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Soiling, defined as the accumulation of dirt, dust, and other particles on the surface of 

photovoltaic (PV) panels, is a significant issue that substantially impacts solar panel 

efficiency and performance. This accumulation leads to energy losses and decreased 

electricity output. Numerous research papers have proposed various systems to address this 

issue. This paper provides a comprehensive review of recent publications on soiling 

detection in solar panels. The review methodology includes literature retrieval, screening, 

content analysis, and bibliometric analysis, utilizing the Scopus database to compile a final 

selection of 75 papers. This review identifies gaps in previous research, such as the need 

for more robust and cost-effective detection systems and the integration of emerging 

technologies like artificial intelligence and remote sensing. Key findings highlight that 

deep learning models and advanced sensor technologies show promising results in 

improving soiling detection accuracy. The review also suggests potential areas for future 

work, emphasizing the development of innovative inspection tools, models, and cleaning 

systems that can enhance efficiency and reduce operational costs. 
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1. INTRODUCTION

In recent years, the global demand for energy has 

significantly increased. Various power sources have been 

utilized to meet our daily energy needs, with fossil fuels being 

the predominant source [1]. However, the environmental 

impact and finite nature of fossil fuels have necessitated the 

search for more efficient and sustainable alternatives. 

Renewable energy sources, particularly solar energy, present 

a promising solution. Solar energy, harnessed through 

photovoltaic (PV) systems, offers a clean and virtually infinite 

power source. This renewable energy not only helps mitigate 

the environmental issues associated with fossil fuels but also 

enhances energy security by reducing dependence on finite 

resources [2]. 

Several factors have driven the adoption of solar energy, 

with climate change being the foremost reason. Greenhouse 

gas emissions and other pollutants from fossil fuel sources are 

major contributors to climate change. Solar energy can 

significantly reduce these emissions and mitigate climate 

change effects since it does not produce greenhouse gases or 

involve combustion processes. Consequently, solar energy can 

enhance air quality and public health. Additionally, solar 

energy contributes to energy security by providing an 

abundant and consistent supply, reducing reliance on 

centralized power plants, and improving global energy 

markets. As the solar energy industry grows and becomes 

more competitive, its economic advantages are increasingly 

compelling. The cost of solar technology is becoming more 

affordable compared to fossil fuels. Furthermore, solar energy 

offers environmental benefits by conserving land. Unlike 

traditional energy production, which involves extensive 

mining and drilling, solar panel installation requires minimal 

land disruption, helping preserve ecosystems [3]. 

Despite the significant benefits of solar panels, several 

challenges can arise, with soiling being one of the most 

impactful issues. Soiling is defined as the accumulation of dirt, 

dust, bird droppings, tree branches, snow, and other particles 

on the surface of PV panels. This accumulation can severely 

affect the efficiency and performance of solar panels by 

obstructing sunlight absorption and electricity generation. 

Soiling generates losses in energy efficiency and decreases 

electricity output, often underestimated and neglected despite 

its profound impact. Dust accumulation creates a barrier that 

prevents the smooth flow of sunlight through PV panels, 

resulting in reduced light capture and energy conversion. The 

economic and environmental repercussions of soiling are also 

significant. Reduced energy production leads to financial 

losses and necessitates an increased number of solar panels to 

meet energy demands, thereby requiring more manufacturing 

processes that impact the environment. Additionally, the 

buildup of soiling increases the need for frequent maintenance 

and cleaning of solar panels [4]. Despite advancements in soil 

detection, certain challenges remain. Many existing detection 

systems struggle with accuracy under varying environmental 

conditions, making them less reliable for real-world 
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applications. Additionally, high costs and maintenance 

requirements limit the adoption of traditional technologies, 

especially in large-scale solar farms. However, emerging 

technologies such as deep learning and remote sensing offer 

promising solutions. These innovations have the potential to 

overcome current limitations by improving real-time 

detection, reducing operational costs, and enabling predictive 

maintenance. Moreover, integrating these advanced 

techniques with automated cleaning systems could help 

eliminate the gap between detection and proactive mitigation. 

This review explores these advancements, highlights their 

potential, and identifies areas for further development to 

enhance the efficiency and sustainability of solar energy 

systems. 

This review paper addresses a critical challenge in the solar 

energy industry. The objective of this review paper is to 

provide a comprehensive analysis of existing soiling detection 

technologies for solar panels. Specifically, it aims to identify 

the most effective tools, evaluate emerging technologies such 

as artificial intelligence and remote sensing, and highlight 

research gaps that can inform future advancements. The 

methodology employed for this review includes literature 

retrieval, literature screening, content analysis, and 

bibliometric analysis, utilizing the Scopus database to compile 

a final selection of 75 papers. The paper identifies key 

findings, highlights gaps in existing studies, and offers 

valuable recommendations, making it an essential resource for 

researchers and practitioners. The paper seeks to answer key 

research questions, including: 

 

1. What are the most accurate, cost-effective, and widely 

applicable tools for detecting soiling on solar panels? 

2. How do deep learning and machine learning improve 

soiling detection, and what are their limitations? 

3. What key challenges remain in soil detection, and what 

advancements are needed to improve accuracy and 

practicality? 

 

By addressing these questions, this review advances the 

field of soiling detection on solar panels by providing a 

comprehensive analysis of existing technologies, identifying 

research gaps, and highlighting emerging solutions. Unlike 

previous studies, it integrates findings from 75 publications to 

compare diverse detection methods, including sensor-based 

systems, AI-driven models, and satellite imaging. By 

emphasizing the potential of machine learning and real-time 

monitoring, this study offers insights into improving detection 

accuracy, reducing maintenance costs, and optimizing solar 

panel performance. It serves as a valuable resource for 

researchers and industry professionals, guiding future 

developments toward more efficient and scalable soiling 

detection solutions. 

The subsequent sections of this paper are structured as 

follows: First, the methodology employed in selecting the 

research papers is described, including the criteria and 

processes used. Second, a comprehensive content analysis is 

presented, outlining the current state of research, key findings, 

and insights from previous studies, and identifying research 

gaps that suggest potential areas for further investigation. This 

is followed by a detailed bibliometric analysis to examine 

different research focuses and other relevant details. Finally, 

the key findings are highlighted, and recommendations are 

provided to guide future work in the field of soiling detection 

on solar panels. 

2. METHODOLOGY  

 

The methodology in this study follows a systematic process 

to collect and analyze recent research. A Scopus search was 

conducted to retrieve relevant studies, followed by 

bibliometric analysis using VOSviewer to identify key 

research trends, influential studies, and emerging topics. 

Finally, content analysis categorized the 75 selected papers 

into Inspection Tools, Models, and Cleaning Systems, 

allowing for a structured synthesis of methodologies and 

findings. This approach ensures a comprehensive, structured 

and up-to-date assessment of advancements in soiling 

detection research. It contains four main steps, as defined 

below: 

 

2.1 Literature retrieval 

 

This step involves the initial stage of selecting appropriate 

search terms and keywords to gather relevant research papers 

and publications. A systematic literature review was 

conducted using Scopus, employing various keywords such as 

"soiling detection solar," "soiling concentration solar," "dust 

detection solar," "dust concentration solar," and others. Scopus 

was used as our primary database because it is one of the most 

comprehensive and widely recognized academic databases, 

which covers a wide range of high-quality journals and 

conference proceedings in engineering, energy, and 

environmental sciences. Its extensive collection of peer-

reviewed publications ensures that our review captures all 

significant research on soiling detection. Therefore, this 

process resulted in a total of 683 papers, covering the years 

2000 to 2023. 

 

2.2 Literature screening 

 

 
 

Figure 1. Literature screening approach 

 

 
 

Figure 2. The chronological span of years 
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The PRISMA statement [5] is utilized in the following step 

to provide a structured framework for identifying and selecting 

relevant literature. Initially, a total of 683 papers were 

identified. After removing duplicates, the count was reduced 

to 574 papers. Further screening for direct relevance to the 

topic of soiling detection on solar panels narrowed the 

selection to 75 papers, with 498 papers being excluded. Each 

paper was manually reviewed to ensure its relevance, with the 

inclusion criteria focusing on studies that specifically 

addressed soiling detection techniques, technological 

advancements, and their impact on PV performance. Papers 

that lacked a direct focus on soiling detection, addressed 

unrelated aspects of solar energy, or provided insufficient 

technical details were excluded. This thorough screening 

process enhances transparency and ensures that the selected 

papers contribute meaningfully to the review. Figure 1 

illustrates this selection process. The remaining 75 papers 

were then classified into three sections: Inspection Tools, 

Models, and Cleaning Systems. Figure 2 presents the 

chronological distribution of the selected papers, highlighting 

the increasing interest and research activity in soiling detection 

over recent years. This trend underscores the growing 

importance of this area in the context of enhancing solar panel 

efficiency and performance. 

