O₃, SiO₂, CuO, and 

TiO₂ have been reported to significantly reduce surface 

roughness (Ra) and cutting temperature while enhancing tool 

life and chip morphology [9-11]. Among them, Al₂O₃ is 

known for its high thermal conductivity [12, 13], while SiO₂ 

offers excellent dispersion stability and tribological behavior 

in the cutting zone [14, 15]. 

Building on these individual benefits, recent research has 

focused on hybrid nanofluids, which combine two or more 

nanoparticle types to achieve synergistic improvements in 

lubrication and heat dissipation. Kuntoglu [16] provided a 

comprehensive review on the application of hybrid nanofluids 

in machining, highlighting their superior performance in 

cutting temperature control, tool wear reduction, and surface 

finish enhancement. Experimental studies have confirmed 

these advantages in practice. For example, Merga et al. [17] 

reported significant improvements in Ra and tool life when 

turning AISI 4140 steel using an Al₂O₃–CuO nanofluid under 

MQL conditions. Likewise, Safiei et al. [18] demonstrated that 

a tri-hybrid nanofluid composed of SiO₂, Al₂O₃, and ZrO₂ 

effectively reduced Ra and cutting temperature in the end 

milling of aluminum alloys. 

In grinding applications, Li [19] showed that an Al₂O₃/SiC 

hybrid nanofluid outperformed conventional coolants in 

achieving better surface integrity. Specifically for the Al₂O₃–

SiO₂ combination, Salameh et al. [20] applied fuzzy modeling 

and Particle Swarm Optimization (PSO) to optimize its 
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thermophysical properties, indicating its potential for high-

performance machining environments. These findings 

collectively support the viability of hybrid nanofluids—

particularly those combining Al₂O₃ and SiO₂ - for enhancing 

MQL-assisted machining operations. The Al₂O₃–SiO₂ hybrid 

was chosen due to the complementary properties of the two 

nanoparticles. Al₂O₃ offers high thermal conductivity, which 

enhances heat dissipation at the tool–chip interface, while SiO₂ 

provides excellent dispersion stability and tribological 

behavior, acting as a solid lubricant to reduce friction. This 

combination enables synergistic effects that improve both 

thermal control and surface finish. 

Despite growing interest in hybrid nanofluids, there is a 

clear lack of research applying dual-nanoparticle MQL 

(particularly Al₂O₃–SiO₂) in hard turning of high-hardness 

steels (≥ 55 HRC). Moreover, most studies focus on single-

response optimization, whereas few have explored integrated 

optimization of both Ra and MRR, which is essential for 

balancing quality and productivity in industrial machining. 

While previous studies have demonstrated the benefits of 

hybrid nanofluids in various machining processes, the 

integration of dual-nanoparticle systems such as Al₂O₃ and 

SiO₂ in hard turning of high-hardness tool steels under MQL 

conditions remains limited. Moreover, most current research 

has mainly focused on assessing surface roughness or certain 

other machining criteria individually, without integrating both 

quality and efficiency objectives into a unified optimization 

framework. 

Additionally, although Response Surface Methodology 

(RSM) has been widely employed to model the influence of 

cutting parameters, it is often constrained in global search 

capabilities, especially in complex or multi-objective 

optimization scenarios. To address this, hybrid RSM–PSO 

frameworks have been successfully applied in various 

machining contexts. For instance, Gupta et al. [21] combined 

RSM and PSO to optimize surface roughness and tool wear in 

MQL turning of titanium alloys. Malghan et al. [22] applied 

this hybrid approach for optimizing milling of aluminum 

matrix composites, while Nguyen et al. [23] compared RSM–

DA and PSO–TOPSIS methods in optimizing MQL turning of 

9XC steel. These studies highlight the effectiveness of RSM–

PSO combinations in solving nonlinear and multi-response 

machining problems. 

Building upon this foundation, the present study proposes a 

hybrid RSM–PSO optimization approach to enhance the 

performance of nanofluid-assisted hard turning of SKD11 

steel. Al₂O₃ and SiO₂ nanoparticles are dispersed in canola oil 

to formulate an eco-friendly hybrid nanofluid used under 

MQL conditions. The main objectives are: to develop a 

predictive model for surface roughness using RSM based on 

experimental data; to optimize the machining parameters for 

minimum Ra using PSO; and to perform multi-objective 

optimization of both Ra and MRR to achieve a balance 

between surface quality and material removal efficiency. This 

study advances sustainable and high-performance machining 

by integrating a hybrid optimization algorithm based on RSM 

and PSO with environmentally friendly MQL techniques. 

