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The smart-grid-enabled demand-side energy management is used to regulate consumer 

energy demand. The consumer can adjust their energy consumption in response to the 

pricing strategy of the grid in the market-based programs. The energy bidding methodology 

is proposed to predict the electricity rate and optimize the energy demand of the chiller 

system for energy consumption and cost minimization. The forecasted electricity price and 

the energy demand schedule generated by the optimization algorithm are used to bid in the 

electricity market. To forecast the electricity rate, a hybrid model Hilbert Transform-Based 

Long Short-Term Memory (Hilbert-LSTM) is proposed and the results indicate the 

improvement in the prediction accuracy in terms of the Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The energy 

consumption is optimized in the dynamic electricity tariff to generate an optimal energy 

demand schedule. The bid electricity price is calculated for three different cases and the 

bidding cost and bidding reliability for the optimized energy demand schedule are 

compared. The results show that the bidding cost is reduced by 37% and bidding reliability 

is the highest for the proposed electricity forecasting model Hilbert-LSTM. 
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1. INTRODUCTION

Decisions of the electricity market operators referring to the 

price at which they sell electricity are increasingly part of the 

electrical energy management system [1]. Interpreting the data 

on electricity prices can help electricity operators to make 

appropriate decisions in due time to enhance their grid 

performance. Such an approach being driven by electricity 

price data, requires optimized energy consumption and a 

balanced allotment of resources. The applications of the 

Demand Side Management (DSM) in electrical Smart Grid 

comprise optimizing energy consumption, reduction of peak 

demand, and integrating renewable energy sources in the grid. 

The use of advanced metering infrastructure and IoT devices 

enables the real-time monitoring and control of energy usage 

[2]. This approach of the system motivates the consumer to 

make informed decisions about their energy consumption 

leading to cost minimization. This collectively improves the 

grid stability and reliability by maintaining a balance between 

the demand and supply dynamically. In the DSM, there is 

more focus given on the research on Demand Response (DR) 

methods and resources to achieve the energy demand peak 

clipping, valley filling, load shifting, and load conservation for 

DR development and management with the help of reliability-

based programs and market-based programs [3-5]. The 

immediate near effect of these schemes is the postponement of 

the need for constructing new power plants alleviating the 

burden in the short term and easing the gap between the 

demand and supply side power. The real-time monitoring of 

the energy consumption and other control parameters with the 

feedback mechanism can enable timely control adjustments to 

the demand schedule, ensuring adaptability during 

contingency circumstances. This inclusion and integration of 

advanced optimization techniques will certainly revolutionize 

electrical load management and lead to a sustainable and 

resilient energy infrastructure. 

The significance of this research is that the traditional 

electricity pricing schemes that offer electricity at fixed tariffs 

have limited scope to incentivize consumers in the DR 

programs. The traditional pricing schemes limit the maximum 

energy demand reduction and load shifting to low energy 

demand durations, with the proposed methodology discussed 

in this article this limitation of the traditional pricing scheme 

is solved. The proposed approach results in significant cost 

savings and improves the grid reliability by reducing the 

maximum demand on the grid, which can potentially reduce 

carbon emissions. The recent developments in the electricity 

market motivate consumers and power suppliers to purchase 

and sell electricity at competitive rates. With the electricity 

rate data available, it is feasible to generate accurate price 
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forecasts that can be used to make informed decisions by 

consumers and the utilities. The advanced metering 

infrastructure and the IoT devices are required in the proposed 

methodology to measure the energy consumption and control 

the consumer appliances in response to the changes in the 

electricity prices. 

 

 

2. LITERATURE REVIEW 

 

The sustainable approach of the DR programs can be 

realized potentially with market-based schemes [6, 7]. The 

increasing challenges in electricity operations need optimal 

pricing strategies to benefit the consumers and utilities. The 

authors [8-10] discuss the implementation of the Real Time 

Pricing (RTP) scheme to reduce the peak demand on the grid. 

The prediction of electricity prices and load demand is 

necessary for DR management [11]. 

The efficient implementation of the DSM programs requires 

accurate electricity price forecasting. The market operators 

need a better system forecast to make informed decisions that 

can maximize the benefits of the stakeholders and enhance the 

system's reliability. The forecasting techniques are broadly 

classified as time series models, machine learning and deep 

learning methods, and hybrid techniques. The authors [12] 

have used traditional techniques as the Autoregressive (AR) 

and Autoregressive moving average (ARMA) models, to 

forecast the spot electricity prices. These methods are used for 

forecasting univariate time series and for short-term forecasts. 

The authors used the machine learning techniques of 

regression to generate the electricity forecasts [13]. The 

different signal processing technique is used by the authors 

[14] to decompose and forecast the electricity price with the 

traditional time series method. The machine learning and deep 

learning methods with more parameters and better training 

techniques give better performance than the time series 

forecasting techniques. The authors [15] compare the different 

forecasting techniques as the Autoregressive integrated 

moving average (ARIMA), random forest regression, and 

neural network models. The authors in their work use 

techniques as the Long Short-Term Memory (LSTM), and 

Convolutional Neural Network (CNN)-LSTM to forecast the 

day-ahead electricity prices [16]. Various researchers have 

developed hybrid models using the signal processing methods 

and the traditional time series, machine learning, and deep 

learning methods [17-20], and improved the deep learning 

techniques [21, 22]. 

