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Solar energy for power generation has increased significantly due to population growth 

and economic expansion. Solar irradiance is a primary determinant of solar photovoltaic 

(PV) technology. However, high-quality ground-based solar irradiance measurements 

remain scarce. Accurate prediction of global solar irradiance has become essential for grid 

distribution, financial planning, performance assurance, operational efficiency, and safety 

in solar PV systems. In this study, various Machine Learning (ML) algorithms—including 

Random Forest (RF), Gradient Boosting (GB), K-Nearest Neighbors (KNN), Decision 

Tree (DT), Multilayer Perceptron (MLP), Support Vector Regression (SVR), Long Short-

Term Memory (LSTM), and Linear Regression (LR), were employed to predict solar 

irradiance in Jerusalem, Palestine. Data was collected from a meteorological station in 

Jerusalem over a one-year period, from January 1, 2023, to December 31, 2023. Eight 

critical features influencing solar irradiance prediction were collected and analyzed, 

including diffuse irradiance, direct irradiance, mean temperature, pressure, relative 

humidity, wind speed, and wind direction. The models' accuracy was assessed using the 

coefficient of determination (R2), Root Mean Square Error (RMSE), relative Root Mean 

Square Error (rRMSE), and Mean Absolute Error (MAE). The results indicate that the RF 

model achieved the highest accuracy in predicting solar irradiance, with metrics of 

R2=0.90, RMSE=104.58 W/m2, rRMSE=0.24, and MAE=63.29 W/m2. 
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1. INTRODUCTION

The West Bank and Gaza Strip, commonly referred to as the 

Palestinian Territories, are situated between longitudes 34.15° 

and 35.40° east and latitudes 29.30° and 33.15° north. In 

contrast to other Middle Eastern nations, Palestine is a 

developing occupied nation with an insecure energy sector. 

The lack of conventional energy sources, rapid population 

expansion, and rising energy costs are all evident problems in 

the Palestinian territories [1, 2]. Palestine would thus face an 

emerging energy crisis as a result of this. The Israel Electric 

Company supplied about 92.6% of Palestine's entire energy 

demand in 2022, which came to about 5900 GWh. The 

remaining electricity comes from the Gaza power plant 

(4.4%), Egypt (0.6%), and Jordan (1.5%) [3]. In the meantime, 

11.2% of the energy comes from renewable sources. In 

addition, the residential sector in Palestine has the highest 

electricity tariff in the world, at about 0.618 $/kWh. Seasonal 

power shortages are predicted to appear in the West Bank once 

demand grows by 3.5% year until 2030 [4, 5]. 

Energy is a critical resource for the advancement of any 

culture. Life is powered by energy, which also serves as the 

primary driver of community growth in a number of areas, 

including social and economic, as well as the enhancement of 

quality of life [6]. Energy's significance has traditionally 

contributed to international warfare [7]. Many countries 

continue to rely primarily on non-renewable energy sources, 

such as fossil fuels like oil, coal, and natural gas. Because they 

pollute the air, water, and soil and contribute to climate change 

and global warming, fossil fuels have a negative impact on 

both human existence and the environment. As a result, clean 

technology development is receiving increased attention 

worldwide [8]. 

Meanwhile, renewable energy sources are associated with 

sustainable development and have the potential to raise living 

standards [9]. Renewable energy is also clean and can be 

generated in commercial, industrial, residential, and 

agricultural settings [10]. The use of renewable energy can 

effectively reduce greenhouse gas emissions and so contribute 

to a reduction in global warming [11, 12]. In developing 

nations, renewable energy is crucial for tackling 

environmental issues and maintaining energy security. 

Globally, a lot of research has been done to create inexpensive, 

highly effective renewable energy systems [13]. In addition to 

protecting the environment, investments in renewable energy 

contribute to regional and local development and reduce 

unemployment [14, 15]. Due to its stability, low spatial 

variability, and lack of sensitivity to seasonal weather 
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variations, solar energy is a promising renewable energy 

source [16]. Moreover, it should be mentioned that solar 

energy has a significant advantage over other renewable 

energy sources due to its pollution-free, unlimited, eco-

friendly, and self-sufficient nature. Additionally, solar energy 

is cost-effective because it is widely available and requires 

relatively little maintenance. Therefore, one of the primary 

aspects that should be investigated both before and after solar 

power projects is the amount of global solar irradiance [17]. 

Palestine's enormous potential for solar energy might 

change Palestine's energy situation. In this regard, the average 

daily solar energy in Palestine is estimated to be between 5.4 

and 6 kWh/m2, with more than 3,000 hours of sunshine 

annually [4, 18]. However, in December, this average daily 

solar energy drops to 2.6 kWh/m2, while in June, it rises to 

8.4kWh/m2. When compared to other regions throughout the 

world, such as Sydney, Australia, which has 4.64 kWh/m2 and 

Madrid, Spain, which has 4.88 kWh/m2 [19]. These facts 

demonstrate how solar energy could be used in Palestine for a 

variety of purposes with acceptable practicality. This has led 

the Palestinian Authority to establish several policies aimed at 

promoting investment in solar energy projects. Additionally, 

the Palestinian Energy Authority identified solar energy as one 

of Palestine's primary potential investment opportunities for 

both domestic and foreign capitalists [20]. 

