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Renewable energy installations are rising at a fast pace because societies r./uire both 

emission reduction and alternative clean energy sources. Policymakers, together with 

industry stakeholders, find it troublesome to use traditional energy prediction models 

because these systems operate without clarity and fail to handle intricate market systems 

properly. This research solves these issues through a machine learning (ML) model 

prediction of renewable energy use. Then, it enhances predictions through explainable 

artificial intelligence (XAI) methods to achieve better accuracy and trustworthiness. Our 

analysis includes multiple ML algorithms from the ensemble category consisting of 

Random Forests (RF) and Gradient Boosting in addition to advanced boosting algorithms 

XGBoost and Light Gradient Boosting Machines (GBM). Local Interpretable Model-

Agnostic Explanations (LIME) reveal the decision-making procedures during predictions 

while delivering understandable explanations about the model's conduct to users. The 

methodology adopts a thorough model testing methodology using extensive datasets, 

which include multiple variables related to renewable energy consumption, including 

economic metrics and environmental aspects. Researchers obtained predictive 

performance excellence with interpretability benefits from their models in predicting 

renewable energy usage. The Light GBM model delivered 97.40% accuracy when 

analyzing data, while the LIME process showed GDP growth and electricity access as key 

determining variables. XAI integration in renewable energy forecasting presents important 

progress that livers enhanced, transparent yet actionable energy predictions that build 

trusted reliability for use in the industry. The study demonstrates the power of uniting ML 

with XAI techniques for better comprehension of renewable energy patterns, which enables 

better decisions for sustainable energy development. 
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1. INTRODUCTION

The widespread adoption of renewable energy technologies 

such as wind power, solar, ocean power, geothermal power, 

hydroelectric power, hydrogen power, and bio-power has 

received international attention because of their beneficial 

environmental effects, high rate of technological development, 

and consistency with long-term targets of reducing climate 

effects. Some of these achievements notwithstanding, the 

actual generation and consumption of renewable energy is 

very difficult to predict, which poses a problem. The non-

stationary and discontinuous characteristics of the renewable 

sources and the intricate interdependence on weather, 

economy, and infrastructure render classical forecasting 

effects, not sufficient in modeling the nonlinearities and the 

dynamism of contemporary energy networks. 

Causes of these complexities have been solved by machine 

learning (ML) and deep learning (DL) models as they can 

learn patterns to be used in large, high-dimensional datasets. 

But there are two major shortcomings that still exist: a large 

number of ML models are not interpretable, effectively a black 

box, and the models cannot be used to detect nonlinear 

relationships or changes over a time period. It is these 

shortcomings that force the main scientific question of this 

study to be: how can current models of renewable energy that 

make predictions be improved so that they not only improve 

on the accuracy of their predictions but also become more 

explainable under the influence of the complications of the 

market systems and nonlinear trends in the data? To overcome 

this, the current study considers a hybrid system that resorts to 

high-performance ensemble ML models and explainable 

artificial intelligence (XAI) methods. An XAI system plays a 

crucial role in the establishment of processes, methods, and 

approaches that elicit comprehensible explanations of the 

latest ML models [1]. 

XAI is fundamental to disentangling AI decision-making, 

especially in the energy sector, where the implications of 

automated decision automation become of paramount 

importance to regulatory approval and functional trust. With 

renewable energy, XAI makes it easier to comprehend or 
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explain the ML predictions in a renewable energy system and 

it allows stakeholders to become aware of how and why the 

system works; therefore, more effective energy solutions are 

promoted, as well as less costly and even more reliable energy 

solutions. 

The energy sector encounters several issues regarding the 

methods of production, transmission, and distribution, namely, 

the management of costs, security of the system, efficiency of 

operation, and inconsistency of carbon footprint. What makes 

this happen is the dynamic amount of data that is put through 

energy companies, which require data to be processed, stored, 

and analyzed in a quest to optimize services and minimize risk. 

To overcome these issues, AI technologies are used more and 

more and have a positive impact by reducing energy 

consumption, stabilizing demand, increasing the reliability of 

the grid, and detecting issues, including natural gas leaks [2]. 

Also, Khalil and Enjadat [3]. focused on a better understanding 

of the regional climate adaptation approaches, vide its case 

location in Karak City only, whereas support local data 

analysis is necessary to address global climate variability. 

The emergence of AI has also been augmented with 

accelerated developments within the ML and DL methods. 

The integration of AI in the energy infrastructure is also 

represented by smart grid technologies that are supposed to 

power a 15 trillion market ecosystem by 2030 [4]. And all by 

itself the renewable energy field is expected to grow to 75.82 

billion by 2030 with an increase in demand of clean energy 

and intelligent systems. These patterns explain why it is 

necessary to digitalize energy systems, and AI has a game-

changing role in the processes [5]. In that regard, XAI 

approaches, including one known as Local Interpretable 

Model-Agnostic Explanations (LIME), gain importance not 

only over the model transparency, but also as tools to make the 

insights generated by AI, be understandable and actionable by 

the human decision-makers. Incorporating XAI into the 

foundation of the ML prediction pipeline, this paper proposes 

to move further on the level of the forecast accuracy and model 

transparency, providing a capable framework that would not 

only improve the results of the modern black-box solutions but 

also provide a basis to interpretable models. This twofold 

contribution of performance and explainability directly 

addresses the changing demand of energy analysts, operators, 

and policymakers who are forced to work in a more data- and 

more diligently complex energy environment. 