 

2.3 Bibliometric analysis 

 

Bibliometric analysis was conducted to systematically 

evaluate the structure of research in soil detection by analyzing 

citation patterns, keyword occurrences, and co-authorship 

networks. Using VOSviewer software, visual representations 

were generated to highlight key research themes, influential 

authors, and emerging topics. This approach enabled a deeper 

understanding of research trends and relationships among 

various studies by: 

• Identifying influential works through citation counts 

and co-citation networks, determining the most 

referenced studies in the field. 

• Mapping research trends by examining keyword co-

occurrence, which helps visualize commonly studied 

topics and gaps in the literature. 

• Analyzing collaboration patterns through co-

authorship networks, providing insights into global 

research contributions and partnerships in soil 

detection. 

The advantage of bibliometric analysis is that it offers 

quantitative insights into the research landscape, allowing for 

an objective identification of dominant themes, key 

contributors, and emerging directions. Additionally, 

visualized bibliometric maps provide a structured way to 

observe relationships between studies, guiding future 

investigations and fostering collaboration. This method also 

helps highlight emerging topics and research gaps, ensuring 

that ongoing studies align with industry needs and 

technological advancements. 

 

2.4 Content analysis 

 

In addition to bibliometric analysis, content analysis was 

conducted to gain a qualitative understanding of the reviewed 

studies and systematically categorize key findings. This 

approach enabled a structured examination of the 75 selected 

papers, organizing them into three main themes: 

• Inspection Tools: Technologies and methods used to 

detect soiling accumulation on solar panels. 

• Models: Statistical, empirical, and AI-based 

approaches for analyzing and predicting soiling impact. 

• Cleaning and Mitigation Systems: Strategies designed 

to minimize soiling effects and optimize solar panel 

efficiency. 

The research papers in this review were systematically 

categorized into three key themes: Inspection Tools, Models, 

and Cleaning Systems to provide a structured and 

comprehensive analysis of soiling detection and mitigation. 

These themes were chosen based on a thorough examination 

of existing literature, ensuring that they capture the core 

aspects of soiling detection research. This classification 

ensures a holistic approach, covering detection, analysis, and 

mitigation, which are the fundamental pillars of soiling 

research.  

By classifying research into these themes, content analysis 

provided a clear framework for understanding various 

approaches and their role in soil detection and mitigation. Each 

study was carefully examined to extract key methodologies, 

findings, and limitations, enabling researchers to: 

• Identify research gaps, such as the need for more cost-

effective, real-time soiling detection methods. 

• Compare different methodologies, evaluating their 

advantages, limitations, and applicability under various 

environmental conditions. 

• Highlight technological trends, particularly the 

increasing role of AI, remote sensing, and automated 

cleaning in soiling detection. 

The advantage of the content analysis is that it offers a 

structured qualitative synthesis, allowing for a comprehensive 

comparison of existing detection tools, models, and cleaning 

systems. This method facilitates the identification of patterns 

and common themes, helping researchers understand the 

evolution of soiling detection technologies and guiding future 

advancements in solar panel efficiency and performance. 

 

 

3. BIBLIOMETRIC ANALYSIS 

 

In this section, an in-depth bibliometric analysis focusing on 

the field of soiling detection on solar panels is provided. A 

comprehensive understanding of current innovations in this 

field is aimed at by examining a wide collection of articles and 

publications extracted from the Scopus database. Valuable 

insights into the methods used for detecting soiling on solar 

panels are sought through systematic literature screening and 

data analysis. VOSviewer was used to generate a detailed 

analysis of the current state of soiling detection on solar 

panels. Five types of visualization maps were produced to 

offer a clear understanding and analysis of the topic. These 

maps include circles representing different items such as terms 

and publications. The level of activity associated with each 

item is indicated by the size of the circle and the font used. 

Larger circles and bigger font sizes signify higher levels of 

activity, while smaller circles and fonts indicate lower levels 

of activity. The degree of association between any two terms 

is shown by the distance between them in the diagram; shorter 

distances represent stronger correlations, and longer distances 

indicate weaker correlations. 

For the bibliometric analysis, VOSviewer was primarily 

used to generate co-occurrence networks and visualizations of 

research trends in soiling detection on solar panels. In addition 

to VOSviewer, Microsoft Excel was employed for data 
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processing and trend analysis, allowing for deeper statistical 

evaluation of citation patterns. The analysis considered key 

parameters such as co-authorship networks to identify 

prominent researchers, citation counts to determine influential 

works, and keyword occurrences to highlight key research 

areas. The selection of influential works was based on citation 

impact, relevance to the field, and recurring themes in soil 

detection methodologies. Additionally, a co-occurrence 

analysis of keywords and index terms was performed to map 

emerging trends and research gaps. 

To analyze key research trends and relationships in soiling 

detection, a co-occurrence network was constructed using 

terminology extracted from the titles and abstracts of the 

reviewed publications. The process involved several 

systematic steps to ensure accuracy and relevance. First, the 

dataset of 75 selected papers was processed using VOSviewer 

software, which automatically identified and extracted 

frequently occurring keywords and terms. Next, duplicate and 

irrelevant terms were filtered out to maintain a high-quality 

dataset. The refined set of terms was then analyzed to establish 

co-occurrence relationships, where terms appearing together 

frequently in multiple publications were linked, revealing key 

thematic connections. Finally, a visual network map was 

generated, grouping terms into clusters based on their thematic 

relevance. This method provided valuable insights into the 

main research focuses, emerging topics, and knowledge gaps 

in soiling detection, offering a structured representation of the 

field’s development over time. 

 

3.1 Co-occurrence map based on text data 

 

Text data from a total of 75 selected publications was 

analysed to identify relevant occurring terms. Terms from the 

titles and abstracts of these publications were extracted to 

construct a co-occurrence network, linking related terms. A 

total of 2,114 terms were found, out of which 35 terms met the 

minimum threshold of 10 occurrences. Additionally, 

VOSviewer calculated a relevance score for each term to 

further refine the selection. The top 60% of the most relevant 

terms were chosen, resulting in 21 terms displayed in the 

network shown in Figure 3. 

 

 
 

Figure 3. Co-occurrence map based on text data 

 

The findings presented in Figure 3 illustrate the extensive 

scope of research within the topic of soiling detection on solar 

panels. This research encompasses various areas, including 

dust accumulation, PV systems, and power loss. The figure 

highlights the relationship between soiling and detection, 

providing insights into the application of detection systems for 

identifying soiling on solar panels. Additionally, the 

association between soiling and terms such as "model" 

underscores the implementation of different models, such as 

machine learning and deep learning, in detecting soiling on 

solar panels. The impact of soiling on solar panels raises 

concerns about power loss and its effect on PV systems, 

emphasizing the importance of analyzing how different types 

of soiling can affect the operation of solar panels. 

 

3.2 Co-occurrences map based on keywords 

 

To extend the analysis, frequently occurring keywords from 

the 75 selected publications were identified. A total of 849 

keywords were gathered, with 35 keywords meeting the 

minimum threshold of 5 occurrences. The analysis included all 

keywords, encompassing both index keywords and author 

keywords. Figure 4 illustrates the co-occurrence map of these 

keywords, providing a visual representation of the 

relationships between them. 

 

 
 

Figure 4. Co-occurrences map of all keywords 

 

The co-occurrence map in Figure 4 highlights the 

interconnectedness of various research themes within the field 

of soiling detection on solar panels. By visualizing the 

frequency and connections of keywords, the map offers 

insights into prevalent research areas and the intensity of their 

interrelations. This visualization helps in understanding the 

primary focus areas and the breadth of research topics 

explored in the selected publications. The larger circles, such 

as those for "dust," "solar panels," and "solar energy," indicate 

a higher frequency of occurrence, reflecting their central role 

in this research field. The shorter distances between terms such 

as "dust," "solar panels," and "cleaning" demonstrate strong 

correlations, suggesting that these topics are frequently 

discussed together in the literature. 

 

3.3 Co-occurrence map based on country of co-authorship 

 

In addition, the analysis was expanded by examining the 

geographic distribution of the publications. Figure 5 visualizes 

the country co-authorships, setting a minimum number of 

documents per country at 3. Out of the 43 countries with 

publications, 12 met this threshold. This map highlights the 

collaborative relationships between countries in the field of 

soiling detection on solar panels. 
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Figure 5. Country of co-authorships 

 

Figure 5 illustrates the international collaboration among 

researchers in the field of soiling detection on solar panels. The 

map reveals that India is at the center of multiple co-authorship 

links, indicating its significant role in fostering international 

research partnerships. The United States, Spain, and the 

United Arab Emirates also show strong collaborative ties, 

reflecting their active engagement in this research area. 