In the meantime, it is frequently impossible to measure the 

solar irradiance everywhere due to the need for expensive, 

time-consuming, and accurate procedures. Furthermore, most 

countries are unable to measure solar radiation values 

accurately because they can only be assessed in specific 

locations [21]. Thus, forecasting solar irradiance from 

observations ensures sustainable power generation even in the 

absence of solar irradiance and maintains solar energy 

availability [22]. Forecasting is regarded as one of the most 

difficult problems. Forecasting can play a key role in business 

and industry decisions involving production, purchasing, and 

marketing [23]. Therefore, solar irradiance forecasting aids in 

the production of permanent power in the energy industry by 

utilizing solar energy stored in batteries during periods of lack 

of solar irradiance [24]. 

Over the past few decades, many scholars have been more 

interested in the field of solar irradiance forecasting. 

Deterministic [25], Machine Learning (ML) [26], Deep 

Learning (DL) [27], and hybrid approaches [28] are the four 

groups into which the literature divides the various 

approaches. Deterministic methods do have certain 

limitations, though, when it comes to providing short-term 

predictions [29]. In contrast to these deterministic techniques, 

ML and deep learning algorithms are among the most accurate 

and widely used techniques for predicting solar irradiance [30-

32]. 

Forecasting solar irradiance is a challenging issue that must 

be resolved to handle the electricity output of several 

companies. Additionally, a clean, renewable energy source is 

required in order to protect our environment from pollution 

and global warming. All of the previously mentioned factors 

motivate us to perform a comparative analysis in order to delve 

into some of the forecasting techniques currently in use. 

Enhancing the accuracy of solar irradiance forecasts is an 

affordable, high-impact solution that is difficult to emphasize. 

Thus, forecasting solar irradiance is an essential area of 

research since it allows for a large share of renewable energy 

to be integrated into the global electrical grid. This study 

provides an efficient approach of solar irradiance forecasting. 

In the current study, the aim is to evaluate and compare the 

performance of eight ML algorithms, namely Random Forest 

(RF), Gradient Boosting (GB), K-Nearest Neighbors (KNN), 

Decision Tree (DT), Multilayer Perceptron (MLP), Support 

Vector Regression (SVR), Long Short-Term Memory (LSTM) 

and Linear Regression (LR) for predicting global solar 

irradiance at a site in Jerusalem-Palestine. In addition to 

determining the features of input data that have the most 

impact on solar irradiance, many statistical analyses are 

carried out, such as coefficient of determination (R2), Root 

Mean Square Error (RMSE), relative Root Mean Square Error 

(rRMSE) and Mean Absolute Error (MAE) to examine the 

performance of different algorithms. Furthermore, global solar 

irradiance estimation models were evaluated among 

themselves and the results were compared with those of related 

studies. Consequently, the main contribution of this work is an 

extensive assessment of ML models that are suitable for 

predicting global solar irradiance based on observed data in 

Jerusalem. The authors believe that this study provides 

important insights into the use of ML for global solar 

irradiance forecasting, which could assist in integrating solar 

energy into the grid and help to meet the Palestinians' energy 

needs. 

The remainder of the paper is structured as follows: Section 

II presents a comprehensive review of the relevant literature. 

Section III describes the dataset, including data exploration 

and preprocessing. The approach, ML models, and evaluation 

metrics are discussed in Section IV. Section V summarizes the 

experimental results and discusses their implications. Finally, 

Section VI concludes the paper by summarizing the main 

findings and providing recommendations for future research. 

 

 

2. RELATED WORK 

 

Cost-effective power generation is crucial for a nation's 

growth, and solar energy can be exploited to generate 

electricity with zero carbon emissions [33]. In this context, a 

lot of studies on artificial intelligence literature have been 

interested in solar irradiance forecasts. In order to maximize 

solar energy output, a number of sophisticated techniques have 

shown superior performance in forecasting solar irradiance 

utilizing ML and DL algorithms [34]. Artificial intelligence 

techniques often include wavelet transforms, deep learning, 

support vector machines [34-36], extreme learning machines, 

and integration learning [37]. For solar irradiance forecasting, 

the research community has developed techniques such as 

Artificial Neural Networks (ANN), SVR, Linear/Nonlinear 

Regression, MPL, and RF [28]. To estimate hourly irradiance, 

one of the most popular DL models used is the ANN technique 

[38]. 