 

1.1 Motivation 

 

The escalating demand for energy in recent years has been 

propelled by factors such as industrial growth, economic 

expansion, and population increases across the globe. As a 

result, critical challenges such as ensuring energy security, 

supporting economic development, and minimizing 

greenhouse gas emissions have intensified. The environmental 

impact of fossil fuel dependence has made the transition to 

sustainable energy sources imperative. Renewable energy is 

increasingly recognized as a crucial, eco-friendly alternative 

to conventional energy sources. However, adding renewable 

energy to current grids raises unique challenges. The sensing 

of these renewable sources, such as wind and solar, is 

inherently intermittent, leading to variable outputs of energy. 

As such, accurate forecasts of not only energy demand but also 

the production of renewable energy are essential in keeping 

supply and demand in balance, optimizing production, and 

planning the future of the infrastructure. 

ML models come up as an effective solution to tackle these 

forecasting problems. They are better at identifying complex, 

non-linear relationships in historical data than traditional 

forecasting methods. Furthermore, the use of XAI makes the 

predictions more interpretable. The trustworthiness of the 

predictions for stakeholders and policymakers is enhanced by 

XAI, which makes the results clear and explainable. In order 

to provide insight to enable the worldwide adoption of 

renewable energy further, this study hopes to develop both 

accurate and interpretable models to utilize the energy 

consumption of renewable energy over time. 

 

 

2. RELATED WORKS 

 

Artificial Intelligence through ML and DL establishes itself 

as an effective mechanism to enhance prediction together with 

diagnostic capabilities. Multiple forecasting domains adopt 

these ML methodologies for their applications within 

environmental science, disease prevention and healthcare [6], 

demand forecasting, fraud detection, traffic management, and 

notably in the energy sector [7-13]. The number and 

complexity of research efforts regarding ML-based power 

demand forecasting models have increased substantially. As 

an example, Kandananond [14] has proposed different 

forecasting methods like Multiple Linear Regression (MLR) 

and Autoregressive Integrated Moving Average (ARIMA) to 

forecast power consumption. On the other hand, Lü et al. [15] 

used a simulation-based approach grounded on physical 

principles to estimate energy usage. However, those linear 

statistical techniques neglect nonlinear relations that are clear 

through irregular demand patterns [16]. Goudarzi et al. [17] 

used ARIMA with wide brute force algorithms, K-means and 

False Nearest Neighbor energy prediction of university library 

data, and performance was measured using a set of metrics. 

ML-based approaches demonstrate better performance than 

traditional physical and statistical methods because they 

extract special features from historical data according to 

studies [18, 19]. The industrial sector utilizes large-scale ML 

integration to monitor essential industrial assets through early 

fault detection and condition surveillance through approaches 

such as Long Short-Term Memory (LSTM) networks and 

Convolutional Neural Networks (CNNs), as well as dynamic 

identification models, according to references [20-23]. 

Businesses use these methods to protect against dangerous, 

unexplored technology risks while driving down production 

interruptions through budget-friendly upkeep methods. 

Zhou et al. [24] introduced a hybrid DL model that 

implements attention mechanisms and CNNs together with 

LSTM networks and clustering components inside wireless 

sensor networks for improved photovoltaic power generation 

prediction abilities. The model demonstrates superior 

performance compared to conventional techniques, including 

Artificial Neural Networks (ANNs) and vanilla LSTMs, based 

on Experimental Self-Attention Transformer (ESAT) 

experimental outcomes. 

Blasch et al. [25] examined public sector building energy 

usage forecast through R part regression trees and Random 

Forest (RF) and Deep Neural Networks (DNN), utilizing 

variable reduction strategies. The research study established 

RF as the most successful method. Specific forecasts of energy 

consumption have proven to be better using DL-based models 

than alternative methods of analysis. Recent advancements 

have seen the application of DL and DNNs in energy 
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prediction models [26]. For example, Wang et al. [27] 

introduced a weather classification system using a Generative 

Adversarial Network (GAN) and a CNN-based model that 

outperformed traditional ANN-based models. Similarly, 

Zhang et al. [28] utilized CNN models to forecast solar 

electricity generation and daily electricity prices. 

Comparison tables, like Table 1, showcase various methods, 

including CNN-LSTM, ANN, LSTM, Support Vector 

Machine (SVM), and advanced ensembles combining MLR, 

RF, Support Vector Regression (SVR), DNN, and Gradient 

Boosting Machines (GBM). These tables present performance 

metrics such as Root Mean Square Error (RMSE) or Mean 

Absolute Percentage Error (MAPE), covering prediction 

horizons ranging from as brief as five minutes to as long as 

one week. Notably, none of these models has incorporated 

XAI techniques, which points to a significant opportunity for 

future research to enhance model interpretability and boost 

user confidence [18, 24-28]. 

The literature review delves into the diverse applications of 

ML and DL across various sectors, including environmental 

science, healthcare, demand forecasting, and energy 

prediction. Although the review provides an extensive 

examination of prevalent models such as MLR, ARIMA, as 

well as more sophisticated approaches like ANNs, GBM and 

RF, it falls short in pinpointing the precise research problem 

or gap that this study aims to fill. For example, while the 

literature documents the application of traditional ML 

techniques such as ARIMA and K-means in energy 

consumption forecasting, these methods often falter when 

confronted with the non-linear and unpredictable patterns of 

energy demand, as highlighted by the studies [14-16]. The 

literature also mentions modern approaches like CNN and 

LSTM networks, which have demonstrated the potential to 

enhance predictive accuracy [24, 25]. 

 

Table 1. Comparison of energy forecasting techniques and outcomes 

 

Ref. Property Type 
Forecasting 

Technique 
Performance Metric Forecast Interval 

XAI 

Applied? 