Additionally, the links connecting India to Saudi Arabia and 

Poland demonstrate a diverse range of international 

cooperation, emphasizing the global nature of efforts to 

address soiling on solar panels. This visualization underscores 

the importance of cross-border collaborations in advancing 

research and developing innovative solutions for soil 

detection. 

 

3.4 Co-occurrence map based on authorship 

 

To further extend the analysis, a network was generated to 

investigate authorship relationships. The map was created by 

setting a minimum threshold of 7 citations per author. Out of 

the 309 authors, 151 met this threshold. Figure 6 shows the 

resulting network visualization, with the largest set of 

connected authors consisting of 13. 

 

 
 

Figure 6. Co-occurrence map of authorship 

 

Figure 6 visualizes the interconnectedness among authors in 

the field of soiling detection on solar panels. The network 

demonstrates the collaborative nature of research in this area, 

highlighting how researchers from diverse educational 

backgrounds and expertise come together to advance the field. 

The co-occurrence map offers valuable insights into the main 

contributors, research trends, and potential collaboration 

opportunities within the community. It also emphasises the 

dynamic exchange of knowledge facilitated by these 

collaborations. 

3.5 Data analysis on article sources 

 

A detailed analysis was conducted on the sources of the 75 

selected publications, with a unique list compiled and ordered 

by the number of articles from each source. The sources with 

the highest number of articles were "Energies" and the "IEEE 

Journal of Photovoltaics," each contributing five publications. 

Figure 7 presents a bar graph reflecting the top 10 sources by 

the number of publications, illustrating the distribution of 

research across various journals and proceedings. This 

visualization highlights the significant contributions from 

sources such as "Solar Energy Materials and Solar Cells," 

"Solar Energy," and "Applied Energy," indicating a focused 

interest in renewable energy and PV technologies. The diverse 

range of sources also suggests a multidisciplinary approach to 

the research, integrating insights from electrical engineering, 

materials science, and applied energy sectors. By examining 

these top sources, a clearer understanding of the key journals 

and conferences driving the discourse in this field is achieved, 

providing researchers with insights into potential publication 

venues for their future work. This analysis underscores the 

importance of journals like "Energies" and the "IEEE Journal 

of Photovoltaics," reflecting strong contributions to energy-

related and PV research, respectively, and highlighting the 

integration of advanced computational methods and materials 

science in solar energy. 

 

 
 

Figure 7. Bar graph reflecting the top 10 sources by number 

of publications 

 

3.6 Data analysis on document type 

 

In this section, 75 publications were classified according to 

their document type. Figure 8 presents a bar graph depicting 

the distribution of different document types, as extracted from 

Scopus. The analysis reveals that the most common type is 

"Article," with 36 occurrences, followed closely by 

"Conference paper" with 34 occurrences. Additionally, 

"Review" appears three times, while "Book chapter" is 

represented only once. Lastly, one paper was classified as 

"Document type." This categorization underscores the 

prevalence of primary research articles and conference papers 

in the field, highlighting the importance of both detailed 

studies and the dissemination of preliminary findings through 

conference presentations. 
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Figure 8. Occurrences of different document types 

 

 

4. CONTENT ANALYSIS 

 

Significant attention has been garnered by the detection of 

soiling on solar panels due to its critical impact on the 

efficiency and performance of PV systems. Various inspection 

tools and models have been developed and studied, offering 

promising methods to enhance the effectiveness of solar 

energy generation. In this section, a comprehensive content 

analysis of the field is provided, examining the latest 

advancements, tools, and models used for soil detection. Key 

findings are highlighted, research gaps are identified, and 

insights are offered to drive future developments in improving 

solar panel efficiency and sustainability.  

 

4.1 Inspection tools 

 

In this section, the various inspection tools utilized to detect 

different forms of soiling on solar panels are explored. The 

effectiveness of solar panels can be significantly compromised 

by soiling, making the development and utilization of precise 

detection tools essential. A wide array of technologies has 

been employed, including digital and thermal cameras, 

advanced sensor systems, and drones. By examining these 

tools, their capabilities, advantages, and limitations in 

addressing the challenges posed by soiling are understood. A 

detailed classification of the reviewed papers is provided in 

Table 1, highlighting the main focus and methodologies 

employed in each study, thereby offering a comprehensive 

overview of the current state of research in this critical area.  

Table 1. Inspection tools 

 
Theme Types Authors Year Focus 

Inspection 

tools  

Camera 

El Ydrissi et al. [6] 2023 
Implementing RGB camera images with CNN to detect and measure 

soiling on solar mirrors. 

Cavieres et al. [7] 2022 
Capturing stationary RGB images and applying an ANN to quantify 

PV power loss from soiling and shading. 

Fan et al. [8] 2022 
Applying image analysis to identify uneven dust accumulation and 

classify dust distribution. 

Abuqaaud and Ferrah 

[9] 
2020 

Proposing a computer vision method to classify PV panels as clean 

or dirty. 

Onim et al. [10] 2022 
Developing a CNN-based SolNet architecture for dust detection 

from camera images. 

Ayyagari et al. [11] 2022 
Investigating high-resolution image classification with ML to detect 

and categorize dust on PV arrays. 

Sriram and Sudhakar 

[12] 
2023 

Employing thermal imaging to detect soiling without physical 

inspection. 

Cardinale-Villalobos et 

al. [13] 
2021 

Applying UAV infrared and RGB imaging to detect soiling and 

shading. 

Zhang et al. [14] 2021 
Proposing a SolarQRNN model with surveillance camera images to 

estimate power loss. 

Tribak and Zaz [15] 2019 
Designing an image-processing system with an HD camera to 

quantify dust concentration and power loss. 

Hwang et al. [16] 2020 Applying AI and RGB images to detect soiling on PV modules. 

Hajar et al. [17] 2023 
Developing a YOLOv5-based system for monitoring soiling on PV 

panels. 

Aji et al. [18] 2023 
Creating a smart image-processing system for panel cleaning 

optimization. 

Saquib et al. [19] 2020 
Proposing an ANN model to predict PV power output from image-

based analysis. 

Qasem et al. [20] 2016 
Employing UAV images under varied lighting to detect dust and 

optimize PV plant operation. 

Hanafy et al. [21] 2019 
Applying ML to terrestrial and aerial UAV images to classify PV 

cleanliness. 

Czarnecki and Bloch 

[22] 
2022 

Using drone video and statistical classifiers to detect and classify PV 

soiling. 

Hwang et al. [23] 2023 
Implementing UAV RGB images with ML for monitoring soiling 

and planning cleaning schedules. 

Sensors 

El Ydrissi et al. [6] 2023 Applying a reflectometer sensor to calculate mirror reflectivity. 

Saquib et al. [19] 2020 
Combining a voltmeter, an ammeter, and LDR sensors to predict PV 

power output. 

Narvios and Nguyen 

[24] 
2021 

Proposing an IoT-based system with dust, temperature, and humidity 

sensors for monitoring soiling. 
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Abid et al. [25] 2018 
Designing an ACS712-based automatic and periodic PV monitoring 

system. 

Bodnár et al. [26] 2019 
Measuring temperature, voltage, and current to study contaminants’ 

effect on power generation. 

Chockalingam et al. 

[27] 
2023 Integrating multiple sensors with IoT to detect localized hotspots. 

Mehmood et al. [28] 2023 
Deploying low-cost sensors with IoT and cloud architecture for 

soiling monitoring. 

Olorunfemi  et al. [29] 2023 
Designing an Arduino-based dirt detection and robotic cleaning 

control system. 

Azouzoute et al. [30] 2021 
Employing a pyranometer and meteorological sensors to assess the 

dust effect on glass transmittance. 

Kavya and Keshav [31] 2018 
Applying Arduino with current and voltage sensors to evaluate the 

soiling impact and cleaning needs. 

Kampira et al. [32] 2022 
Using PM, humidity, and electrical sensors to measure soiling 

impact on PV performance. 

Mohammed et al. [33] 2018 Designing an Arduino-based dust monitoring and cleaning system. 

Ghodki [34] 2022 Introducing a robotic arm using IR sensors for dust removal. 

Soedibyo et al. [35] 2021 
Proposing a fuzzy logic model with dust, temperature, and electrical 

sensors. 

Micheli et al. [36] 2020 
Applying a spectrophotometer to estimate soiling transmittance 

spectra. 