To systematically achieve these objectives, a research 

framework has been developed, as illustrated in Figure 1. The 

study begins with the description of the experimental setup and 

the preparation of the hybrid nanofluids. This is followed by 

the development of a predictive RSM model and the 

application of PSO for optimization. Finally, the results are 

discussed, and conclusions are drawn along with suggestions 

for future work. 

Figure 1. Research framework of the present study 

2. EXPERIMENTAL DETAILS

2.1 Workpiece material 

The workpiece material used in this study was SKD11 tool 

steel, which was supplied in a pre-hardened condition by a 

certified manufacturer. No additional heat treatment was 

applied. The hardness of the material was verified using a 

Mitutoyo Rockwell hardness tester (Model: HR-521), yielding 

an average value of 55 ± 2 HRC, measured at three different 

locations. 

The elemental composition of the SKD11 steel is 

summarized in Table 1 to ensure reproducibility. The 

cylindrical workpieces had a diameter of 40 mm and a length 

of 200 mm. During machining, each workpiece was securely 

clamped using a three-jaw chuck on a CNC lathe to ensure 

stability and minimize vibration. 

2.2 Cutting tool and machine setup 

Hard turning experiments were performed on an EMCO 

Maxxturn 45 CNC lathe as shown in Figure 2. A CBN insert 

with a rhombic geometry (vertex angle: 35°, insert size: 16 

mm, and nose radius: 0.4 mm) was used. The tool was rigidly 

mounted to minimize vibrations during machining. 

Table 1. Chemical composition of SKD 11 

C Si Mn Ni Cr Mo W V Cu P S 

1.4 - 1.6 0.4 0.6 0.5 11.0 -13.0 0.8 -1.2 0.2 - 0.5 ≤ 0.25 ≤ 0.25 ≤ 0.03 ≤ 0.03 
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Figure 2. Experimental setup for hard turning 

2.3 Nanofluid preparation and MQL conditions 

Al₂O₃ nanoparticles (average size: 20 nm; purity: 99.9%) 

and SiO₂ nanoparticles (average size: 100 nm; purity: 99.5%) 

were purchased from Zhuoer Chemistry Co., Ltd. (China), a 

commercial supplier of laboratory-grade nanomaterials. 

The nanoparticles were dispersed into canola oil without the 

use of surfactants to avoid altering the tribological behavior of 

the lubricant. The nanofluids were prepared using magnetic 

stirring for 3 hours, followed by ultrasonication at 40 kHz for 

30 minutes to ensure homogeneous dispersion and minimize 

agglomeration. The nanofluids were freshly prepared before 

each set of machining experiments to ensure stability 

throughout the process. 

During machining, the nanofluid was applied using an MQL 

system equipped with a Noga precision nozzle. The nozzle 

was positioned at an angle of 45° relative to the cutting edge, 

with a distance of 20 mm from the tool–workpiece interface. 

The system was set to deliver the nanofluid mist at an air 

pressure of 4 bar and a flow rate of 50 mL/h, ensuring 

consistent lubrication and cooling during all cutting 

operations. 

2.4 Experimental design 

A Box-Behnken Design (BBD) was employed to 

systematically plan the experiments, enabling the evaluation 

of both linear, quadratic, and interaction effects of input 

parameters with a relatively small number of experimental 

runs. This design is particularly effective for optimizing 

responses in machining processes where extreme factor levels 

may cause instability or tool failure. 

The primary input parameters considered in this study were 

cutting speed (Vc: 60–100 m/min), feed rate (f: 0.10–0.15 

mm/rev), depth of cut (ap: 0.2–0.6 mm), concentration of 

Al₂O₃ nanoparticles (A: 0–2 wt.%), and concentration of SiO₂ 

nanoparticles (B: 0–1 wt.%). The selection of parameter 

ranges was based on the recommendations from the cutting 

tool manufacturer to ensure machining stability and tool life, 

relevant findings from previous studies on nanofluid-assisted 

hard turning, and the authors' prior research experience in 

machining high-hardness materials under MQL conditions. 