Kim and Cho [29] Household CNN-LSTM RMSE 0.61 Hourly No 

Kong et al. [30] Residential LSTM MAPE 0.22 Every 30 minutes No 

Bourhnane et al. [31] Residential LSTM-RNN MAPE 0.44 Every 30 minutes No 

Goudarzi et al. [17] Residential Pooling RNN RMSE 0.45 Every 30 minutes No 

Mosavi et al. [19] Residential LSTM R2 0.835 Every 5 minutes No 

He and He [23] Residential LSTM-ConvLSTM RMSE 368 KW Weekly No 

Wen et al. [32] Non-residential ANN RMSE 5.71 Hourly No 

Fan et al. [33] Non-residential 
MLR-RF-SVR-

DNN-GBM 

RMSE: MLR 206.0, RF 168.7, SVR 

136.0, DNN 175.7, GBM 136.0 
Hourly No 

Li et al. [34] Non-residential SVM RMSE 1.17 Hourly No 

Bertolini et al. [18] Non-residential RF RMSE 5.53 Hourly No 

Loukatos et al. [22] Non-residential RF-DT-SVM-KNN 
RMSE: RF 26.34, DT 19.20, SVM 

16.12, KNN 17.01 
Hourly No 

Luo et al. [20] Residential ANN-SVM-DT RMSE: ANN 1.68, SVM 1.65, DT 1.84 Hourly No 

Schwendemann et al. [21] Residential CNN-LSTM MSE 0.35 
1 minute, 1 hour, 1 

day, 1 week 
No 

However, it remains unclear what specific gap in renewable 

energy forecasting these advancements are targeting. 

Furthermore, the review points out that most advanced 

models, including CNN, LSTM, and various ensemble 

techniques, do not integrate XAI methods. The lack of XAI, as 

noted in references [17-23, 29-34], is recognized as a 

significant opportunity for improving model transparency and 

boosting user trust. Yet, the paper does not concretely outline 

how it plans to tackle this omission or how it will distinguish 

its approach from prior research. In conclusion, while the 

review offers a thorough discussion of existing forecasting 

technologies, it lacks a clear articulation of the specific 

research problem or gap that this study intends to address. 

Future work should specify how the incorporation of XAI and 

the proposed combinations of models will overcome current 

shortcomings in the forecasting of energy consumption. 

 

 

3. PROPOSED METHODOLOGY 

 

The proposed methodology outlines, shown in Figure 1, a 

comprehensive approach to analyzing sustainable energy data 

with the aim of improving energy consumption forecasting. 

First, the company collects data from a global sustainable 

energy database. We perform extensive exploratory data 

analysis (EDA) on this dataset to characterize it better, check 

for missing values, and check the distribution of some 

important variables, such as CO2 emissions. In this stage, 

statistical summaries and visualizations are used to identify the 

patterns and outliers in the data. 

 

 
 

Figure 1. Flowchart showing the proposed methodology for 

data processing and analysis 
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The data undergoes different preparation steps after analysis 

to handle missing values and normalize data types. A 

significant part of the methodology constructs an essential 

binary target variable that categorizes points into two groups 

based on meeting a particular threshold for renewable energy 

use. Central to this methodology is the application of several 

ML models to predict high renewable energy usage. These 

could include decision trees, ensemble methods, advanced 

gradient boosting, and DL models. The methods are compared 

based on their predictive performance to find the best solution. 

Then, all performance metrics, such as accuracy, recall, 

precision, and F1 score, will be calculated to have a clear view 

of the performance of each model. 

Transparent and interpretable ML models are possible 

because of XAI techniques, which the methodology integrates. 

Understanding and trustworthiness of model predictions are 

guaranteed by this approach, which benefits both the 

stakeholders and energy policymakers. This proposed 

methodology is, therefore, a combination of detailed data 

analysis, advanced ML, and explainable AI that improves the 

prediction of renewable energy consumption. Developing 

robust and interpretable models capable of facilitating the 

adoption of sustainable energy practices on a global scale 

requires a holistic approach at this level. 

 

3.1 Dataset overview 

 

The publicly available dataset used in this study is called 

Global Data on Sustainable Energy, and is prepared by Tanwar 

[35] and published on Kaggle. The dataset shows a multeity, 

multi-country panel of sustainable energy indicators that 

extends across 2000-2020. It constitutes a wide range of 

variables necessary in the study of global energy transitions, 

including access to electricity, utilization of clean cooking 

fuels, installed renewable electricity generation capacity per 

capita, and fuel-source breakdown of electricity generation in 

fossil fuels, nuclear energy, and renewables. Others include 

CO2 emissions per capita, the share of low-carbon electricity, 

the degree of energy intensity, primary energy consumption 

per head, and other important economic indicators such as the 

growth of gross domestic product and gross domestic product 

per capita. Geographic metrics, like the population density, the 

territory of a country, and geographical coordinates, are also 

implemented in the dataset, together with the indicators of the 

international financial flows focusing on the clean energy 

programs in the developing world. These features of the 

dataset render it especially useful to evaluate the progress 

made towards Sustainable Development Goal 7 (SDG 7), to 

carry out cross-national comparisons and carry out temporal 

trend analysis, as well as to build ML models that predict 

energy consumption and carbon emissions. Its design and 

breadth enable the transparency of sound statistical modeling 

and policy analysis, particularly last-mile explainable AI 

approaches to better interpretability in renewable energy 

modeling. 

 

Table 2. Description of features in the sustainable energy dataset 

 
Feature Description 

Entity Name of the country or region for which the data is reported. 

Year Reporting year, ranging from 2000 to 2020. 

Access to electricity (% of population) Percentage of the population with access to electricity. 

Access to clean fuels for cooking (% of population) Percentage of the population primarily using clean fuels for cooking. 