With the advances in technology with IoT and deregulation 

of the electricity market, many consumer appliances can be 

operated with optimal schedules in the smart grid, different 

control devices and schemes to control the shiftable and non-

shiftable loads, where the different consumer appliances that 

are connected to the grid are controlled based on the energy 

usage pattern, availability of electricity and consumer 

preferences [23, 24]. The different appliances with thermal 

storage capabilities as heaters, air conditioners, HVAC, and 

battery storage, can be used to minimize the peak electricity 

load [25, 26]. Different optimization algorithms are used to 

schedule the loads and optimize the energy consumption [27]. 

The existing time series forecasting methods discussed are 

traditional methods that use the techniques to estimate the 

trend, seasonality, and cyclicity in the time series to forecast. 

The other techniques as the machine learning based models, 

intricately model the trends in the time series to estimate the 

forecast. The proposed method of Empirical Mode 

Decomposition – Hilbert Transform-Based Long Short-Term 

Memory (EMD-Hilbert-LSTM) discussed in Section 3.1 has 

the advantage of decomposing the time series signal in 

components with different frequency contents and then the 

LSTM model trains on those inputs, which further improves 

the prediction accuracy over the traditional LSTM technique 

and it more intricately models the time series fluctuations. 

 

2.1 Contributions 

 

In this work electricity price forecasting and energy 

optimization-based electricity bidding methodology is 

proposed for bidding in the day ahead market. A hybrid 

electricity rate forecasting model is proposed that combines 

the EMD method, Hilbert transform, and the LSTM technique. 

The prediction performance of the forecasting model is 

compared in terms of the error evaluation metric with the 

existing algorithms. The prediction performance is improved 

with the proposed model. Later, the energy demand utilization 

of the refrigeration system is optimized in the market-based 

DR program with the Genetic Algorithm-JAYA (GA-JAYA) 

Algorithm. The refrigeration load energy demand is optimized 

with the constraints of indoor temperature and power demand. 

The predicted electricity rate and the generated optimal load 

schedule are used to bid in the electricity market. The different 

cases are considered for bidding with the forecasted price. The 

bidding evaluation comprises 1) the bidding cost calculated for 

different cases based on the bidding prices quoted for the 

forecasting algorithms and the optimal chiller plant load 

schedule generated with the optimization algorithm and 2) the 

bidding reliability with the different forecasting algorithms. 

The results indicate that the bid price with the proposed 

forecasting algorithm EMD-Hilbert-LSTM gives the lowest 

cost and highest bidding reliability. 

The paper is organized as follows: Section 3 discusses the 

methodology of the research, Section 4 includes the 

experimental implementation, Section 5 includes the results 

and discussion, and Section 6 concludes with the summary of 

the paper. 

 

 

3. METHODOLOGY 

 

The proposed methodology integrates the electricity price 

forecasting model with the energy optimization model to 

generate an optimal energy consumption schedule. The 

forecasted electricity price and the energy demand schedule 

are used to bid in the day-ahead electricity market. The 

electricity price is highly volatile, non-stationary, and non-

linear and requires techniques that can forecast with better 

accuracy. The literature discusses the different forecasting 

methods that can be used for forecasting. The authors in this 

paper develop a hybrid model based on the signal 

decomposition using the EMD technique and the Hilbert 

transform to generate the amplitude and frequency spectrum 

with the LSTM model to forecast the electricity price. The 

energy demand utilization of the refrigeration system is 

optimized in the real-time priced program to minimize the cost 

using the GA-based JAYA optimization algorithm. The 

generated energy schedule and the predicted electricity price 

are used to bid in the electricity market. The electricity price 

data is collected from the electricity power market and is used 

to generate the electricity price forecast and the optimal energy 
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demand schedule. The forecasted electricity price and the 

energy demand schedule are used to bid in the electricity 

market. The consumer and power generators' bids are sorted 

and selected by the market operator and the Market Clearing 

Price (MCP) is computed based on the supply and demand 

equilibrium. The market operator checks for the availability of 

the transmission corridor and then the selected bids are 

communicated to the consumers and the power generators. 

The power generators dispatch the electricity to the 

distribution station, which is then distributed to the consumers. 

 

3.1 Forecasting of electricity price 

 

3.1.1 EMD 

EMD is a technique that is used to analyze complex non-

linear and non-stationary signals [28]. The technique involves 

decomposing the input signal into component signals as the 

Intrinsic Mode Function (IMF) signals using the 

decomposition algorithm. The algorithm steps of EMD are as 

follows,  

Step 1. Identify the maxima and minima points of the input 

signal x(t).  

Step 2. Calculate the two function-fitting curves of the 

upper and lower envelopes with the cubic spline interpolation 

method. 

Step 3. The average value m(t) of the upper and lower 

envelopes is calculated. 

Step 4. The m(t) is subtracted from the input signal to 

generate a signal c(t). 

Step 5. Indicate c(t) as the ith IMF. 

The process of calculating the signal m(t) continues until the 

generated signal c(t) satisfies the IMF conditions given as: 

·The number of consecutive extremes and the number of 

zero crossings must be equal. 

·The average of the envelope characterized by the local 

maxima and minima should be zero. 