A total of 46 experimental runs were conducted, including 

center points to estimate pure error and enhance the robustness 

of the RSM models. Surface roughness and material removal 

rate were selected as the output responses for analysis and 

optimization. 

Although both Ra and MRR were selected as output 

responses for optimization, only Ra was modeled using RSM 

due to its complex dependency on process interactions. In 

contrast, MRR was calculated directly using a deterministic 

formula based on cutting parameters. 

To minimize the effects of uncontrolled variation such as 

tool wear progression and ambient changes, the experimental 

run order was randomized. 

2.5 Surface roughness measurement 

Surface roughness was measured using a Mitutoyo SJ-401 

surface profilometer in accordance with ISO 4287 standards. 

The cut-off length was set to 0.8 mm, and the evaluation length 

was 4 mm. The traverse speed of the stylus during 

measurement was set to 0.5 mm/s, as recommended by the 

manufacturer for general surface finish inspection. 

The profilometer offers a vertical resolution of 0.01 μm, 

enabling precise detection of fine surface irregularities. The 

device was calibrated before the experiments using a standard 

calibration block provided by Mitutoyo to ensure 

measurement accuracy. 

For each machined surface, Ra measurements were taken at 

three different locations, and the average value was used for 

analysis to account for surface variability and minimize 

random errors. 

3. RESULTS AND DISCUSSION

This section presents and discusses the results obtained 

from the hard turning experiments of SKD11 steel using 

hybrid Al₂O₃–SiO₂ nanofluids under MQL conditions. The 

experimental data were analyzed using RSM to develop 

regression models for surface roughness, followed by 

optimization using PSO. The effects of input parameters on 

machining performance and the optimal conditions for 

improving surface quality and productivity are discussed. 

The complete set of experimental results is summarized in 

Table 2. Ra values ranged from 0.60 µm to 1.10 µm across the 

experiments. The lowest Ra of 0.60 µm was observed in Run 
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6 under a cutting speed of 100 m/min, feed rate of 0.1 mm/rev, 

depth of cut of 0.4 mm, with 2 wt.% Al₂O₃ and 0.5 wt.% SiO₂ 

concentrations. Conversely, the highest Ra value of 1.10 µm 

was recorded in Run 38 under a cutting speed of 80 m/min, 

feed rate of 0.15 mm/rev, and a depth of cut of 0.6 mm without 

nanoparticle addition. 

Regarding material removal rate, values varied between 

1200 mm³/min and 9000 mm³/min. The maximum MRR of 

9000 mm³/min was achieved in Run 32 under high cutting 

speed and feed conditions, while the minimum MRR of 1200 

mm³/min was obtained in Run 25 under lower cutting 

parameters. These variations highlight the strong influence of 

cutting conditions and nanoparticle concentrations on 

machining performance, which will be further analyzed in the 

following sections. 

3.1 RSM modeling results 

RSM was employed to develop a predictive model for Ra as 

a function of the cutting parameters and nanoparticle 

concentrations. The analysis of variance (ANOVA) results for 

Ra are summarized in Table 3. 

The ANOVA results indicate that the developed quadratic 

model is statistically significant at a 95% confidence level, 

with a p-value less than 0.05. The model exhibits a high 

coefficient of determination as shown in Table 4, with R² = 

99.84%, adjusted R² = 99.72%, and predicted R² = 99.63%, 

demonstrating excellent agreement between the experimental 

and predicted values. The relatively low standard deviation (S 

= 0.0063 µm) further supports the precision of the model. 

Table 2. Experimental results for Ra and MRR 

Run A (%wt) B (%wt) Vc (m/min) F (mm/rev) ap (mm) Ra (µm) MRR (mm³/min) 