Renewable-electricity-generating-capacity-per-capita Installed renewable energy capacity per person. 

Financial flows to developing countries (US$) Aid from developed countries for clean energy projects expressed in US dollars. 

Renewable energy shares in total final energy consumption (%) Percentage of renewable energy in total final energy consumption. 

Electricity from fossil fuels (TWh) Electricity generated from fossil fuels in terawatt-hours. 

Electricity from nuclear (TWh) Electricity generated from nuclear sources in terawatt-hours. 

Electricity from renewables (TWh) Electricity generated from renewable sources in terawatt-hours. 

Low-carbon electricity (% electricity) Percentage of electricity from low-carbon sources. 

Primary energy consumption per capita(kWh/person) Energy consumption per person in kilowatt-hours. 
The energy intensity level of primary energy (MJ/$2011 PPP GDP) Energy use per unit of GDP at purchasing power parity. 

Value_CO2_emissions (metric tons per capita) Carbon dioxide emissions per person in metric tons. 

Renewables (% equivalent primary energy) Equivalent primary energy from renewable sources. 

GDP growth (annual %) Annual GDP growth rate based on constant local currency. 

GDP per capita Gross domestic product per person. 

Density (P/Km2) Population density in persons per square kilometer. 

Land Area (Km2) Total land area in square kilometers. 

Latitude Latitude of the country’s centroid in decimal degrees. 

Longitude Longitude of the country’s centroid in decimal degrees. 

There is one entry layer per country, in this case, called an 

"Entity", and annual data points for the years 2000 to 2020. It 

tracks the share of the population with access to electricity, the 

percentage dependent on clean cooking fuels, and installed 

renewable energy capacity per capita, and it does so 

meticulously. The dataset also measures the financial capital 

coming into developing countries for clean energy projects in 

U.S. dollars. In terms of energy production, the dataset tracks 

electricity generated from fossil fuels, nuclear power, and 

renewable sources, expressed in terawatt-hours. It further 

details the share of renewable energy in the final energy 

consumption and the percentage of electricity derived from 

low-carbon sources, which includes both nuclear and 

renewable energy. Additionally, it measures primary energy 

consumption per capita, energy usage efficiency relative to 

GDP in purchasing power parity terms, and CO2 emissions per 

capita. Other recorded metrics include the equivalent primary 

energy derived from renewable sources, annual GDP growth 

rate, GDP per capita, population density, total land area, and 

the geographic coordinates (latitude and longitude) of each 

country’s centroid, as shown in Table 2. This structured 

overview of the dataset encapsulates the breadth and depth of 

the data available for analysis, facilitating a comprehensive 

understanding of global sustainable energy trends and 
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supporting the evaluation of progress towards achieving 

broader environmental and developmental goals. 

 

3.2 EDA 

 

The EDA conducted on the dataset provides a fundamental 

understanding of the key metrics related to sustainable energy 

across various countries from 2000 to 2020. Initially, summary 

statistics offer a glimpse into the distribution of each feature 

within the dataset, encompassing measures of central tendency 

and dispersion. The analysis identifies any missing values 

across different columns, which is crucial for maintaining the 

integrity of subsequent analyses. Missing values were 

managed through strategies that include the omission of 

incomplete records and imputation with median values, where 

pertinent. The metric underlying dataset attributes is 

represented mathematically, for example, mean, standard 

deviation, expressed as: 

 

𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 and 𝜎 = √
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

 (1) 

 

where, 𝜇  and 𝜎  are the mean and standard deviation, 

respectively, and 𝑥𝑖 are the data points. 

The correctness and relevance of the dataset columns are 

then verified to ensure that further analyses are performed on 

correct and comprehensive data. The year column is shown in 

bold during formatting checks, with the requirement that it is 

an integer, which is particularly important for time-series 

analysis. Figure 2 presents the first ten energy-related 

measures with the greatest number of missing values. The 

variable with the highest number of missing records is 

‘Renewables (% equivalent primary energy)’ with 2,137 

missing values, followed by ‘Financial flows to developing 

countries’ and ‘Renewable electricity per capita’. Such 

incompleteness highlights the challenges of data unavailability 

in sustainability and energy indicators. This skew indicates 

that while a few countries have high emissions, most maintain 

relatively low CO2 outputs. 

Figure 2 demonstrates the first ten energy-related measures 

that have the greatest amount of missing values in the 

database. The variable that has the highest number of missing 

records is the variable whose title is Renewables (% equivalent 

primary energy) with 2,137 missing values, followed by the 

variable financial flows to developing countries, as well as that 

of Renewable electricity per capita. Such high incompleteness 

emphasizes high levels of data unavailability with regard to 

important indicators connected with sustainability and energy 

changes. The solution to such empty values is important to the 

robustness and validity of the analysis and the policy 

recommendations that lie down the road. Continuing the EDA, 

Figure 3 shows the distribution of CO2 emissions across 

countries. The chart highlights disparities between nations, 

with a small number of countries producing very high 

emissions while the majority maintain lower levels. This 

provides insight into global emission inequalities and the 

concentration of environmental impact.  

In further examination of the EDA, Figure 4 illustrates the 

trend of the CO2 emissions by the leading five global smokers. 