·The IMFs should have not less than two extreme values 

either minimum or maximum. 

Step 6. The c(t) signal is subtracted from the signal x(t) to 

generate the residual signal r(t). 

Step 7. The residual signal r(t) is used as the input signal 

and the process to calculate the IMFs is repeated.  

Step 8. The process ends when the residual signal has only 

one maximum or minimum. 

The advantage of the EMD technique is that it provides a 

detailed time-frequency representation of the input signal, 

representing the fluctuations in the component IMFs and the 

trend in the residual signal. 

 

3.1.2 Hilbert transform 

Hilbert transform is a spectral analysis method to generate 

the time domain amplitude and frequency spectrum of the 

input signal [29]. The analytical signal is formed from the 

input signal and amplitude and frequency are calculated in the 

time domain. 

 

𝐻[𝑥(𝑡)] = ∫
𝑥(𝑡)

(𝑡 − τ)

+∞

−∞

𝑑𝑡 (1) 

 

where, x(t) and H[x(t)] are the complex conjugate pairs, and 

using the Euler’s identity, z(t) the analytical signal that can be 

expressed as: 

 

𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝐻[𝑥(𝑡)] = 𝑎(𝑡)𝑒𝑗𝜙(𝑡) (2) 

 

where, a(t) is the amplitude and ϕ(t) is the phase angle given 

by: 

 

𝑎(𝑡) = √𝑥(𝑡)2+𝐻[𝑥(𝑡)]2 (3) 

 

𝜙(𝑡) = arctan
𝐻[𝑥(𝑡)]

𝑥(𝑡)
 (4) 

 

and ω, the instantaneous frequency is given by: 

 

ω =
𝑑𝜙(𝑡)

𝑑𝑡
 (5) 

 

The Hilbert transform generates the spectrum that is the 

variation of the instantaneous amplitude and frequency. The 

Hilbert transform steps are as follows: 

Step 1. IMF signals generated with the EMD process are 

Hilbert transformed with Eq. (1). 

Step 2. The analytical signal z(t) is formed with the IMF 

signal and the complex conjugate Hilbert transformed signal 

with Eq. (2). 

Step 3. The amplitude spectral and frequency spectral is 

generated with the Eqs. (3)-(5). 

The EMD decomposed signal that is Hilbert transformed 

generates the amplitude and frequency spectrum, this time 

dependent spectrum data is given as a vector to the LSTM [30] 

network to train and predict the time series data. 

 

3.2 Energy consumption optimization of the refrigeration 

system 

 

The energy demand utilization of the refrigeration system is 

optimized for the forecasted electricity price to minimize the 

chiller plant operating cost. The electricity price that varies for 

every 15-minute time interval is used to schedule the energy 

demand of the load for the time intervals that will reduce the 

operating cost. The DR program in the market-based scheme 

with the real-time electricity unit rate is used to generate the 

optimized energy demand schedule. The generated optimal 

energy demand schedule and the predicted electricity rate are 

used to bid in the electricity market. Figure 1 depicts the 

methodology to optimize the energy demand for the chiller 

plant. The time-varying electricity rate and the outdoor 

ambient temperature are input to optimize the energy 

consumption and demand schedule generated for the chiller 

plant. The optimization problem is solved using the GA-JAYA 

optimization algorithm. 

 

 
 

Figure 1. Input-output flow of the method to optimize the 

energy consumption 
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3.2.1 Optimization problem formulation 

The optimization problem is formulated for the chiller plant 

to operate in the real-time priced scheme for reducing the 

refrigeration system operating cost. The cost function 

calculates the operating cost based on the time-varying energy 

consumption and electricity rate during every 15-minute 

interval. 

The mathematical model of the chiller plant is given by the 

Eq. (6) as follows: 

 

𝑇𝑐𝑝(𝑡 + 1) = 𝐸 × 𝑇𝑐𝑝(𝑡) + (1 − 𝐸) [𝑇𝑜(𝑡) +

(𝐶𝑂𝑃 ×
𝑞𝑐𝑝(𝑡)

𝐴
)]  

(6) 

 

This equation characterizes the indoor temperature of the 

refrigeration chiller plant based on the power utilization and 

the outdoor ambient temperature. The indoor temperature 

Tcp(t+1) for the time slot is a function of the indoor temperature 

Tcp(t) for the current interval, the outdoor temperature To(t), 

the power utilized for the time interval qcp(t), the system inertia 

(E), thermal conductivity (A) and the coefficient of 

performance (COP). 

The indoor temperature variation limit is set by the 

consumer, that is given by Eqs. (7) and (8) for the minimum 

and maximum temperatures calculated on the set temperatures 

of 11℃ and 15℃, respectively. The parameter d is set to 2. 

 

𝑇𝑐𝑝
𝑚𝑖𝑛(𝑡) = 𝑇𝑐𝑝

𝑚𝑖𝑛𝑠𝑒𝑡(𝑡) − 𝑑 (7) 

 

𝑇𝑐𝑝
𝑚𝑎𝑥(𝑡) = 𝑇𝑐𝑝

𝑚𝑎𝑥𝑠𝑒𝑡(𝑡) + 𝑑 (8) 

 

The objective function is to be solved for the constraints of 

refrigeration temperature and the rated power limits during 

every 15-minute time interval. The objective function is the 

cost calculated for every 15-minute interval, computed with 

the energy demand and the real-time electricity rate. Eq. (9) is 

to be solved and the constraints are given by Eqs. (10) and 

(11). 