1 0 0.5 60 0.1 0.4 0.8 2400 

2 0 0.5 100 0.1 0.4 0.74 4000 

3 0 0.5 60 0.15 0.4 1.04 3600 

4 0 0.5 100 0.15 0.4 0.98 6000 

5 2 0.5 60 0.1 0.4 0.66 2400 

6 2 0.5 100 0.1 0.4 0.6 4000 

7 2 0.5 60 0.15 0.4 0.9 3600 

8 2 0.5 100 0.15 0.4 0.84 6000 

9 1 0 80 0.1 0.2 0.7 1600 

10 1 0 80 0.1 0.6 0.76 4800 

11 1 0 80 0.15 0.2 0.94 2400 

12 1 0 80 0.15 0.6 1 7200 

13 1 1 80 0.1 0.2 0.68 1600 

14 1 1 80 0.1 0.6 0.74 4800 

15 1 1 80 0.15 0.2 0.92 2400 

16 1 1 80 0.15 0.6 0.98 7200 

17 0 0 80 0.125 0.2 0.88 2000 

18 0 0 80 0.125 0.6 0.94 6000 

19 2 0 80 0.125 0.2 0.74 2000 

20 2 0 80 0.125 0.6 0.8 6000 

21 0 1 80 0.125 0.2 0.86 2000 

22 0 1 80 0.125 0.6 0.92 6000 

23 2 1 80 0.125 0.2 0.72 2000 

24 2 1 80 0.125 0.6 0.78 6000 

25 1 0.5 60 0.1 0.2 0.72 1200 

26 1 0.5 60 0.1 0.6 0.78 3600 

27 1 0.5 100 0.1 0.2 0.66 2000 

28 1 0.5 100 0.1 0.6 0.72 6000 

29 1 0.5 60 0.15 0.2 0.96 1800 

30 1 0.5 60 0.15 0.6 1.02 5400 

31 1 0.5 100 0.15 0.2 0.9 3000 

32 1 0.5 100 0.15 0.6 0.96 9000 

33 0 0.5 80 0.1 0.2 0.82 1600 

34 0 0.5 80 0.1 0.6 0.88 4800 

35 2 0.5 80 0.1 0.2 0.68 1600 

36 2 0.5 80 0.1 0.6 0.74 4800 

37 0 0.5 80 0.15 0.2 1.06 2400 

38 0 0.5 80 0.15 0.6 1.1 7200 

39 2 0.5 80 0.15 0.2 0.92 2400 

40 2 0.5 80 0.15 0.6 0.98 7200 

41 1 0.5 80 0.125 0.4 0.82 4000 

42 1 0.5 80 0.125 0.4 0.81 4000 

43 1 0.5 80 0.125 0.4 0.83 4000 

44 1 0.5 80 0.125 0.4 0.82 4000 

45 1 0.5 80 0.125 0.4 0.81 4000 

46 0 0 80 0.125 0.4 0.9 4000 
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Table 3. The ANOVA results for Ra 

Source DF Adj-SS Adj-MS F-Value P-Value

Model 19 0.649833 0.034202 856.36 0.000 

Linear 5 0.622379 0.124476 3116.69 0.000 

A 1 0.120932 0.120932 3027.95 0.000 

B 1 0.002091 0.002091 52.35 0.000 

Vc 1 0.014400 0.014400 360.55 0.000 

f 1 0.456013 0.456013 11417.87 0.000 

ap 1 0.027612 0.027612 691.38 0.000 

Square 5 0.032458 0.006492 162.54 0.000 

A*A 1 0.003228 0.003228 80.83 0.000 

B*B 1 0.009089 0.009089 227.57 0.000 

Vc*Vc 1 0.009682 0.009682 242.43 0.000 

f*f 1 0.003966 0.003966 99.31 0.000 

ap*ap 1 0.007096 0.007096 177.68 0.000 

2-Way Interaction 9 0.000116 0.000013 0.32 0.960 

A*B 1 0.000049 0.000049 1.22 0.279 

A*Vc 1 0.000000 0.000000 0.00 1.000 

A*f 1 0.000025 0.000025 0.63 0.436 

A*ap 1 0.000025 0.000025 0.63 0.436 

B*f 1 0.000000 0.000000 0.00 1.000 

B*ap 1 0.000000 0.000000 0.00 1.000 

Vc*f 1 0.000000 0.000000 0.00 1.000 

Vc*ap 1 0.000000 0.000000 0.00 1.000 

f*ap 1 0.000017 0.000017 0.42 0.524 

Error 26 0.001038 0.000040 - - 

Lack-of-Fit 22 0.000758 0.000034 0.49 0.875 

Pure Error 4 0.000280 0.000070 - 

Total 45 0.650872 - - - 

The "Model" term and all linear and quadratic terms were 

found to be significant, while most of the two-way interaction 

terms were statistically insignificant (p > 0.05). The lack-of-

fit test was also found to be insignificant, confirming that the 

model adequately fits the experimental data without 

systematic error. 