Singh and Rizwan [37] 2023 
Using detectors and sensors to predict PV power/irradiation from 

dust levels. 

Guo et al. [38] 2016 
Developing linear and semi-physical models using DustTrak® data 

for PV cleanness index (CI). 

Sharma et al. [39] 2023 
Comparing models on dust mass accumulation impact on PV 

performance. 

Jaszczur et al. [40] 2019 
Identifying deposition parameters via PM2.5/PM10 concentration 

measurements. 

Skomedal et al. [41] 2019 
Applying a pyranometer and temperature sensors to quantify soiling 

rates. 

Caron and Littmann 

[42] 
2013 

Using monitoring stations to study dust impact with irradiance and 

weather sensors. 

Lopes et al. [43] 2019 
Implementing a tracking cleanliness sensor to measure mirror 

reflectance. 

Satellite 

information 

Supe et al. [44] 2020 
Applying Google Earth Engine indices and satellite data to detect 

sand accumulation. 

Silva et al. [45] 2023 Combining NASA satellite and weather data to estimate PV soiling. 

Esposito et al. [46] 2023 Comparing ground irradiance with satellite data to assess soiling. 

Visual 

inspection 
Yadav et al. [47] 2021 

Employing a stereoscopic microscope to examine dust deposition 

and cleaning effects. 

Scanner Islam et al. [48] 2021 
Designing MOSFET-based I–V scanner to analyze shading and 

soiling impacts. 

Table 1 presents an overview of various inspection tools 

used for detecting soiling on solar panels, emphasizing their 

usage, benefits, and findings from multiple studies. Digital and 

thermal cameras, as well as cameras mounted on unmanned 

aerial systems (UAS), have been extensively used. Digital 

cameras capture high-resolution RGB images for soiling 

detection and measurement through image processing 

techniques, while thermal cameras detect temperature 

differences to identify soiling, useful in low-light conditions. 

UAS-mounted cameras enable remote and comprehensive 

area coverage. Additionally, a variety of sensors, including 

reflectometers, dust sensors, temperature and humidity 

sensors, and voltage and current sensors, have been employed 

to collect real-time data on soiling and environmental 

conditions. These sensors provide high precision and accuracy 

but can be limited by specific environmental conditions. Other 

tools, such as satellite information from NASA and 

COPERNICUS, offer remote sensing and frequent updates but 

can be hindered by weather and data processing complexities. 

Visual inspection tools, like the Magnus stereoscopic 

microscope, are cost-effective but prone to human error. I-V 

scanners provide quantitative performance data under various 

soiling conditions but require regular maintenance. Together, 

these tools offer a comprehensive approach to soiling 

detection on solar panels, each contributing unique strengths 

and facing specific limitations.  

Table 2 offers a detailed summary of the various types of 

cameras utilized for soiling detection on solar panels, 

emphasizing their respective advantages and disadvantages 

[49]. Digital cameras offer clear visual inspection and high-

resolution images, which are essential for accurately 

measuring soiling accumulation. They are non-invasive but 

may be limited in low-light conditions and can be costly. This 

type of camera was used in 12 papers. Thermal cameras are 

known for their sensitivity to temperature differences, making 

them effective in low-light and nighttime conditions. 

However, they have reduced spatial resolution. This type of 

camera was used in two papers. Drones equipped with 

cameras, such as UAS and UAV, provide excellent 

accessibility and remote sensing capabilities, covering wide 

areas without requiring physical access to the panels [50]. 

Despite their advantages, drones face weather limitations and 

limited battery life. Cameras on drones were featured in five 

papers. 

Table 3 summarizes the findings related to the use of 

various sensors for detecting different elements on solar 

panels. Each type of sensor has been evaluated for its 

advantages and disadvantages, highlighting their effectiveness 
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in different scenarios [51]. Dust sensors, used in 23 papers, are 

noted for their precision and accuracy in measuring the level 

of dust accumulation on PV panels. However, they can be 

costly. Temperature and humidity sensors are employed to 

monitor ambient conditions, which can impact the 

performance and soiling rate of solar panels. Voltage and 

current sensors collect data on the electrical performance of 

PV panels, providing valuable insights into the impact of 

soiling on energy output. Reflectometer sensors measure the 

reflectivity of solar mirrors, helping to quantify the extent of 

soiling. TCS3200 color sensors are used for color 

measurement and calibration, aiding in the detection of dust 

and other contaminants. Light-dependent resistor (LDR) 

offers the ability to provide real-time data on light intensity, 

although they may suffer from damage and have a limited 

lifespan. Other sensors, such as limit switch sensors, CMP21 

Pyranometers, Campbell Scientific CS215 sensors, and NRG 

#40C Anemometers, are used to measure various 

environmental and operational parameters. 

Spectrophotometers measure the transmittance of soiled glass, 

helping to estimate the impact of soiling on light absorption. 

The findings from these sensors contribute to a comprehensive 

understanding of soiling detection and its impact on solar 

panel performance. Each sensor type brings unique strengths 

and limitations, emphasizing the need for a multi-faceted 

approach in soiling detection strategies.  

Table 2. Summary of the findings of the camera usage 

 
Usage of Camera 

 Types of cameras Advantages Disadvantages 
Number of 

papers 

Camera 

A digital camera 
-Clear visual inspection 

-High resolution 

-Non-invasive 

-Limited in low light 

conditions 

-Can be costly 

12 
stationary camera 

HD camera 

surveillance cameras 

Thermal camera 

Thermal camera 

Sensitivity to temperature 

differences 

 

Reduced spatial resolution 

2 

UAS with thermal 

camera 
Works in low light and at night Initial cost 

Drones with 

camera 
UAS Accessibility Weather limitations 5 

 

Table 3. Summary of the findings of the sensor’s usage 

 

Usage of Sensors 

Types of sensors Advantages  Disadvantages  Number of papers 

Dust sensor 

Precision and accuracy Cost 

23 

temperature and humidity sensor 

Voltage sensor  

Current Sensor 

Reflectometer sensor 

TCS3200 colour sensor 

LDR 

Ability to provide real-time data Damage and limited lifespan 

Limit switch sensor 

CMP21 Pyranometer  

Campbell Scientific CS215 sensor  

NRG #40C Anemometer  

spectrophotometer 

 

Table 4. Summary of the findings of using satellite information, visual inspection and I-V scanner 

 
Usage of Satellite Information 

Sources of information Advantages  Disadvantages  Number of papers 

NASA Frequent data update  Weather limitations 
3 

Copernicus Remote sensing Data processing complexity 

Usage of Visual Inspection 

Sources of information Advantages  Disadvantages  Number of papers 

Magnus stereoscopic microscope 
Low cost Human error  

1 
No data requirement Limited accuracy  

Usage of I-V Scanner 

Sources of information Advantages  Disadvantages  Number of papers 

I-V scanner 
Quantitative data Maintenance needs 

1 
Remote monitoring Complexity 

Table 4 outlines the findings related to the use of satellite 

information, visual inspection, and I-V scanners for detecting 

soiling on solar panels [52]. Each inspection tool has been 

utilized by different authors, with distinct advantages and 

disadvantages highlighted in the table. Satellite information, 

particularly from NASA, offers the advantage of frequent data 

updates, making it highly reliable for continuous monitoring. 

However, its effectiveness can be limited by weather 

conditions. This source was referenced in three papers. 

COPERNICUS satellite data provides excellent remote 
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sensing capabilities, which are advantageous for large-scale 

and remote monitoring, though the complexity of data 

processing remains a significant drawback. Visual inspection 

tools, such as the Magnus stereoscopic microscope, offer a 

low-cost solution for inspecting solar panels. However, these 

methods are prone to human error, which can affect accuracy. 

General visual inspection requires no data and can be a 

straightforward method for detecting soiling, but it suffers 

from limited accuracy, especially when detailed quantitative 

analysis is needed. The use of the Magnus stereoscopic 

microscope was noted in one paper. I-V scanners, on the other 

hand, provide robust quantitative data, making them effective 

for detailed performance analysis of solar panels under 

different soiling conditions. They also support remote 

monitoring, which enhances their utility. However, I-V 

scanners require regular maintenance and involve complexity 

in their operation. The use of I-V scanners was documented in 

one paper. The findings from Table 4 illustrate that each 

inspection tool offers unique benefits and challenges. Satellite 

information is valuable for its broad coverage and frequent 

updates, though it can be hampered by weather conditions and 

data processing complexities. Visual inspection methods, 

while cost-effective, may lack the precision needed for 

thorough analysis. I-V scanners provide detailed quantitative 

data but require maintenance and can be complex to operate. 

Together, these tools contribute to a comprehensive strategy 

for detecting and mitigating soiling on solar panels. 