 

f=∑ 𝑃𝑟𝑖𝑐𝑒(𝑡) × 𝑞𝑐𝑝(𝑡) + 𝐵 × ∑ |𝑇𝑐𝑝(𝑡) −𝑁
𝑡=1

𝑁
𝑡=1

𝑇𝑑(𝑡)|  
(9) 

 

𝑇𝑐𝑝
𝑚𝑖𝑛(𝑡) < 𝑇𝑐𝑝(𝑡) < 𝑇𝑐𝑝

𝑚𝑎𝑥(𝑡)  (10) 

 

0 < 𝑞𝑐𝑝(𝑡) < 𝑞𝑐𝑝
𝑚𝑎𝑥  (11) 

 

Eq. (9) combines the operating cost of the refrigeration 

system and the refrigeration mean set Td temperature deviating 

component. Td is the mean of the temperatures 𝑇𝑐𝑝
𝑚𝑖𝑛  and 

𝑇𝑐𝑝
𝑚𝑎𝑥 . The factor B assigns weight to the temperature 

divergence component. Larger values of B reduce the 

temperature divergence more than the cost to be minimized. 

The constraints are the refrigeration temperature and the 

power limits are given by Eqs. (10) and (11) respectively. The 

optimization problem is solved using the optimization 

algorithm to calculate the schedule for optimal power 

consumption. The swarm-based optimization algorithm is 

used to solve the optimization problem. 

 

3.2.2 GA-JAYA algorithm 

The modified optimization algorithm GA-JAYA is a 

combination of the GA and the JAYA algorithm. The hybrid 

algorithm uses the GA method to generate the initial solution 

variables [31]. The GA process of genetic crossover and 

mutation is used to generate the initial solution by retaining the 

best sample solutions. The JAYA algorithm [32] is combined 

with the GA algorithm to solve the optimization problem [33]. 

 

𝑋⃗𝑛𝑒𝑤 = 𝑋⃗ + 𝑟1⃗⃗⃗ ⃗. (𝑋 ⃗⃗⃗⃗
𝑏𝑒𝑠𝑡 − 𝑋⃗) − 𝑟2⃗⃗⃗⃗ . (𝑋⃗𝑤𝑜𝑟𝑠𝑡 − 𝑋⃗)  (12) 

 

The variable vector 𝑋⃗ is used to calculate the new variable 

𝑋⃗𝑛𝑒𝑤  based on the variables 𝑋⃗𝑏𝑒𝑠𝑡 , 𝑋⃗𝑤𝑜𝑟𝑠𝑡  solutions for that 

iteration that are best and worst, using the random vectors 𝑟1⃗⃗⃗ ⃗ 

and 𝑟2⃗⃗⃗⃗  that are between [0, 1]. 

The steps for implementing the GA-JAYA algorithm for 

this energy demand optimization are as follows, where the 

solution variable is the energy demand of the refrigeration 

system for the 96-time intervals. 

Step 1. The optimization objective function with Eq. (9) is 

calculated for the GA-generated solutions initially. 

Step 2. For every iteration, the best and worst solution is 

computed and the optimal solution for the iteration is 

evaluated with Eq. (12).  

Step 3. In case the optimal solution in that iteration is better 

than the solution variable, then it is replaced or else the earlier 

solution variable is retained.  

Step 4. The solution variables are calculated iteratively until 

the best-performing solution is identified and the iterations are 

completed. 

Step 5. The solution variables are calculated for the 

objective function that has the constraints of the indoor 

temperature and the rated power limits. 

The advantages of the GA-JAYA algorithm are that the 

technique combines the solution exploration capabilities of the 

GA method with the solution exploitation capabilities of the 

JAYA method. The JAYA method has fewer parameters to 

control and fewer steps to perform the computation to reach 

the optimal solution. 

 

 

4. EXPERIMENTAL IMPLEMENTATION 

 

The bidding for electricity in the electricity market requires 

an accurate prediction of the electricity rate. To predict the 

electricity rate, the proposed Hilbert-LSTM model is used as 

the time series electricity price varies non-linearly and is non-

stationary [34]. The EMD can decompose the fluctuating and 

volatile electricity price into detailed IMFs that represent the 

frequency content in the input signal accurately. The 

amplitude and frequency time domain spectrum is generated 

by applying the Hilbert transform to these IMFs. The LSTM 

network trains on this input data that is Hilbert transformed 

and can model the time-based dependencies with improved 

accuracy. Figure 2 depicts the process flow of the electricity 

rate prediction methodology using the Hilbert-LSTM model. 

The LSTM network comprises 50 units, the activation 

function as ReLu, the optimizer used is the Adam optimizer, 

and training with the batch size of 32. 