The graphic assists in breaking down highs and lows in the 

emissions which illuminate the success or failure of the 

environmental policies and the impact that economic growth 

has on the green initiatives. Although the given dataset has a 

vast scope of renewable energy indicators of several countries 

during the period between 2000 and 2020, it is necessary to 

evaluate its completeness and representativeness. The data set 

encompasses extensive socioeconomic, environmental and 

energy-specific characteristics of almost all the countries that 

are well-known worldwide, thus providing a macro 

perspective on sustainable energy trends. There may be partial 

records or nil values of some countries because of unstable 

reporting by countries or limitations on collecting data. To 

reduce this a number of imputation methods were employed, 

including median substitution or record deletion, depending on 

the situation. Nonetheless, the volume of data is sufficiently 

large to allow trend analysis at a global scale, comparative 

screening, as well as ML analysis due to the presence of such 

gaps. Its infrastructure reflects regional differences and long-

term trends so that it is indicative of renewable energy 

development worldwide, although it is important to report the 

results with caution on a narrower scale, including national or 

sub-regional areas where the lack of data could still be the 

reality. 

 

 

 
 

Figure 2. Metrics with most missing values 

 
 

Figure 3. Distribution of CO2 emissions by country 
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Figure 4. CO2 emissions over time by top 5 countries 

 

3.3 Preprocessing 

 

The preprocessing stage of the analysis pipeline is crucial 

for preparing the dataset for subsequent machine-learning 

tasks. Initially, the dataset is loaded into a panda Data Frame 

from a specified path. As such, this dataset includes multiple 

data types with clearly different preprocessing strategies. 

Numerical columns had any missing values filled with 

columns meant to maintain the numerical stability of 

calculations while keeping the distribution of columns intact. 

Mathematically, this imputation can be expressed as: 

 

𝜇𝑗 =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛

𝑖=1

 (2) 

 

where, 𝜇𝑗 is the mean of the 𝑗𝑡ℎ column, and 𝑥𝑖𝑗 indicates the 

𝑖𝑡ℎ data in column j. 

For categorical data, missing values are filled with the mode 

per column, which keeps the most relevant category in each 

feature. Based on the ‘Renewable energy share in the total 

final energy consumption (%)’, a binary target variable is then 

generated based on whether the value is above a defined 

threshold, in this case, 20%, turning this into a classification 

problem. The next step after cleaning the data, selecting the 

features, and finding out which variables is most useful in 

predicting the target. Other selected features include access to 

electricity, the use of clean fuels for cooking, various metrics 

of energy production, etc. We then split these features into 

training and testing subsets, making sure the distribution of 

data is representative of the average case in both subsets. The 

last step is to normalize the range of its features using a 

standard scaler. Many ML algorithms work better when input 

data is normalised, especially algorithms that consider the size 

of their input data. The scaling process is defined as: 

 

𝑥′𝑖𝑗 =
𝑥𝑖𝑗 − 𝜇𝑗

𝜎𝑗
 (3) 

 

where, 𝑥′𝑖𝑗  is the scaled value, 𝜇𝑗  and 𝜎𝑗  are the mean and 

standard deviation of the 𝑗𝑡ℎ feature in the training data. 

Although tree-based models like Decision Tree, RF, or 

LightGBM do not objectively need normalization, we used 

Minmax scaling on all features to allow a uniform comparison 

between all the features and the models since we want all of 

them to be represented in the same way to make fair 

comparison. Such normalization is specifically useful to those 

algorithms that optimize with distance or gradient-based 

optimization, which include Gradient Boosting and XGBoost, 

and results in better convergence and consistent results. 

A bar chart as shown in Figure 5 displaying the distribution 

of classes is generated to visually check the balance of the 

classes in the target variable. This visualization helps in 

capturing the skewness or balance in the target variable, which 

guides the possible strategies to be taken during model training 

or how the data sampling technique can be adopted in the 

process. 

 

 
 

Figure 5. Distribution of classes in the "high renewable 

energy share" label 
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3.4 ML models 

 

The models were chosen depending on their suitability 

theory of renewable energy data. Modeling mixed data types 

and nonlinearity can easily be modeled with trees, whereas 

strong results can be achieved with ensemble or boosting 

algorithms such as XGBoost or LightGBM on structured data 

and regularization, and large datasets in the real world, such as 

large energy-related data sets. 

This analysis utilizes a suite of ML models with carefully 

tuned parameters specific to each model to optimize the 

predictive accuracy for classifying the share of renewable 

energy consumption. Selecting models and tuning model 

hyperparameters is also crucial, as the choice made at this 

stage governs the performance of the models and the 

applicability of the findings within real-world systems. 

The selection of the ML models employed in this research 

work was empirical as well as theoretical in terms of being 

compatible with the characteristics of renewable energy data, 

such as nonlinearity, intermittency, and multivariate effects, 

among many others. Tree-based models Tree-based models 

(e.g., Decision Trees, RF, Extra Trees) will treat 

heterogeneous features and noise well. The models that are 

most applicable to the modeling of the highly complex and 

sparse model, in particular, the imbalanced dataset, such as in 

solar and wind energy adoption, include boosting (e.g., 

Gradient Boosting, XGBoost, LightGBM). 

LightGBM, specifically, is particularly effective in the case 

of big and skewed data sets because of its efficient leaf-wise 

tree building. The resulting alignment will make sure that the 

selected models are fit to the structural complexity and 

variability of renewable energy systems. 

• Decision Tree Classifier: The Decision Tree model has 

a maximum depth of three layers. The depth was 

chosen to avoid having the model become too complex 

and overfit the training data. Reducing the complexity 

of a tree helps with the generalization of the unseen 

data. 

• RF classifier: This ensemble model, based on 30 trees 

(n_estimators=30) has a maximum depth of three and a 

maximum number of features used for splits equal to 

two (max_features=2). By considering multiple trees, 

we are reducing variance and not overfitting ourselves 

in the dataset, which allows for robust performance in 

the presence of noise. 