The inspection tools used for detecting soiling on solar 

panels have yielded several significant findings. Various types 

of cameras, including standard digital cameras, thermal 

cameras, and drones equipped with cameras, have been 

employed to gather detailed information about soiling on PV 

panels. Digital cameras provide clear visual inspections and 

high-resolution images, which are crucial for precise 

measurement of soiling accumulation through image 

processing techniques. While fixed cameras offer localized 

monitoring, flexible or drone-mounted cameras can cover 

wider areas, enhancing the scope of inspection. Thermal 

cameras, known for their sensitivity to temperature 

differences, are particularly effective in low-light and 

nighttime conditions. They detect soiling by capturing 

temperature variations on the panels. The use of drones 

equipped with cameras has revolutionized remote sensing 

capabilities, allowing comprehensive inspections without 

physical access to the panels, which is especially useful in 

large-scale solar farms. 

Additionally, various sensors, such as dust sensors, 

temperature sensors, voltage sensors, and current sensors, 

have been extensively used to gather real-time data on soiling 

levels and panel performance. Dust sensors measure the level 

of dust accumulation by detecting particulate matter size and 

concentration, while temperature sensors monitor ambient and 

panel surface temperatures, aiding in the detection of soiling 

that affects thermal properties. Voltage and current sensors 

provide data on electrical performance, helping to quantify the 

impact of soiling on energy output. Other inspection tools, 

including satellite information, visual inspection tools like 

microscopes, and I-V scanners, have also been employed. 

Satellite data, combined with tools like the Google Earth 

Engine, is used to monitor soiling patterns over large areas, 

particularly in arid regions. Visual inspection tools offer 

detailed observations of soiling particles and their impact on 

panel surfaces, while I-V scanners analyze the electrical 

characteristics of PV panels under different soiling conditions, 

helping to understand performance variations. 

The integration of various inspection tools provides a 

comprehensive approach to detecting soiling on solar panels. 

Cameras, with their high-resolution imaging capabilities, are 

highly effective but may face limitations in certain weather 

conditions. Sensors offer precise real-time data but can also be 

affected by environmental factors. Combining these tools with 

advanced technologies like drones and satellite data enhances 

inspection capabilities and provides a holistic view of soiling 

impacts. 

Future research should focus on integrating advanced 

technologies such as artificial intelligence and machine 

learning with existing inspection tools to improve the accuracy 

and efficiency of soiling detection. Developing AI algorithms 

that can analyze data from multiple sources, including 

cameras, sensors, and satellites, in real-time could 

significantly enhance detection capabilities. Research should 

also aim to develop more robust and weather-resistant sensors 

that can operate effectively in diverse environmental 

conditions. Exploring the use of novel materials and 

technologies for sensors to improve their sensitivity and 

accuracy is another promising area. 

Moreover, investigating cost-effective solutions for soiling 

detection that can be widely adopted, especially in large-scale 

solar farms, is essential. Developing low-cost, high-efficiency 

tools that can be easily maintained and deployed will facilitate 

broader adoption. Emphasis should also be placed on 

comprehensive data analysis techniques that can integrate data 

from various inspection tools to provide a more accurate 

assessment of soiling. Utilizing big data analytics to identify 

patterns and trends in soiling across different geographical 

locations and environmental conditions can further advance 

the field. 

By addressing these future research directions, the field of 

soiling detection on solar panels can advance significantly, 

leading to improved solar panel efficiency and performance. 

 

4.2 Models 

 

This section examines various research papers focusing on 

the use of models in the field of soiling detection on solar 

panels. Table 5 summarizes the studies, highlighting the types 

of models employed, their authors, years of publication, and 

specific focuses. The models explored include statistical and 

regression models, stochastic models, empirical models, and 

deep learning models, each offering unique approaches to 

analyzing and predicting the impact of soiling on PV systems. 

The effectiveness, advantages, and limitations of these models 

are discussed, providing a comprehensive understanding of 

their application in optimizing solar panel performance and 

maintenance. 

Table 5 details a comprehensive overview of various 

models used for soiling detection on solar panels, covering 

their applications, benefits, and specific focus areas. Statistical 

and regression models have been used to compare the 

effectiveness of visual inspection and infrared thermography, 

study the impact of surface contaminants on energy 

generation, and predict daily CI changes based on 

environmental variables. These models also investigated the 

impact of dust accumulation using transmittance loss, PM 

deposition-based, and empirical models. Stochastic models, 

such as dynamic models using Markov chains, accounted for 

dust accumulation and seasonal variations. Empirical models 

analyzed the effect of dust on transmittance and quantified 
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soiling rates using a temperature-corrected performance ratio 

(CPR). Deep learning models utilized convolutional neural 

networks for dust detection and classification, while machine 

learning models employed various algorithms to detect 

cleanliness levels and estimate soiling. These studies highlight 

the diverse approaches and technologies used to enhance the 

detection and analysis of soiling on solar panels, each offering 

unique benefits and facing specific challenges.  

Table 5. Models for soiling detection 

 
Theme Types Authors Year Focus 

Models 

Statistical and 

regression models 

Cardinale-Villalobos 

et al. [13] 
2021 

Comparing RGB visual inspection and infrared thermography with 

statistical analysis to detect soiling and shading. 

Bodnár et al. [26] 2019 
Correlating surface contaminants (leaves, dust, bird droppings) with 

electrical parameters to quantify energy loss. 

Guo et al. [38] 2016 
Developing linear and semi-physical models to predict daily CI from 

environmental variables. 

Sharma et al. [39] 2023 
Comparing transmittance, PM deposition, and empirical models to 

estimate soiling losses on PV panels. 

Supe et al. [44] 2020 
Using Google Earth Engine and satellite indices (NDSI, RNDSI, DBSI, 

LST) to monitor sand accumulation and PV soiling. 

Esposito et al. [46] 2023 
Creating soiling indices to assess irradiance instrument dirt deposition 

using ground and satellite data. 

Kalimeris et al. [53] 2023 
Using regression models to estimate PV soiling ratio by learning optimal 

performance from data. 

Ma et al. [54] 2023 
Establishing a linear relation between illumination and PV power to 

detect panel cleanliness. 

Caron and Littmann 

[42] 
2013 

Studying dust effects on PV in California and using the I-V curve 

technique to measure soiling rate. 

Stochastic models Cheema et al. [55] 2021 
Applying the Markov chain model to predict PV power output with dust 

accumulation and seasonal variations. 

Empirical models 

Azouzoute et al. [30] 2021 
Measuring transmittance loss of soiled glass and estimating 

energy/soiling ratio with mathematical equations. 

Skomedal et al. [41] 2019 
Using temperature-CPR to quantify soiling rates and detect cleaning 

events. 

Kumar et al. [56] 2023 
Developing a model to estimate PV power loss from soiling using 

meteorological derating factors. 

Abid et al. [25] 2018 
Using a wireless system to periodically monitor PV panels and classify 

faults, including soiling. 

Imran et al. [57] 2019 
Linking PM size distribution with PV soiling losses; developing a 

theoretical model for prediction. 

Coello and Boyle 

[58] 
2019 

Modeling PV soiling losses with tilt, tracking, rain, and PM 

concentration (PM2.5/PM10). 

Li and Niu [59] 2018 
Developing a physical model of dust deposition to predict light 

transmittance reduction. 

Rosas et al. [60] 2019 
Modeling dust layer thickness over time under varying environmental 

conditions. 

Alfaris [61] 2023 
Using an AI-based expert system to estimate solar radiation and detect 

dust without external devices. 

Zhou et al. [62] 2019 
Using the CMAQ model to estimate aerosol particle deposition and 

soiling impact across locations. 

Peterson et al. [63] 2022 
Developing a soiling data processing algorithm (SDPA) to calculate 

daily/monthly/yearly soiling rates. 

Deep learning 

El Ydrissi et al. [6] 2023 Using CNN and RGB photos to classify dust density on solar mirrors. 

Cavieres et al. [7] 2022 
Applying ANN with image analysis to quantify PV power loss from 

soiling and shading. 

Onim et al. [10] 2022 Using SolNet CNN to detect dust accumulation on solar panels. 

Ayyagari et al. [11] 2022 
Combining CNN and LSTM to detect and classify dust/soil on PV arrays 

using images and meteorological data. 

Zhang et al. [14] 2021 
Developing SolarQRNN probabilistic model to estimate PV power loss 

from surveillance images. 

Tribak et al. [15] 2019 
Quantifying dust particle concentration on PV panels using image 

processing. 

Hwang et al. [16] 2020 Using AI and image processing to detect PV soiling. 