The data collected for the experiment from the electricity 

market at IEX. There are different mechanisms to trade 

electricity in the IEX. The different markets that exist are the 

day ahead market, term ahead market, energy saving, and 

renewable energy market for the obligations of renewable 

energy consumption. These markets comprise the total 

electricity traded at the IEX. This research uses the data 

collected from the day ahead electricity market. The 

transactions at the day ahead electricity market take place 
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where the consumers and power suppliers bid for the 

electricity to be consumed a day in advance. The bidding time 

horizon is an interval of every 15 minutes for 24 hours in 

advance to dispatch the electricity for the next day. The buyer 

and generator bids are made for every 15-minute time slot for 

24 hours. Based on the bid price of the sellers and the buyers 

the market operator then sorts the bids. Based on the 

cumulative bids, the market supply and demand curves are 

plotted and the intersection determines the MCP. This process 

is carried out for every 15-minute time interval and the MCP 

for the 96-time intervals is determined. Based on the 

transmission constraints and the availability of power, the 

MCPs are calculated to dispatch the electricity for the 

subsequent day. The number of sellers and buyers is large and 

as the bidding takes place through the closed bidding auction 

process, the market clearing rate varies non-linearly and the 

electricity rate prediction is necessary for accurate electricity 

market bidding for the improvement of the bidding reliability 

and the buyers' cost benefit. Figure 3 depicts the actual 

electricity rate obtained from IEX. The electricity rate data is 

preliminarily standardized with the Min-Max scaling method 

and a vector is formed to be given as input to the forecasting 

model. 

 

 
 

Figure 2. Block diagram for the methodology to predict the 

electricity rate 

 

 
 

Figure 3. The actual electricity rate data collected from IEX 

 

The model of Hilbert-LSTM is proposed to forecast the 

electricity rate in the electricity market. The electricity price 

data is collected and given as input to the model to predict the 

electricity rate. 

The next process is to improve the energy demand of the 

refrigeration system in the real-time priced program to reduce 

the operating cost. The chiller plant has to consume electricity 

to maintain the refrigeration temperature in the temperature 

constraints. The GA-JAYA optimization algorithm is used to 

generate the energy demand to minimize the cost.  

Figure 4 depicts the process flow of bidding in the 

electricity market using the forecasted electricity price and the 

optimized chiller plant demand schedule. The optimization 

process calculates the optimized energy consumption for 

operating the refrigeration system. This demand schedule and 

the predicted electricity rate are used for bidding. The bidding 

cost for the forecasting algorithm and the bidding reliability 

are evaluated. 

The simulations are performed in Google Colab and with 

the MATLAB 2023 software. The temperature data is 

collected from the weather data website [35] and the electricity 

rate data is obtained from the IEX day ahead electricity market 

[36]. All the data used in this research are publicly available 

and referred from the public database [37].  

 

 
 

Figure 4. Block diagram for energy demand optimizer and 

bid for electricity in the electricity market 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 Data collection 

 

The methodology is validated with the electricity rate data 

obtained from the IEX electricity market. Initially, the 

electricity price prediction is performed with the proposed 

forecasting model of Hilbert-LSTM and the prediction 

performance is evaluated with the error evaluation metrics. 

The dataset is collected for the duration of two years from 

January 2020 to December 2022. The electricity price is 

available for every 15-minute time interval for 24 hours in a 

day, and the total dataset comprises of 70,000 data points of 

univariate time-varying electricity prices. The dataset used to 

train the forecasting algorithm is divided into an 80% training 

dataset and a 20% testing dataset. 

 

5.2 Evaluation metrics 

 

The forecasting performance is evaluated using the error 

metrics of Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and Mean Absolute Percentage Error (MAPE) 

and calculated as given by the following equations: 

 

MAE = 
1

𝑛
∑ |𝑥𝑖 − 𝑥̂𝑖|

𝑛
𝑖=1  

RMSE = √
1

𝑛
∑ (𝑥𝑖 − 𝑥̂𝑖)2𝑛

𝑖=1  

MAPE = 
1

𝑛
∑ |

𝑥𝑖− 𝑥𝑖

𝑥𝑖
| × 100𝑛

𝑖=1  

 

where, the xi is the actual data value, 𝑥̂𝑖 is the predicted data 

value, n is the total number of data points. 
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5.3 Forecasting of electricity price from the Indian 

electricity market 

 

The electricity price data collected from the day ahead 

electricity market from IEX is real-time varying. The time 

series data varies non-linearly and is non-stationary. The large 

number of sellers and consumers that bid for varying amounts 

of electricity power to be sold or purchased at a variable price 

makes the MCP highly volatile. The bidding process, which is 

a double-sided closed auction makes it difficult for the 

consumers and the sellers to understand the appropriate bid 

price to be quoted. The proposed methodology in this paper 

initially predicts the electricity rate using the modified method 

of Hilbert-LSTM. 

The prediction accuracy is measured with the metrics and 

compared with different forecasting algorithms, as shown in 

Table 1. The proposed forecasting model Hilbert-LSTM 

forecasts with higher accuracy as compared to the existing 

algorithms of LSTM, CNN-LSTM and ES-CNN-LSTM [38], 

with the error metrics of MAE as 0.02691, RMSE as 0.03265, 

and MAPE as 0.4954%. The prediction results with the metrics 

are depicted in Figure 5. The prediction models LSTM and 

CNN-LSTM are selected as the proposed model Hilbert-

LSTM is developed using the LSTM model and the CNN-

LSTM is another model developed with LSTM that is used 

popularly for time series forecasting. 