The resulting regression equation for Ra (in uncoded form) 

is presented as follows: 

Ra = 0.4818 – 0.1153A + 0.1281B + 0.01496Vc – 5.75f – 

0.5181ap + 0.01713A² – 0.1552B² – 0.000103Vc² + 42.15f² + 

0.8495ap² + 0.00473A*B + 0.0500A*f + 0.00625A*ap – 

0.167f*ap 

where, A and B are the concentrations of Al₂O₃ and SiO₂ 

nanoparticles, respectively (wt.%), Vc is the cutting speed 

(m/min), f is the feed rate (mm/rev), ap is the depth of cut 

(mm). 

Table 4. Model summary 

S R-sq R-sq(adj) R-sq(pred)

0.0063197 99.84% 99.72% 99.63% 

To improve the transparency and robustness of the RSM 

model, Table 5 presents the estimated coefficients and their 

corresponding 95% confidence intervals for the statistically 

significant terms (p < 0.05). The narrow CI ranges indicate 

high confidence in the regression estimates and further support 

the stability and accuracy of the developed model. 

3.2 Effect of process parameters on surface roughness 

The main effects of cutting parameters and nanoparticle 

concentrations on Ra are illustrated in Figure 3. 

The concentration of Al₂O₃ nanoparticles (A) exhibited a 

significant negative effect on Ra. As shown in Figure 3, 

increasing the Al₂O₃ concentration considerably decreased the 

surface roughness. This trend is consistent with previous 

studies, where Al₂O₃ nanofluids have been reported to enhance 

lubrication and cooling at the cutting zone, resulting in 

improved surface finish [12, 13]. 

Table 5. Estimated regression coefficients and their 95% 

confidence intervals for significant terms in the RSM model 

for Ra 

Term Coef. SE Coef. 95% CI Lower 95% CI Upper 

Constant 0.81926 0.0028 0.81356 0.82496 

A -0.06995 0.00127 -0.07254 -0.06736

B -0.01118 0.00155 -0.01435 -0.00801

Vc -0.03 0.00158 -0.03323 -0.02677

f 0.11938 0.00112 0.11608 0.12268

ap 0.02938 0.00112 0.02608 0.03268

A*A 0.01713 0.00191 0.01323 0.02103

B*B -0.03879 0.00257 -0.04304 -0.03454

Vc*Vc -0.04116 0.00264 -0.04655 -0.03577

f*f 0.02634 0.00264 0.02095 0.03173

ap*ap 0.03398 0.00255 0.02877 0.03919

This stronger influence of Al₂O₃ can be attributed to its 

superior thermal conductivity, which facilitates efficient heat 

dissipation at the tool–chip interface. This in turn reduces 

adhesion, thermal softening, and built-up edge formation—

ultimately producing smoother surfaces. These findings align 

with prior research on thermal-assisted lubrication in 

nanoparticle-enhanced MQL environments. 

Similarly, the concentration of SiO₂ nanoparticles (B) also 

showed a slight negative effect on Ra. A moderate decrease in 

surface roughness was observed with increasing SiO₂ 

concentration, which can be attributed to the improved 

dispersion stability and friction-reducing effects of SiO₂ 

nanoparticles [14, 15]. The relatively smaller effect of SiO₂, 
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despite its excellent tribological behavior, may be due to its 

lower thermal conductivity compared to Al₂O₃. The spherical 

morphology of SiO₂ particles may contribute a “ball-bearing” 

mechanism, acting as nano-rollers that reduce friction at the 

tool–workpiece interface. 

Cutting speed (Vc) had a strong negative effect on Ra. As 

the cutting speed increased, the surface roughness decreased 

noticeably. This behavior aligns with the findings of Asiltürk 

and Akkuş [24] and Aouici et al. [25], who reported that higher 

cutting speeds reduce built-up edge formation and facilitate 

smoother chip flow, thereby enhancing surface finish quality 

during hard turning. 

In contrast, the feed rate (f) exerted the most substantial 

positive effect on Ra. Increasing the feed rate significantly 

deteriorated the surface quality, which is consistent with 

earlier reports [25, 26]. Larger feed values increase the 

distance between consecutive tool paths, resulting in deeper 

valleys and rougher surfaces. 