Hajar et al. [17] 2023 Using YOLOv5 and CNN for automated soiling detection. 

Aji et al. [18] 2023 
Developing a smart image-based detection system to optimize PV 

cleaning. 

Qasem et al. [20] 2016 
Using image processing to optimize PV plant operation by analyzing 

panel surfaces. 

Sun et al. [64] 2023 
Reviewing dust detection techniques using image processing and deep 

learning approaches. 

Fan et al. [8] 2022 
Using a deep residual neural network (DRNN) to analyze dust 

concentration and distribution. 

Abuqaaud and 2020 Applying computer vision methods to detect dust/soil on PV surfaces. 
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Ferrah [9] 

Saquib et al. [19] 2020 Using ANN and dust/irradiance data to predict PV power output. 

Sriram and Sudhakar 

[12] 
2023 Detecting PV soiling using a thermal imaging system. 

Singh and Rizwan 

[37] 
2023 

Comparing LSTM, 1D CNN, and BiLSTM models to forecast PV power 

and irradiation under dust. 

Machine leaning 

Hanafy et al. [21] 2019 Using ML algorithms and UAV images to classify PV cleanliness levels. 

Czarnecki and Bloch 

[22] 
2022 Applying statistical classifiers to categorize PV panels based on soiling. 

Silva et al. [45] 2023 
Applying regression, Random Forest, MLP, Decision Tree, and LSTM to 

estimate soiling. 

Martin et al. [65] 2021 Using ML techniques to detect soiling in residential solar installations. 

Hwang et al. [23] 2023 
Integrating image processing, statistics, and ML to monitor soiling and 

support cleaning schedules. 

Mehmood et al. [28] 2023 
Proposing a system, conversion recovery system (SCRS) with IoT, 

cloud, and ANN to remotely monitor PV soiling. 

 

Table 6. Summary of the findings of using statistical and regression models, stochastic models and empirical models 

 
Usage of Statistical and Regression Models 

Examples of models Used for Advantages Disadvantages 
Number of 

papers 

Regression model Measuring the soling ratio  Easy to understand 
Cannot work well in case 

of input data error 

9 

Linear model 
Predicting the daily change in 

the CI of PV panels 

Its output is easy to predict 
Does not work well with a 

large number of variables 

Can include all variables 
Does not deal with 

categorical variables 

Usage of Stochastic Model 

Example of models Used for Advantages  Disadvantages 
Number of 

papers 

Markov chain model Predicting PV output power  

It is totally explicit about the 

assumptions being made 

Sensitivity to model 

parameters 

1  It monitors whether the predictions 

of a model are within the bounds 

one would expect 

It is quite complex to 

perform 

Usage of Empirical Models 

Examples of models Used for Advantages Disadvantages 
Number of 

papers 

Brownian motion, 

impaction and 

sedimentation 

Estimating the thickness of the 

accumulated dust layer on PV 

panels 
Adaptability Data dependency 

11 
Mathematical model 

Power loss 

Estimate the thickness of the 

accumulated dust layer 

Lambert-Beer law 
Impact of dust deposition on 

the light transmittance 
Simplicity Limited adaptability 

Average spectral 

transmittance 
Soiling ratio It has high reliability 

Difficulty with complex 

patterns 

A concise overview of the findings from the application of 

statistical and regression models, stochastic models, and 

empirical models in detecting soiling on solar panels is 

presented in Table 6 [66, 67]. 

Statistical and regression models, utilized in nine papers, 

include regression and linear models, which are widely used 

to analyze relationships between environmental factors and 

soiling accumulation. These models effectively predict trends 

in soiling ratios and estimate power loss due to dust 

accumulation. Their key strength lies in their simplicity and 

interpretability, making them useful for initial assessments and 

historical data analysis. However, their performance can be 

limited by input data errors, and they struggle with handling 

complex, nonlinear relationships and large datasets with 

multiple interacting variables. Empirical studies have shown 

that while regression models provide a reasonable estimation 

of soiling effects, they lack the adaptability required for 

dynamic environmental conditions. 

Stochastic models, such as the Markov chain model used in 

one study, introduce probabilistic approaches to capture the 

randomness in soiling accumulation. These models are 

particularly useful in scenarios where environmental variables 

fluctuate unpredictably, allowing for more robust predictions. 

The primary advantage of stochastic models is their ability to 

incorporate uncertainty, making them suitable for long-term 

soil forecasting. However, they are highly sensitive to 

parameter selection and require extensive historical data for 

calibration. While these models provide more flexibility than 

deterministic approaches, their computational complexity and 

reliance on extensive data make them challenging to 

implement in real-time applications. 

Empirical models, discussed in eleven papers, cover a range 

of applications, including estimating the thickness of 

accumulated dust layers and assessing power loss. Examples 

include transmittance loss models, PM deposition-based 

models, and mathematical models based on Brownian motion, 

impaction, and sedimentation. The main advantage of 

empirical models is their adaptability to specific locations and 
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conditions, as they are derived directly from experimental 

data. However, their performance is highly dependent on the 

availability of high-quality data, and they often require 

periodic recalibration. While these models are effective for 

short-term predictions, they may lack generalizability across 

different climatic regions. 

Table 7 features a concise summary of the findings from the 

use of deep learning models in detecting soiling on solar 

panels [68]. Deep learning models, particularly CNN and 

ANN, have revolutionized soil detection by enabling 

automated feature extraction from images and sensor data. 

CNNs have demonstrated exceptional performance in 

detecting soiling patterns using aerial and terrestrial images, 

reducing the need for manual inspection. These models excel 

in feature learning and can generalize well to new datasets 

when trained effectively. 

 

Table 7. Summary of the findings of using deep learning 

 
Usage of Deep Learning 

Type of models Advantages  Disadvantages  Number of papers 

CNN 
Feature learning  Data intensity 

11 
Transfer learning Computational complexity 

DNN 
Representation learning Data intensity 

1 
Transfer learning Computational complexity 

CLCM 
Texture analysis Feature engineering dependence 

1 
Low computational complexity Limited adaptability 

ANN 
Versatility Data intensity 

2 
Representation learning Computational complexity 

 

Table 8. Summary of the findings of using machine learning 

 
Usage of Machine Learning 

Type of models Advantages Disadvantages Number of papers 

K-means clustering 

Easily identifies trends and patterns Data acquisition 

6 

KNN 

Neural networks 

Random forest 

SVM 

Naïve Bayesian classifier  

No human intervention needed Interpretation of results 
Fisher's linear discriminator 

Multilayer perception 

XGBoost model 

 

Table 9. Comparative summary of each model 

 
Model Type Predictive Capabilities Strengths Weaknesses 

Regression models 
Trend estimation, power loss 

prediction 
Simple, interpretable 

Limited handling of nonlinear relationships, 

sensitive to input data errors 

Stochastic models 
Long-term forecasting under 

uncertainty 

Accounts for randomness, 

flexible 
Computational complexity, data-intensive 

Empirical models Site-specific predictions Adaptable, easy to implement Requires recalibration, limited generalizability 

Machine learning 

models 

Pattern recognition, automated 

soiling detection 

High accuracy, improves with 

data 

Requires large datasets, computationally intensive, 

potential overfitting 

Deep learning 

models 
Image-based soiling detection 

Automated feature extraction, 

high accuracy 

Data-intensive, requires high computational 

resources, interpretability concerns 

 

CNNs, for example, analyze pixel-level variations to detect 

dust accumulation on solar panels, improving accuracy in 

classification tasks. They can outperform traditional machine 

learning models by learning hierarchical features directly from 

raw image data. ANNs, on the other hand, are well-suited for 

nonlinear relationships between environmental conditions and 

soiling accumulation, providing robust predictive capabilities. 

However, deep learning models are data-intensive and require 

high computational power, making their deployment 

challenging in low-resource settings. 

Despite their advantages, deep learning models also have 

limitations. Their effectiveness heavily relies on the 

availability of large, high-quality labeled datasets, and they are 

prone to overfitting when trained on limited or unbalanced 

data. Computational requirements can also pose a challenge, 

as training complex networks requires substantial processing 

power and memory. Furthermore, interpretability remains a 

concern, as deep learning models function as "black boxes," 

making it difficult to understand how predictions are 

generated. 

Empirical studies highlight that while CNNs achieve state-

of-the-art accuracy in soiling detection, their dependence on 

large labeled datasets remains a key limitation. Some research 

suggests that transfer learning techniques and data 

augmentation methods can mitigate these issues by leveraging 

pre-trained models and enhancing dataset diversity. 

Additionally, hybrid models combining deep learning with 

traditional machine learning techniques have shown promise 

in improving accuracy and reducing computational 

complexity. 