 

Table 1. The prediction results for the different models in 

terms of various metrics 

 
Model R Squared  MAE RMSE MAPE 

LSTM 0.9496 0.5849 0.8644 7.12 

CNN-LSTM 0.9472 0.4989 0.8425 6.56 

ES-CNN-LSTM 0.9964 0.2905 0.5602 1.53 

Hilbert-LSTM 0.9998 0.02691 0.03265 0.4954 

 

 
 

Figure 5. The evaluation metrics-based prediction results for 

forecasting models 

 

The prediction accuracy of the forecasting algorithms is 

validated using the Diebold-Mariano (DM) test [39]. Table 2 

shows the DM test findings as the p-values computed from the 

prediction error. The null hypothesis is that the forecasting 

accuracy between the method in the row and the method in the 

column has no significant difference. The p-values less than 

0.05 significant value indicate that the forecasting accuracy of 

the method in the column is less than the method in the row. 

The DM test results indicate that the Hilbert-LSTM model 

performs better than the LSTM and CNN-LSTM and ES-

CNN-LSTM models. 

Table 2. DM test findings as the p-values 

 

Model LSTM 
CNN-

LSTM 

ES-CNN-

LSTM 

Hilbert-

LSTM 

LSTM – 0.77712 0.99794 0.99791 

CNN-

LSTM 
0.22288 – 0.99794 0.99789 

ES-CNN-

LSTM 

< 

0.00206 
< 0.00206 – 0.99621 

Hilbert-

LSTM 

< 

0.00209 
< 0.00211 < 0.0039 – 

 

5.4 Optimization of energy demand for the refrigeration 

system 

 

The proposed methodology to optimize the energy 

consumption based on the day ahead forecasted electricity 

price is used for the refrigeration chiller plants. The forecasted 

electricity price is used to optimize the energy demand for 24 

hours in a day. The optimization problem to generate the 

energy consumption of chiller plants with the constraints of 

temperature limits and the power consumption rating limits is 

solved using the GA-JAYA optimization algorithm. The 

inputs to the optimization algorithm are the outdoor ambient 

temperature and the forecasted electricity price. Table 3 shows 

the chiller plant attributes that are used in the simulation. The 

power demand with the normal method operates the chiller 

plant to maintain the refrigeration temperature in the 

consumer-set temperature limits without energy consumption 

optimization. The power demand with the algorithm is within 

the limits of the rating of the refrigeration system and is 

optimized to shift the demand from the high-rate durations to 

the low-rate durations. 

 

Table 3. Refrigeration system parameters 

 
Attribute Value 

Power rating (Q) 3.5 (kW) 

System inertia (E) 0.93 (p.u.) 

Thermal conductivity (A) 0.18 (kW/℃) 

Coefficient of performance (COP) 2.5 (p.u.) 

 

Table 3 shows the chiller plant attributes [33]. The 

algorithm simulation parameters are set as follows, for the GA 

algorithm the crossover process is performed for 80% initial 

population and the mutation process for the remaining 20% 

initial population. The number of particles for the JAYA and 

GA-JAYA algorithms is 150 and the number of iterations is 

12. The parameters of the algorithm 𝑟1, 𝑟2 vary in the limits of 

[0, 1]. 

Table 4 shows the results of the GA-JAYA algorithm that 

are compared with the JAYA algorithm, Grey Wolf Optimizer 

(GWO), and the ON/ OFF method. The results indicate that 

the operating cost of the refrigeration system is lowest for the 

GA-JAYA algorithm with Rs. 105.77. The energy 

consumption is 65.48 kWh and is reduced compared to the 

normal operation and the GWO algorithm and slightly greater 

than the JAYA algorithm. The reduced consumption indicates 

considerable energy savings. The results show that with the 

GA-JAYA algorithm, the energy consumption is increased the 

highest during the low-price hours. This improvement in the 

shift of energy consumption indicates that the DR objective to 

shift the energy utilization from the high-price hours that 

represent the high demand durations to the low-price hours is 

achieved. The power demand schedule generated with the 
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optimization algorithm is used as the demand schedule for bidding in the day-ahead electricity market at IEX. 

 

Table 4. The results of simulation for different algorithms for different parameters 

 

Algorithm Cost (Rs.) Energy Consumption (kWh) 
Energy Consumption Variation (%) 

Ti Mean Deviation (%) 
Peak Hours Off Peak Hours 

Normal 136.26 73.50 49.70 54.67 -0.51 

GWO 113.59 69.19 40.72 59.28 2.86 

JAYA 109.3 63.68 46.08 53.92 5.12 

GA-JAYA 105.77 65.48 39.23 60.77 4.25 

 

Table 5. Simulation results for the cost and number of selected bids for forecasting models 

 

Model 
Cost (Rs.) Number of Bids Selected 

Normal Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

LSTM 149.00 133.85 116.77 116.93 34 88 62 

CNN-LSTM 141.77 122.90 117.46 111.92 46 89 62 

ES-CNN-LSTM 118.51 111.41 122.61 108.73 55 84 67 

Hilbert-LSTM 114.56 96.79 104.65 100.15 74 95 81 

 

5.5 Bidding in the IEX electricity market based on the 

forecasted electricity price 

 

The bidding process in the IEX market comprises of the 

market participating bidder submitting their bids of the power 

demand requirement and power demand-supply with the bid 

quote price for every 15 minutes at 96-time intervals for the 

day. The case study in this paper discusses the energy 

optimization of the chilling system based on the forecasted 

electricity price. The power consumption schedule generated 

by the proposed algorithm calculates the energy consumption 

during every 15-minute interval for the day. The price 

forecasted by the proposed forecasting algorithm and the 

energy consumption demand are used for bidding in the IEX. 