• Extra Trees classifier: Similar to RF, the Extra Trees 

classifier is defined with 30 trees and a max depth of 

five. It uses a different method for splitting nodes, using 

a randomly selected threshold per feature rather than 

the optimal threshold as seen in RF, which leads to a 

quick training process at the cost of some increase in 

variance. 

• Gradient Boosting Classifier: Gradient Boosting is 

configured with 10 boosting stages (n_estimators=10) 

and a steep learning rate (1.0) with maximum tree depth 

2. This aggressive learning framework is designed to 

converge upon a low-error model speedily, but with the 

downside of a low error ceiling that is increasingly 

approaching zero as training proceeds, requiring 

careful management to avoid overshooting the 

minimum error. 

• AdaBoost Classifier: AdaBoost uses 50 weak learners 

(n_estimators=50) in sequence, focusing on correcting 

the mistakes of the previous learners in the chain. This 

method is effective in reducing bias and variance, 

especially in complex classification tasks. 

• XGBoost: The XGBoost model is extensively tuned 

with a maximum depth of three, learn- ing rate of 0.102, 

and 484 trees (n_estimators=484). It also adjusts the 

model complexity (gamma=0.93) and minimum child 

weight (min_child_weight=9.91) to control overfitting. 

• LightGBM: The LightGBM model uses 100 trees with 

a learning rate of 0.1 and a depth of five. Known for its 

efficiency on large datasets, LightGBM builds tree leaf-

wise rather than level-wise, resulting in faster learning 

and better accuracy on imbalanced data sets. 

Each model’s parameters were selected after a series of 

validation tests to balance the bias-variance trade-off 

effectively. The configurations are designed to maximize the 

predictive performance while ensuring that the models remain 

computationally feasible and interpretable. 

Manual tuning of the hyperparameters based on the 

exploratory experiments on the training set was carried out to 

select the best hyperparameters of each model. In case of 

simpler models as Decision Tree and RF, we tuned parameters, 

i.e., max_depth, n_estimators, and even max_features by 

examining performance values (accuracy, F1 score, etc.) on 

the validation split based on the training data and performed 

this process with iterations, as shown in Table 3. In more 

complex models like XGBoost and LightGBM, the 

randomized search was used on a pre-set range of 

hyperparameters values, which in case of XGBoost is learning 

rate, max_depth, n_estimators, gamma and min_child_weight, 

and much the same these values in the case of LightGBM. The 

objective of such a process was to find a trade-off between the 

complexity of the model and performance of generalization by 

providing robust, observable outcomes with computationally 

controlled costs. 

 

Table 3. Hyperparameter tuning methods and search ranges 

for each ML model 

 

Model 
Tuning 

Method 
Parameters Explored 

Decision 

Tree 
Grid Search 

max_depth: [2-4], criterion: ['gini', 

'entropy'] 

RF Grid Search 
n_estimators: [10, 30, 50], max_depth: [3, 

5] 

XGBoost 
Randomized 

Search 

max_depth: [3-10], learning_rate: [0.01-

0.3], n_estimators: [100-500], gamma: [0-

1], min_child_weight: [1-10] 

LightGBM 
Randomized 

Search 

max_depth: [3-10], learning_rate: [0.01-

0.2], n_estimators: [100-300] 

 

To ensure robust evaluation, the data is split into training 

and testing sets in an 80-20 ratio, and features are scaled using 

a standard scaler to normalize the data distribution, which is 

crucial for models that rely on distance calculations like k-

nearest neighbors. 

 

3.5 Explainable AI-LIME 

 

In the realm of ML, particularly in contexts requiring high-

stakes decision-making, the interpretability of model 

predictions is paramount. LIME is a method also developed in 

response to the lack of transparency of ‘black-box’ models: its 

function is to help interpret decisions made by such models, 

for example, DNN and complex ensembles. The core idea 

behind LIME is to approximate the local prediction behavior 
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of these models in the neighborhood of a particular prediction. 

LIME creates a dataset located in the neighborhood around the 

instance to explain by perturbing it. These samples are then 

used to train an interpretable model (usually a linear one), 

which is less complex and more transparent than the original. 

The fundamental idea is to weigh the noisy samples by how 

close they are to the instance of interest so that the local 

surrogate model can be a good approximation at that point. 

The weighting function is mathematically represented as: 

 

𝜔(𝑥) = exp (−
‖𝑥 − 𝑥0‖2

2𝜎2
) (4) 

 

where, 𝑥  represents a perturbed sample, 𝑥0  is the original 

instance, and 𝜎  is a bandwidth parameter that controls the 

scope of locality. The weights 𝜔(𝑥) decay exponentially far 

from 𝑥0, concentrating the learning of the surrogate model on 

the locality around the instance. 

An interpretable surrogate model trained on this data can 

then be used to represent the model behavior around 𝑥0, that 

is, which features contribute to/drive the model output. For 

example, in a classification problem, LIME might show that 

certain features made a positive or negative contribution to the 

class prediction, helping provide actionable insight as to why 

the model made that particular prediction. LIME model 

success depends on how suitable the features are for use in the 

surrogate model structure. Models select features regarding 

their influence on prediction outcomes and their registered 

importance according to model metrics. Each feature gain or 

loss of influence has a direct impact on the linear surrogate 

model expressed through its coefficients. This transparency 

helps create more trust in those models and allows them to be 

deployed in sensitive and higher stake environments. In 

addition, these kinds of explanations are extremely useful for 

debugging models, ensuring regulatory compliance, and 

enabling a cycle of iterative improvements to the algorithms. 

 

 

4. EXPERIMENTAL RESULTS 

 

The experimental evaluation of the ML models deployed in 

this study demonstrates an extensive range of performance 

across multiple metrics, namely accuracy, recall, precision, F1 

score, error rate, and training time. These metrics help us to 

understand the best model here, considering the renewable 

energy share prediction for classification. 