The depth of cut (ap) displayed a mild positive effect on Ra. 

Surface roughness slightly increased with greater depths of 

cut, possibly due to higher cutting forces and potential tool 

deflection or vibration [24, 25]. However, the overall influence 

of ap was limited. This is likely due to the high rigidity of the 

CNC lathe and the clamping setup, which minimized vibration 

and maintained machining stability even at higher cutting 

depths. 

Overall, the results highlight that optimizing feed rate and 

cutting speed, along with careful selection of nanoparticle 

concentrations, are critical strategies for achieving superior 

surface finishes in nanofluid-assisted hard turning processes. 

Figure 3. Main effects plot for surface roughness 

3.3 Optimization results using PSO 

PSO was applied to determine the optimal machining 

parameters that minimize surface roughness while achieving a 

balanced trade-off with material removal rate. The 

optimization was conducted using regression models derived 

from the RSM analysis. 

PSO was selected over the traditional desirability-based 

approach in RSM due to its superior capability in solving non-

linear, multi-dimensional problems and avoiding local optima. 

PSO offers higher flexibility and better performance in 

exploring complex design spaces, which is particularly 

beneficial for simultaneous optimization of conflicting 

objectives like Ra and MRR. 

3.3.1 Single-objective optimization for Ra 

This section details the implementation of PSO in Python to 

achieve single-objective optimization of surface roughness in 

the hard turning of SKD11 steel under hybrid nanofluid-

Al₂O₃/SiO₂ MQL conditions. Building on the regression model 

(1) for Ra developed through RSM in Section 3, PSO was

employed to determine the optimal combination of Al₂O₃

concentration (A), SiO₂ concentration (B), cutting speed (Vc),

feed rate (f), and depth of cut (ap) that minimizes Ra.

The PSO algorithm was implemented using Python 3.13 

and the Pyswarm Library. A swarm consisting of 30 particles 

was initialized within the defined parameter bounds: A (0–2 

wt.%), B (0–1 wt.%), Vc (60–100 m/min), f (0.10–0.15 

mm/rev), and ap (0.2–0.6 mm). Each particle represented a 

potential solution, and its objective function value (Ra) was 

evaluated based on the developed regression equation. The 

PSO parameters were set as follows: inertia weight (w) = 0.7, 

cognitive coefficient (c₁) = 2.0, and social coefficient (c₂) = 

2.0. The optimization process was performed over 100 

iterations to ensure convergence. 

The optimal machining parameters obtained for minimum 

Ra were: A = 2.0 wt.%, B = 1.0 wt.%, Vc = 100 m/min, f = 0.10 

mm/rev, and ap = 0.307 mm. Under these conditions, the 

predicted minimum Ra was 0.5443 µm. These results indicate 

that a combination of high nanoparticle concentrations, high 

cutting speed, low feed rate, and moderate depth of cut is 

favorable for achieving superior surface finishes in hard 

turning operations. 

While the predicted Ra was 0.5443 µm, the lowest 

experimentally observed Ra was 0.60 µm. This minor 

deviation (< 10%) confirms the accuracy of the RSM model 

and the effectiveness of the PSO-based optimization in 

identifying near-optimal machining parameters. 

The effectiveness of the proposed RSM–PSO hybrid 

approach demonstrates its effectiveness in capturing the 

optimal parameter set for enhancing machining performance, 

providing a flexible and robust tool for improving surface 

quality under nanofluid-assisted MQL conditions. 

3.3.2 Multi-objective optimization for Ra and MRR 

Following the single-objective analysis, a multi-objective 

optimization was conducted to simultaneously minimize Ra 

and maximize MRR during the hard turning of SKD11 steel 

under hybrid nanofluid-Al₂O₃/SiO₂ MQL conditions. The 

regression equations developed in Section 3 for Ra and MRR 

were utilized as objective functions. 

The multi-objective optimization was implemented using 

Python 3.13 and the Pyswarm Library. A swarm of 30 particles 

was initialized within the predefined parameter bounds: A (0–

2 wt.%), B (0–1 wt.%), Vc (60–100 m/min), f (0.10–0.15 

mm/rev), and ap (0.2–0.6 mm). Each particle represented a 

potential solution, and the objective function was defined as a 

weighted sum, minimizing 0.5×Ra + 0.5×(1/MRR), to balance 

the conflicting goals of achieving low surface roughness and 

high productivity. The PSO parameters were set as: inertia 

weight (w) = 0.7, cognitive coefficient (c₁) = 2.0, social 

coefficient (c₂) = 2.0, and a maximum of 100 iterations was 

used to ensure convergence. 