The bids made by the different consumers and sellers are 

sorted by the market operator. The consumer and the seller 

bids are selected depending on the supply and demand 

equilibrium, where the intersection of the supply and demand 

curves determines the MCP. This MCP is calculated for every 

15-minute interval for the day. The bids made by the buyer 

with the quoted bid price that is above the MCP get selected. 

The bid is not selected if the quoted bid price is not greater 

than the MCP and the consumers are charged based on the 

tariff of the distribution company for any consumption during 

that interval where the bid is not selected. The different cases 

are discussed as follows the bidding at the forecasted 

electricity price, the bidding at the base maximum price 

increment, and the bidding at the base minimum price 

increment. The demand schedule generated by the 

optimization algorithm is used as the energy demand bid in 

every case for all the forecasting algorithms. 

 

5.5.1 Case 1: Bidding at the forecasted price 

The bids for the electricity demand in the IEX are made 

based on the electricity price forecasted by the prediction 

model Hilbert-LSTM and the cost incurred is compared with 

the models LSTM, CNN-LSTM and ES-CNN-LSTM. The 

results for the cost of the different forecasting algorithms 

generated bid price with the optimized energy bid calculated 

by the GA-JAYA optimization algorithm are shown in Table 

5. The results indicate that the cost for the bids made with the 

proposed model Hilbert-LSTM is the lowest. The results also 

show the number of times the bids are selected for the 

algorithms that indicates that the bids selected for the proposed 

model Hilbert-LSTM are the largest. 

5.5.2 Case 2: Bidding at the base maximum price increment 

The bids in this case are made with the incremented 

forecasted electricity prices. The forecasted prices are 

incremented throughout with the factor of the percentage of 

the MAPE of the maximum of the forecasted electricity price 

values. The results for the cost for the bids made in this case 

are shown in Table 5 for the forecasting models and the results 

indicate that the cost is lowest for the Hilbert-LSTM model. 

The results also show the number of times the bids are selected 

for the algorithms that indicates that the bids selected for the 

proposed model Hilbert-LSTM are the largest. 

 

 
(a) The actual electricity rate and forecasted electricity rate 

with the forecasting models for day ahead prediction 

 
(b) The selected bid price for the forecasting models for Case 

1 with the actual forecasted price 
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(c) The selected bid price for the forecasting models for Case 

2 with a base maximum price increment 

 
(d) The selected bid price for the forecasting models for Case 

3 with a base minimum price increment 

 

Figure 6. The simulation results 

 

5.5.3 Case 3: Bidding at the base minimum price increment 

The forecasted prices are incremented throughout with the 

factor of the MAPE of the minimum of the forecasted 

electricity price values by the prediction algorithms. This price 

is used as the bid price and the cost for the different forecasting 

models are shown in Table 5. The results indicate that the cost 

for the Hilbert-LSTM model is the lowest. The results also 

show that the number of times the bids are selected for the 

proposed model Hilbert-LSTM is the largest. 

 

 
 

Figure 7. The bidding cost for operating the chiller plant for 

forecasting algorithms for the different cases 

 

The results for the cost with the bids made by the buyers in 

the IEX electricity market dependent on the forecasted 

electricity rate and with the case of bids made with base 

maximum price increment and base minimum price increment 

are also compared with the cost for normal operation of the 

refrigeration system load with the fixed tariff of the electricity 

distribution company and with the actual real-time priced 

electricity. The cost for the normal operation of the 

refrigeration load with the fixed tariff of the electricity 

distribution company, where the energy is not optimized with 

the optimization algorithm is Rs. 153.62. Whereas the cost for 

normal operation of the load with forecasted electricity price 

with prediction models is Rs. 114.56 for Hilbert-LSTM, Rs. 

118.51 for ES-CNN-LSTM, Rs. 141.77 for CNN-LSTM, and 

Rs. 149 for LSTM. The cost for the bids made with the 

forecasted electricity price and energy-optimized demand bids 

is Rs. 96.79 for the proposed Hilbert-LSTM model, Rs. 111.41 

for ES-CNN-LSTM, Rs. 122.90 for the CNN-LSTM model 

and Rs. 133.85 for the LSTM model. The cost for the bids 

made with the quoted bid price of base maximum price 

increment is Rs. 104.65 for Hilbert-LSTM, Rs. 122.61 for ES-

CNN-LSTM, Rs. 117.46 for CNN-LSTM, and Rs. 116.77 for 

LSTM. The cost for the bids made with the quoted bid price 

of base minimum price increment is Rs. 100.15 for Hilbert-

LSTM, Rs. 108.73 for ES-CNN-LSTM, Rs. 111.92 for CNN-

LSTM, and Rs. 116.93 for LSTM. The results for the proposed 

methodology of electricity forecasting and energy 

optimization are comparatively better in terms of operating 

cost. Compared to the fixed electricity tariff the bidding with 

the proposed Hilbert-LSTM and optimized energy schedule 

reduced the cost by 37%. 