The LightGBM is the top performer, with an accuracy of 

around 97.40% and a recall score of 98.29%. This not only 

means that LightGBM is accurate overall but also has the 

power to detect positive-class observations. With a precision 

rate of 97.10% along with the recall, we can be assured that 

whatever prediction we are making belongs to a specific 

disease. The harmonic means between precision and recall, the 

F1 score is also a high 97.69%. LightGBM is also fast, taking 

about 0.126 seconds to train, portraying the virtue of both 

efficacy and efficiency. 

In order to assess how the model of the highest accuracy, 

LightGBM, generalizes the training data, we performed a 5-

fold cross-validation on the training data. Cross-validation 

attained an accuracy result of 96.85% +/- 0.67%, which sheds 

light on the model feeling stability, because of the divergent 

performance in terms of data division. This small variance 

implies that this model does not overfit and is able to 

generalize to new information. The addition of cross-

validation not only enhances the soundness of the reported 

statistics, but it also helps in the justification of the incidental 

implementability of the model as applied to real-world energy 

forecasting in general. This analysis can later be extended by 

evaluating the generalization of models in terms of regional 

shifts or domain-shifted data. 

In order to confirm if variances in predictive performance 

among the ML models were significant or not, we placed a 

paired t-test on the best two models with the highest 

comparison accuracy: LightGBM and XGBoost. The test 

contrasted the veracity of expectations per case in the test set. 

The t-statistic came to 0.9427 and the p-value was 0.3461, 

meaning that the discrepancy in the classification performance 

of the two models is not significant up to the 0.05 level. The 

fact that LightGBM had the best accuracy of 97.12% and F1 

score of 97.43% indicates that the performance of LightGBM 

is not significantly better than that of XGBoost, which has 

96.57 percent accurate and 96.98 percent F1 score. Its 

introduction adds robust foundation to cross-validation of 

models much in the same way practice should follow when 

choosing the best possible models to put to use when making 

decisions in real-world energy forecasting problem-solving 

endeavors, not to mention making reference to performance 

values as well as statistical verification thereof. 

XGBoost Step has also performed well, with an overall 

accuracy of 94.66%, a recall rate of 95.60%, and a precision 

rate of 94.90%. These figures suggest that XGBoost, like 

LightGBM, is quite adept at correctly classifying the instances 

and maintaining a balance between sensitivity and precision. 

The F1 score for XGBoost is approximately 95.25%, 

indicating robustness in model predictions. However, it is 

slightly slower in training than LightGBM, taking about 0.158 

seconds. AdaBoost’s performance, while commendable, 

shows some drop-off, with an accuracy of 88.22% and a recall 

of 88.02%. The precision rate of 90.68% is higher than its 

recall, indicating a tendency towards more conservative 

classification but with higher reliability in positive predictions. 

The F1 score for AdaBoost stands at 89.33%, and the training 

time is relatively longer, about 0.245 seconds, which may be a 

factor to consider in larger-scale applications. The Gradient 

Boosting model displays lower efficacy with an accuracy of 

84.79% and a high recall rate of 90.71%, indicating a strong 

sensitivity but at the cost of precision, which is at 83.56%. This 

discrepancy is reflected in an F1 score of 86.99%, pointing to 

a potential area for model tuning to improve precision without 

sacrificing recall. Remarkably, Gradient Boosting is the fastest 

among the models tested, with a training time of just 0.018 

seconds. 

Models like the Decision Tree, RF, and Extra Trees 

demonstrate varying degrees of performance, with accuracies 

ranging from 78.49% to 84.66% and recall rates from 68.46% 

to 76.77%. These models generally have higher error rates, up 

to 21.51% for Extra Trees, indicating challenges in 

generalizing predictions across the dataset. Their training 

times vary, with Decision Tree being notably quicker at 0.012 

seconds but Extra Trees slower at 0.155 seconds. while 

LightGBM and XGBoost stand out in terms of overall 

performance, other models like AdaBoost and Gradient 

Boosting present valuable characteristics that could be 

advantageous depending on specific application requirements. 

The varying performances underscore the importance of 

model selection based on the specific metrics that align best 

with the project’s goals. Besides predictive performance, we 

looked at computational complexity and scalability of any 
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model. The ensemble methods that use trees, such as RF and 

Extra Trees, are rather fast to train but might suffer in terms of 

efficiency when dealing with high-dimensional data or 

scalability with large numbers of trees. Enhancements of 

models such as XGBoost, Gradient Boosting, provide 

excellent accuracy with the cost of increased training time and 

tuning, which could be problematic, especially when dealing 

in real-time models. On the contrary, LightGBM tailors itself 

to be highly efficient and scalable, training far more rapidly 

and requiring significantly less memory, using histogram-

based learning such that lighter trees can be trained leaf-wise. 

This renders LightGBM most suitable to work with vast 

amounts of data as well as predict energy in real-time, where 

quick results are vital. Such considerations are very critical in 

the choice of models that should be deployed in operations 

rather than in experimental conditions. 

The LIME provides an insightful interpretation for 

individual predictions made by complex ML models, 

facilitating an understanding of the model’s behavior in 

specific cases. This detailed interpretation is crucial in 

applications where understanding the rationale behind a 

prediction is as important as the prediction’s accuracy. 

Although the models had demonstrated their strong 

predictive capabilities, it should be noted that the prediction 

errors could also be related to other factors other than 

algorithmic deficiencies. These consist of the data quality 

problems like missing values, inconsistent reporting, and noise 

in measurements, particularly in cross-national data. In 

addition, the underlying mathematical conditions of the 

models, i.e. stationarity or the independence of features, might 

not represent the reality of energy systems in a holistic manner. 