A concise summary of the findings from the use of machine 

learning models in soiling detection for solar panels is shown 

in Table 8 [69]. Machine learning models have gained 

recognition in soiling detection due to their ability to process 

large datasets and identify complex patterns in soiling 

accumulation. These models, including K-means clustering, 
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K-Nearest Neighbor (KNN), Neural Networks, Random 

Forest, Support Vector Machines (SVM), Naïve Bayesian 

classifiers, Fisher's Linear Discriminator, Multilayer 

Perceptron, and XGBoost, excel in detecting soiling from 

image-based data and sensor measurements, offering higher 

accuracy compared to traditional statistical methods. 

A key advantage of machine learning models is their 

adaptability to diverse environmental conditions and their 

ability to improve over time as more data becomes available. 

For instance, Random Forest and XGBoost, both ensemble 

learning techniques, demonstrate high predictive accuracy by 

aggregating multiple decision trees. SVMs are effective in 

distinguishing between clean and soiled solar panels based on 

feature extraction techniques, while KNN models leverage 

similarity-based learning to classify different levels of soiling. 

Despite their strengths, machine learning models also have 

limitations. Their performance depends heavily on the 

availability of high-quality training data, and they require 

significant computational resources for real-time applications. 

Moreover, certain models, such as SVMs and neural networks, 

can be challenging to interpret, making it difficult to 

understand the decision-making process. Additionally, 

overfitting remains a common concern, particularly when 

models are trained on limited or biased datasets. 

Different models have been implemented to process data for 

detecting soiling on solar panels, each with distinct strengths 

and limitations. Statistical models mathematically represent 

relationships between variables, making them effective for 

analyzing data and making predictions when patterns are clear. 

They are particularly useful for identifying trends in historical 

data, but struggle with complex and nonlinear relationships. 

Stochastic models incorporate randomness or uncertainty to 

account for probabilistic factors such as weather patterns. 

These models are valuable for long-term soiling predictions 

but require large datasets for accuracy and are less efficient 

with smaller datasets. Empirical models, which rely on 

observed data and experiments, offer adaptability and 

simplicity but are heavily dependent on data availability and 

site-specific conditions. 

Machine learning models enhance soiling detection by 

identifying trends and anomalies across diverse environmental 

conditions. They excel in tasks such as image recognition and 

real-time monitoring, but require extensive data for training. 

Deep learning models provide advanced capabilities in feature 

learning and predictive modeling, making them ideal for 

analyzing complex data structures like image-based 

assessments of solar panels. However, both machine learning 

and deep learning models demand significant computational 

resources and large training datasets. 

A comparative analysis highlights the effectiveness of these 

models under different conditions. Statistical and regression 

models, such as linear and empirical models, are valued for 

their simplicity and ability to establish clear relationships 

between variables, but are best suited for structured data with 

well-defined patterns. Stochastic models, like the Markov 

chain model, effectively incorporate randomness and seasonal 

variations, making them useful for long-term soil predictions, 

though their accuracy depends on large datasets. 

Empirical models estimate the impact of soiling on 

transmittance and energy loss, offering practical insights but 

relying heavily on high-quality experimental data. In contrast, 

machine learning models, including decision trees, SVM, and 

artificial neural networks, provide superior predictive 

capabilities by identifying complex patterns and trends in large 

datasets. These models are particularly well-suited for 

adaptive soiling detection and real-time monitoring. Deep 

learning approaches, such as CNNs and LSTM networks, 

achieve the highest accuracy in image-based soiling detection, 

making them ideal for automated inspection systems, though 

they require extensive computational resources and large 

training datasets to maintain performance. 

The choice of model depends on the specific requirements 

of the application. Empirical and statistical models are 

advantageous for rapid estimations with minimal 

computational costs, while machine learning and deep 

learning models excel in automated detection and large-scale 

monitoring. Future research should explore hybrid approaches 

that integrate multiple models, leveraging their strengths to 

improve accuracy and efficiency in diverse environmental 

conditions. 

To provide a clearer comparison, Table 9 summarizes the 

predictive capabilities, strengths, and weaknesses of each 

model discussed.  

 

4.3 Cleaning and mitigation systems 

 

This section examines various research papers focused on 

cleaning and mitigation systems for soiling detection on solar 

panels. Table 10 provides an overview of the studies, 

highlighting the authors, publication years, and specific focus 

areas. These systems employ a variety of innovative 

approaches, including IoT technologies, robotic systems, anti-

soiling coatings, and automated cleaning mechanisms, to 

address the challenges posed by dust and dirt accumulation on 

PV panels. The effectiveness, advantages, and limitations of 

these cleaning and mitigation strategies are discussed, offering 

insights into their application for optimizing solar panel 

performance and maintenance. 

Various publications focus on designing and proposing 

mitigation and cleaning systems to address dust accumulation 

on solar panels. Shields, such as 1D and 2D shields, have been 

used to mitigate dust, demonstrating effective results. Studies 

have shown that 1D shields perform better than 2D shields. 

Additionally, combining 1D shields with antistatic coatings 

and vibrating the panels yielded encouraging results in dust 

mitigation. Electrostatic cleaning devices have also been 

employed, providing high efficiency in cleaning performance. 

Other proposed systems for dust mitigation or removal 

include automatic cleaning using Arduino Uno 

microcontrollers, automated robotic systems, and anti-soiling 

coatings. Automatic cleaning systems using Arduino Uno 

microcontrollers have maintained solar panel performance 

through washing mechanisms activated upon detecting dust 

accumulation. The use of automated robotic systems has 

highlighted efficiency and safety improvements, as well as 

enhancements in PV performance. Coated mirrors have shown 

a lower soiling index compared to uncoated mirrors, 

effectively reducing dust particles. 

Future research should focus on a comprehensive analysis 

of cleaning systems to identify the most cost-effective and 

accurate solutions. Comparisons between existing systems 

should be made to recommend the best approach. 

Additionally, new systems leveraging emerging technologies 

and trends should be proposed, aiming to surpass the 

performance of existing systems. Evaluating and comparing 

the challenges and maintenance requirements of proposed and 

new systems is essential to ensure long-term effectiveness and 

sustainability. 
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Table 10. Cleaning and mitigation systems 

 
Theme Authors Year Focus 

Cleaning and 

mitigation systems 

Narvios and Nguyen [24] 2021 
Developing an IoT-based monitoring system with an integrated 

cleaning mechanism for PV dust removal. 

Chockalingam et al. [27] 2023 
Creating an IoT-based non-invasive method to detect hotspots and 

quantify affected PV areas. 

Olorunfemi et al. [29] 2023 
Designing an Arduino-based system for dirt detection and automated 

cleaning. 

Mohammed et al. [33] 2018 
Proposing an Arduino Uno-based system for dust detection, power 

monitoring, and automatic cleaning. 

Ghodki [34] 2022 Introducing a robotic arm using an IR sensor-based cleaning technique. 

Lopes et al. [43] 2019 
Evaluating anti-soiling coatings for CSP mirrors with economic 

analysis. 

Pouladian-Kari et al. [70] 2022 
Proposing NightFlip system: inverting panels at night to use 

condensation for cleaning. 

Eisa et al. [71] 2023 
Adding windshield protection to mitigate dust on PV panels powering 

light posts. 

Altıntaş and Arslan [72] 2021 Exploring electrostatic cleaning to remove dust from PV panels. 

Yerramsetti et al. [73] 2021 Designing a robotic system to clean floating solar panels. 

Patil et al. [74] 2018 Developing a dust cleaning mechanism to restore panel efficiency. 

Alghamdi et al. [75] 2019 Proposing an automated PV cleaning system for desert conditions. 

Dahlioui et al. [76] 2022 Using dew flow as a natural soiling mitigation method. 

Najeeb et al. [77] 2018 
Developing automated dust cleaning technology to reduce soiling 

losses. 

Hossain et al. [78] 2022 
Reviewing anti-dust technologies, mitigation methods, and influencing 

factors. 

Aldawoud et al. [79] 2022 
Proposing a motorized curtain system to protect PV modules during 

dust storms and nights. 

Fares et al. [80] 2021 
Reviewing critical issues of PV soiling in the Gulf Cooperation 

Council. 

Rudnicka and Klugmann-

Radziemska [81] 
2021 

Reviewing self-cleaning and anti-dust coatings for restoring PV 

performance. 

de Jesus et al. [82] 2018 
Investigating hydrophilic/hydrophobic coatings for CPV dust 

mitigation. 

Joshi et al. [83] 2021 
Analyzing dust accumulation impact on PV arrays under different 

deposition patterns. 

Hirohata et al. [84] 2013 Studying PMMA anti-soiling layers for PV panels. 