 

 
 

Figure 8. The number of bids selected in the bidding with the 

bid price quoted with the electricity price forecasting 

algorithms for different cases 

 

The energy optimization shifts the energy consumption 

from the high rate durations to the low rate durations, which 

reduces the cost. The bidding process is opaque, where the 

buyers have to bid with the price that will be selected only if 

the quoted bid price is higher than the MCP computed after the 

entire bidding process is complete. Therefore, bidding with the 

price forecasted with the accurate prediction model can 

increase the chances of the bids getting selected. The bid price 

made with the forecasted models and the bid selected price is 

shown in Figure 6 for Case 1, Case 2, and Case 3 that also 

shows the forecasted electricity prices with different 

forecasting models. The consumers have to purchase the 

power at the fixed tariff of the electricity distribution company 

if the bid for a particular time interval is not selected and the 
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fixed tariff is Rs. 8.36. Figure 7 depicts the bidding costs for 

operating the chiller plant for the forecasting models with 

different cases. The cost for the bids made with the proposed 

forecasting model of Hilbert-LSTM is the lowest for Case 1 

and lower for Case 3 than Case 2 and the normal method. The 

costs for the bids made with the proposed Hilbert-LSTM 

models are lower than the ES-CNN-LSTM, CNN-LSTM and 

LSTM models for all the cases. 

The bids are made for every 15-minute time interval for the 

day for 96-time intervals. The bidding reliability is compared 

for the forecasting algorithm for different cases in Figure 8 and 

it can be seen that the number of bids that are selected are the 

highest for the Hilbert-LSTM model than the ES-CNN-LSTM, 

CNN-LSTM and LSTM models for Case 1, Case 2, and Case 

3. 

The proposed methodology that predicts the electricity price 

and optimizes the energy demand schedule reduces the cost 

and also improves the bidding reliability that establishes the 

correlation and causality between the optimized energy 

demand schedule and the cost savings. The energy 

optimization with higher efficiency directly increases the cost 

savings.  

 

 

6. CONCLUSIONS 
 

The deregulated short-term electricity market where the 

sellers and buyers can bid for the electricity has increased 

number of bids from the participants that has made the bid 

selection process complex due to the closed bidding process 

and the MCP being volatile, non-stationary, and non-linear. 

This requires the bidder to have an accurate forecast of the day 

ahead electricity price to accurately bid in the electricity 

market. This paper proposes a methodology that forecasts 

electricity prices and optimizes the energy demand for 

electricity market bidding. A hybrid model Hilbert-LSTM is 

proposed to forecast the electricity price that combines the 

methods of signal decomposition using the EMD and 

forecasting with the LSTM model. The EMD decomposed 

component signals are given to the LSTM network to train and 

forecast, which uses the advantages of the LSTM model to 

intricately model the temporal dependencies in the time series. 

The Hilbert-LSTM model forecasts the electricity price with 

better accuracy with the MAE as 0.02691, RMSE as 0.03265, 

and MAPE as 0.4954. The forecasted electricity price is used 

to optimize the energy demand with the GA-JAYA algorithm 

and to minimize the operating cost of the refrigeration system. 

The forecasted electricity price and the optimized energy 

demand are used to bid for electricity in the day-ahead 

electricity market at IEX. The performance of the bidding with 

the proposed forecasting models is evaluated in terms of the 

cost. The costs for different bidding cases are compared with 

the forecasting models and the results indicate that the bids 

made with the price forecasted with the Hilbert-LSTM model 

are selected the highest number of times and have the lowest 

cost. The bidding cost is reduced by 37% as compared to the 

fixed electricity tariff.  

The advantages of minimizing the overall electricity 

demand on the electrical grid and improving the grid reliability 

can be achieved with energy optimization by increasing 

consumer participation to optimally schedule their electricity 

demand. 

The future scope of this research includes developing 

accurate forecasting and optimization methods. 
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NOMENCLATURE 

 

Abbreviations 

 

DR Demand Response 

CNN Convolutional Neural Network 

EMD Empirical Mode Decomposition 

ES Exponential Smoothing 

IMF Intrinsic Mode Function 

LSTM Long Short-Term Memory 

GA Genetic Algorithm 

GA-JAYA Genetic Algorithm-JAYA Algorithm 

RTP Real Time Pricing 
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Symbols and parameters 

 

A thermal conductivity 

COP coefficient of performance 

E system inertia 

qcp electricity power utilization of chiller plant 

𝑞𝑐𝑝
𝑚𝑎𝑥  maximum rated power of the chiller plant 

t time slot 

Tcp temperature maintained by chiller plant 

𝑇𝑐𝑝
𝑚𝑖𝑛  minimum temperature of chiller plant 

𝑇𝑐𝑝
𝑚𝑎𝑥   maximum temperature of chiller plant 

𝑇𝑐𝑝
𝑚𝑖𝑛𝑠𝑒𝑡   chiller plant minimum set temperature 

𝑇𝑐𝑝
𝑚𝑎𝑥𝑠𝑒𝑡  chiller plant maximum set temperature 

To outdoor ambient temperature 
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