Anomalies can also be imposed by external factors such as 

sudden policy changes, economic shocks and extreme weather 

situations, which are not easily learned by models using past 

patterns. All these components lead to residual errors and are 

factors to be put into consideration with respect to model 

output interpretation and future course of improvement. 

In the given instance (Figure 6), LIME has been applied to 

elucidate the decision-making process of a model predicting 

renewable energy share based on several features. The output 

shows that the model predicts a high likelihood (1.00 

probability) that the renewable energy share in total final 

energy consumption is above a certain threshold, hence 

classifying this instance into class ‘1’. The interpretation panel 

lists the features along with their weights in influencing this 

particular prediction. Notably, the feature ‘Renewable energy 

share in the total final energy consumption (%)’ with a value 

of 0.34 has the highest positive impact on the prediction, 

significantly pushing the model towards a classification of ‘1’. 

This is visually represented by the bar extending to the right, 

indicating a strong positive influence. Other features 

contributing positively, though to a lesser extent, include: 

• ‘Latitude’ has a value of 0.56, emphasizing 

geographical factors possibly linked to solar energy 

potential. 

• ‘GDP growth’ indicates an economic dimension where, 

a 0.31 increase aligns with increased renewable energy 

adoption. 

• ‘Year’ with a value of 1.00, suggesting temporal 

progression towards more renewable energy usage. 

• ‘Access to clean fuels for cooking’ with a value of 0.63, 

supporting the narrative that access to cleaner energy 

sources correlates with higher renewable energy shares. 

Conversely, features such as ‘Electricity from fossil fuels 

(TWh)’ with a value of 0.00 and ‘Land Area (Km2)’ also at 

0.00 exert no discernible negative influence, as indicated by 

their lack of contribution in the model’s decision towards 

classifying this instance underclass ‘1’. 

The analysis of this LIME output not only validates the 

model’s reliance on logical and expected indicators of 

renewable energy use but also highlights the complex 

interplay of various factors that the model considers in its 

predictions. This transparency aids stakeholders in verifying 

the model’s alignment with intuitive and empirical 

expectations, enhancing trust and facilitating further 

refinement of the model based on insights gained from such 

detailed explanations as shown in Table 4. 

 

Table 4. Summary of ML model performances 

 

Model Accuracy Recall Precision 
F1 

Score 

Error 

Rate 

Training 

Time (s) 

LightGBM 97.40% 98.29% 97.10% 97.69% 2.60% 0.126 

XGBoost 94.66% 95.60% 94.90% 95.25% 5.34% 0.158 

AdaBoost 88.22% 88.02% 90.68% 89.33% 11.78% 0.245 

Gradient 

Boosting 
84.79% 90.71% 83.56% 86.99% 15.21% 0.018 

Decision 

Tree 
84.66% 76.77% 94.86% 84.86% 15.34% 0.012 

RF 82.33% 75.79% 91.18% 82.78% 17.67% 0.088 

Extra Trees 78.49% 68.46% 90.91% 78.10% 21.51% 0.155 

 

 
 

Figure 6. LIME output for an instance classified within the context of renewable energy share prediction 
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Although the present research aims at the analysis of the 

performance of single ML models, in further studies it might 

be worthwhile to investigate model fusion approaches, i.e. 

ensembles and stacking, in order to integrate the capabilities 

of various algorithms. These methods can also improve the 

applicative force and accuracy of the predictions through 

consolidating the analogous properties and mistake designs of 

distinct models. Besides, despite the historical nature of the 

assessment used in the present research, such ML algorithms 

as LightGBM and XGBoost appear to have high potential to 

be used in practice in renewable energy short-term and long-

term forecasting operations. Their capability to process data 

that are high dimensional, heterogenous and incomplete makes 

them appropriate to be used in practical purposes like grid 

optimization, demand background and energy policy design, 

where accuracy and reliability are important aspects of 

concern. 

 

 

5. CONCLUSIONS 

 

These findings indicate the performance of ML models in 

forecasting the use of renewable energy and the enhanced 

performance of predictive analyses and explainability in 

forecasts due to the implementation of XAI strategies. 

LightGBM and other models like XGBoost performed well on 

multivariate energy data, which shows their capabilities to 

apply in real life energy prediction tasks. The models were 

guided by the use of the LIME framework, which offered 

insightful information of factors that were critical predictors, 

thus generating more trust and enabling wider adoption of AI-

based solutions to the energy industry. Such an XAI 

integration provided a clear and viable method of feature 

interpretation that can aid analysts and policymakers in 

propagating data-driven renewable energy policies. The 

approaches suggested in the current research add to a powerful 

AI-based forecasting system, boosting the level of 

transparency and decision-making ability. 

A number of technical issues need to be addressed in 

renewable energy forecasting conditions in real-time: this is a 

constant flow of streams with live data, consistent updates of 

the prediction model, and computing limitations. In this 

dynamic state, securing the stability and reliability of the 

model involves effective data pipelines, as well as missing or 

delayed input robustness and periodic retraining with the 

concept of adapting to the shift in the meaning of the concept. 

Whereas the current study will use historical information, 

future research will be undertaken in the formulation of a 

scalable deployment pattern that can support the formation of 

the real-time environment with minimal delays and decline in 

the performance. It would also be useful to add on the existing 

models by incorporating more data that are detailed and giving 

explanations that not only have transparency but also action 

and interpretation. Finally, the optimized models will go far in 

terms of influencing the real-time renewable energy 

forecasting, as they will be reliable, explainable and 

operational to the energy providers and the consumer. 
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