Kumar et al. [85] 2021 Reviewing solar tracker technologies for improving PV efficiency. 

Sayyah et al. [86] 2013 
Examining dust accumulation on CPV and different cleaning methods 

to reduce energy loss. 

 

 

5. ECONOMIC AND ENVIRONMENTAL 

IMPLICATIONS OF SOILING AND MITIGATION 

STRATEGIES 

 

Soiling on solar panels has significant economic and 

environmental implications, making effective detection and 

mitigation strategies essential for optimizing PV performance 

and long-term sustainability. Economically, soiling reduces 

energy output, leading to financial losses for solar farm 

operators, residential users, and industrial-scale energy 

producers. This decline in efficiency increases the levelized 

cost of electricity (LCOE) and reduces the overall return on 

investment for solar energy projects. Moreover, the costs 

associated with manual cleaning, labor, and downtime can be 

substantial, particularly in utility-scale installations where 

frequent maintenance is required. 

Implementing advanced soiling detection and mitigation 

techniques can significantly reduce these costs. AI-driven 

monitoring systems, drone-based inspections, and automated 

robotic cleaning technologies offer real-time detection and 

precise maintenance scheduling, ensuring cleaning is 

performed only when necessary, rather than on a fixed routine. 

This predictive maintenance approach not only minimizes 

operational expenses but also extends the lifespan of PV 

panels by preventing unnecessary physical interventions that 

may degrade their surface over time. Future research should 

focus on developing cost-efficient sensor technologies that 

integrate with IoT-based monitoring systems to provide real-

time, remote soiling detection with minimal human 

intervention. 

From an environmental perspective, traditional water-based 

cleaning methods pose challenges, particularly in arid and 

drought-prone regions where water scarcity is a major 

concern. In many cases, large-scale solar farms require 

thousands of liters of water per cleaning cycle, contributing to 

water depletion and increasing operational costs. The 

development of water-free cleaning solutions, such as 

electrostatic, hydrophobic, and self-cleaning coatings, 

presents a sustainable alternative to reduce environmental 

impact. Additionally, robotic cleaning systems that utilize 

compressed air, vibration, or mechanical brushing are being 

explored as eco-friendly alternatives to water-intensive 

methods. 

Another critical environmental consideration is the impact 

of soiling on land use and material efficiency. When PV 

efficiency decreases due to soiling, more panels may be 

required to generate the same amount of power, leading to 

increased land usage and material waste. By enhancing soiling 

detection accuracy and mitigation efficiency, energy output 

can be optimized, reducing the need for excessive panel 

356



 

installations and minimizing the environmental footprint of 

solar farms. 

To further advance the economic and environmental 

sustainability of soiling detection and mitigation strategies, 

future research should explore cost-benefit analyses, life-cycle 

assessments, and policy frameworks that encourage the 

adoption of advanced soiling detection methods. Governments 

and industry stakeholders should evaluate incentive programs 

for adopting automated and sustainable cleaning technologies 

in large-scale solar farms. Additionally, interdisciplinary 

research integrating material science, AI, and environmental 

engineering can help develop next-generation coatings, 

sensors, and autonomous cleaning systems that are both cost-

effective and environmentally friendly. Addressing these 

economic and environmental challenges, innovative soiling 

detection and mitigation solutions will play a crucial role in 

enhancing the reliability, efficiency, and sustainability of solar 

energy systems worldwide. 

 

 

6. CONCLUSIONS AND FUTURE RESEARCH 

 

The issue of soiling on solar panels has become increasingly 

critical, necessitating the development of innovative methods 

and technologies to detect and mitigate the effects of dust and 

dirt accumulation. To address this challenge and enhance the 

performance and reliability of solar energy systems, a 

comprehensive analysis of 75 publications was conducted, 

identifying key findings and research gaps in the field of 

soiling detection and mitigation. 

Initially, a comprehensive content analysis of the literature 

in the field was conducted. This analysis provided key insights 

into current studies on the detection of soiling on solar panels. 

Publications were classified into three themes: inspection 

tools, models, and cleaning and mitigation systems, to obtain 

key findings and identify possible research gaps. Following 

the content analysis, a bibliometric analysis was performed. 

This included examining a total of 683 papers extracted from 

the Scopus database, which were then narrowed down to 75 

publications after screening and removing duplicates. The 

bibliometric analysis studied aspects such as co-occurrence 

maps based on text data, keywords, and country of co-

authorship. This analysis highlighted the significant growth in 

research on soiling detection, particularly from 2018 to 2023, 

and identified key trends and collaborations in the field. 

Various inspection tools, including cameras, sensors, and 

drones, have been employed to detect soiling on solar panels. 

These tools provide detailed observations and real-time data 

crucial for accurate soiling detection. The integration of these 

tools with advanced technologies like AI and machine learning 

has shown promise in enhancing detection capabilities and 

offering a comprehensive understanding of soiling impacts. 

Different types of cameras, such as digital, thermal, and high-

resolution cameras, along with sensors like dust and 

temperature sensors, have been widely used. These tools are 

essential for identifying and measuring the extent of soiling, 

which directly affects the efficiency of PV systems. 

Different models have been explored to analyze and predict 

the impact of soiling on PV systems. These include statistical, 

stochastic, empirical, and machine learning models. Each 

model type has demonstrated effectiveness in different 

scenarios, with machine learning models showing particular 

promise due to their ability to identify trends and patterns 

without human intervention. The application of deep learning 

models, particularly convolutional neural networks, has 

proven effective in processing large datasets and improving 

the accuracy of soiling detection. These models have been 

used to quantify power loss, predict soiling patterns, and 

optimize maintenance schedules. 

Innovative cleaning systems, such as IoT-based solutions, 

robotic systems, and anti-soiling coatings, have been proposed 

to address the challenges posed by dust and dirt accumulation. 

These systems aim to optimize the performance and 

maintenance of solar panels by mitigating the impact of 

soiling. IoT-based cleaning systems enable remote monitoring 

and automated cleaning processes, ensuring consistent 

maintenance without manual intervention. Robotic cleaning 

systems and anti-soiling coatings have also shown potential in 

maintaining the cleanliness of PV panels, thus enhancing their 

efficiency. 

Future research should focus on developing and integrating 

advanced inspection tools that offer higher efficiency and cost-

effectiveness. Key research questions include: 

• How can AI-driven inspection tools improve the 

accuracy of soiling detection in real-time? 

• What are the most cost-effective and scalable sensor 

technologies for monitoring soiling in different 

environmental conditions? 

To address these questions, studies should explore the 

application of deep learning techniques, for example, 

convolutional neural networks, for image-based soiling 

detection and the use of IoT-enabled sensor networks for 

continuous monitoring. Additionally, field experiments 

comparing AI-based models with traditional detection 

methods will help validate their effectiveness. 

Further investigation is needed into the best models for 

soiling detection. Research should aim to: 

• Compare and benchmark different AI models, for 

example, neural networks, SVM, and decision trees, to 

assess their performance, efficiency, and reliability. 

• Develop hybrid models that integrate statistical, 

empirical, and machine learning approaches to enhance 

predictive accuracy. 

A combination of simulation studies and real-world field 

trials will be necessary to determine the robustness of these 

models under varying environmental conditions. 

Comparative studies on different cleaning systems should 

also be conducted to identify the most effective and cost-

efficient solutions. Key questions include: 

• Which cleaning mechanisms, for example, robotic, 

electrostatic, or hydrophobic coatings, offer the best 

balance of efficiency and sustainability? 

• How do environmental factors such as humidity, 

temperature, and dust composition impact the 

effectiveness of different cleaning methods? 

Experimental comparisons of cleaning technologies in 

diverse climate conditions will provide valuable insights into 

their long-term viability and maintenance requirements. 

Additionally, research should explore emerging trends such 

as integrated sensor technologies, self-cleaning surfaces, and 

the use of big data analytics to identify patterns and trends in 

soiling. Exploring the potential of combining IoT with 

machine learning algorithms could lead to more advanced and 

efficient soiling detection and mitigation systems. Further, 

investigating the environmental and economic impacts of 

these technologies will be essential for their widespread 

adoption. 

Addressing the challenges of soiling on solar panels 
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requires a multi-faceted approach that includes the 

development of advanced inspection tools, the application of 

robust models, and the implementation of effective cleaning 

systems. By focusing on these areas, future research can 

contribute to improving the efficiency and performance of 

solar panels, ultimately supporting the advancement of 

renewable energy technologies. This paper has laid the 

groundwork for future studies by providing a comprehensive 

overview of current research, identifying key findings, and 

suggesting directions for further exploration. 
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