The optimal machining parameters identified through the 

multi-objective PSO approach were: A = 2.0 wt.%, B = 1.0 

wt.%, Vc = 100 m/min, f = 0.10 mm/rev, and ap = 0.523 mm. 

Under these conditions, the predicted Ra was approximately 

0.584 µm, and the predicted MRR was approximately 5230 

mm³/min. 

This solution demonstrates a practical and balanced trade-

off between achieving high surface integrity and maintaining 
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reasonable machining productivity. The successful application 

of the RSM–PSO hybrid approach to multi-objective 

optimization underscores its effectiveness and flexibility in 

enhancing machining performance under nanofluid-assisted 

MQL conditions. 

The weights of 0.5 for both Ra and MRR in the objective 

function were selected to reflect an equal emphasis on 

machining quality and productivity, which aligns with typical 

industrial trade-offs. The PSO algorithm typically converges 

within 100 iterations. Based on the problem size and swarm 

configuration, the total runtime is generally less than one 

minute on a standard laptop (e.g., Intel i7, 16 GB RAM), 

indicating the computational efficiency of the proposed 

approach. 

Figure 4. Pareto front showing the trade-off between Ra and MRR 

Figure 4 illustrates the Pareto front generated from the 

multi-objective PSO optimization, depicting the trade-off 

relationship between surface roughness and material removal 

rate in the nanofluid-assisted hard turning of SKD11 steel. As 

shown, achieving lower Ra values generally corresponds to 

lower MRR values, while higher MRR levels are associated 

with increased surface roughness. This trend highlights the 

fundamental trade-off between surface integrity and 

machining productivity. 

The Pareto front provides valuable insights into the 

selection of machining parameters based on specific 

production priorities. If superior surface finish is prioritized, 

solutions located toward the lower Ra region should be 

selected, albeit with a sacrifice in material removal rate. 

Conversely, for applications where higher productivity is 

essential, solutions with higher MRR and slightly higher Ra 

may be more appropriate. The RSM–PSO hybrid approach 

effectively captures this trade-off, offering practical flexibility 

for optimizing machining performance under various 

operational requirements. 

For instance, in Table 2, Run 32 exhibits a high MRR but a 

relatively moderate Ra. This observation is consistent with the 

Pareto trade-off curve, where higher material removal rates 

tend to coincide with increased surface roughness. Such points 

lie along the mid to high MRR segment of the Pareto front and 

highlight the real-world compromise between performance 

metrics. 

It is acknowledged that this study did not include an analysis 

of tool wear, which is an important factor in evaluating the 

long-term effects of nanoparticle-based lubrication. Future 

work should incorporate tool wear assessment to 

comprehensively validate the benefits of hybrid nanofluid-

assisted MQL in hard turning. 

4. CONCLUSIONS

This study demonstrated the effectiveness of hybrid 

nanofluid-assisted MQL using Al₂O₃ and SiO₂ nanoparticles 

in enhancing surface finish and machining efficiency during 

the hard turning of SKD11 steel. The hybrid nanofluid enabled 

high-speed cutting with improved thermal control and 

lubrication, allowing stable machining of hardened steel—a 

typically challenging task. 

The integration of RSM with PSO proved to be a robust 

hybrid optimization framework. Unlike conventional RSM-

based desirability optimization, RSM–PSO effectively 

captured complex interactions among process variables and 

delivered more optimal and flexible machining conditions. 

The resulting Pareto front provides valuable guidance for 

industrial users, especially in the die and mold manufacturing 

sector, by offering a spectrum of optimal solutions that balance 

surface roughness and productivity based on specific 

priorities. 

However, this study has several limitations. It did not 

consider tool wear behavior, temperature distribution, or the 

economic cost of nanofluid preparation and implementation. 

These factors are crucial for assessing long-term feasibility 

and should be addressed in future research. 

Future work will focus on comparative analysis between 

hybrid and mono-nanofluids, integrating tool wear and 

temperature measurement, and validating the proposed 

method in industrial-scale machining environments. 
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