For energy planning and management, Yan et al. [39] 

examined forecasting models for electricity and renewable 

energy. It examines short-, medium-, and long-term wind and 

solar energy forecasts. The accuracy, applicability, and 

usefulness of ANN, ML, and ensemble-based models for 

planning and policy are examined. Additionally, the study 

examines solar energy prediction, focusing on predictive 

models for renewable energy management and sustainable 

electricity consumption. An overview of ML algorithms for 

forecasting global solar irradiance in South Africa is provided 

by Mutavhatsindi et al. [40]. Predictive performance in such 

models, parameter selection, and data pre-processing are all 

addressed in the work. The study provides R2 and Mean 
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Absolute Percentage Error (MAPE) for renewable energy. The 

study emphasizes how ML are becoming more and more 

common for estimating solar energy. In order to forecast 

global solar irradiance from air temperature input, the study of 

Feng et al. [35] examined both empirical and ML approaches. 

Four ML and four empirical temperature-based methods are 

used to forecast daily global solar radiation in temperate 

continental regions. According to simulation data, the hybrid 

and ANN approach performs better than the most advanced 

ML and empirical models. As a result, the temperature-based 

hybrid model is essential for the administration and 

performance of solar energy systems and is strongly 

recommended for the prediction of global solar irradiance in 

temperate latitudes. 

Li et al. [41] provide a short-term forecast of solar 

irradiation based on ML techniques and SVM regression. 

Results from simulations verify that ML-based prediction 

algorithms are capable of effectively forecasting solar 

irradiance in a variety of weather scenarios. In order to 

anticipate future irradiance, this study also explains the overall 

pattern of solar irradiance that repeats throughout the day and 

the accurate irradiance gradient at any given time. Huang et al. 

[42] focus on the use of ML algorithms to forecast solar 

radiation for planning reasons. Regression trees, support 

vector machines, and LR models are leveraged to make 

predictions based on historical data. The model input includes 

parameters including humidity, air pressure, and wind speed. 

Grid operators may effectively manage supply and demand 

with the use of the suggested strategy. Moreover, Qing and 

Niu [43] proposed an hour-ahead forecast of solar irradiance 

in desert areas because of the frequent dust storms. The MPL 

model outperforms other models in accuracy, including DT 

regression, KNN, and SVR. When compared to 

Autoregressive Moving Average (ARIMA), the findings of 

ANN backpropagation demonstrate that it is superior and more 

accurate at estimating solar irradiance. ANN is the best 

predictive and successful model among the six ML algorithms, 

according to comparative research that used six of them. Two 

methods were used by Gairaa et al. [44] to forecast hourly 

global solar irradiance for time horizons ranging from h+1 to 

h+6. Compared to using ANN alone, forecasting accuracy is 

increased by 3.2% when fuzzy logic is integrated with ANN. 

Fuzzy logic is typically used to figure out the relationship 

between features. A further investigation by Kumar and 

Kalavathi [45] revealed that the ANN model predicts 

photovoltaic (PV) power output more accurately than the 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) model. 

Another ML technique that is a part of the binary classification 

procedure is the support vector machine method. This 

approach is a rather straightforward overlaying learning 

strategy for regression or classification. It performs better for 

classification, but it can also be very useful for regression at 

times. SVR simply locates a hyperplane that generates a 

distinction between different sorts of data [46]. By selecting 

the best input features from nine datasets collected from four 

different Indian cities, Meenal and Selvakumar [47] compared 

the estimation of solar irradiance prediction models using 

SVM, ANN, and experimental models. They demonstrated 

that SVM outperformed the other algorithms with a coefficient 

of determination R2=0.9784 and RMSE=0.6953. In a study 

discussed by Alizamir et al. [48], the accuracy of predicting 

solar irradiance for Turkey and the US using six different ML 

techniques is examined. The study employed a number of 

techniques, including Classification & Regression-Tree-

CART, Multivariate Adaptive Regression Splines (MARS), 

Gradient Boosting Tree (GBT), Multilayer Perceptron Neural 

Network (MLPNN), and ANFIS based on Fuzzy-C-Means 

clustering (FCM) and subtractive clustering based ANFIS 

(ANFIS-SC). The study compared the accuracy of the models 

using RMSE, R2, and MAE. The GBT predicts solar radiation 

and energy better than the other models. 

DL-based forecasting techniques for wind and solar energy 

are reviewed by Rodríguez et al. [49]. Research on 

deterministic, probabilistic, deep learning architectures, and 

hybrid models that were published between 2016 and 2020 are 

included in the study. Future research and deep learning-based 

solar and wind energy predictions are other topics covered by 

the authors. To encourage innovation, a comprehensive 

taxonomy of prediction research based on deep learning is 

suggested. An outlook for future directions is included in the 

paper's conclusion. This article goes into great depth about 

how to use DL to forecast wind turbines, solar panels, and 

electricity load. DL-based forecasting model training and 

validation datasets are included in the study of Rajagukguk et 

al. [50]. In this work, the authors concluded that historical data 

is necessary for DL forecasting, which calls for robust 

processing methods and large data storage. Muhammad et al. 

[51] explored the application of DL approaches in power 

networks. An LSTM-based solar radiation prediction for the 

next hour, day, and year is described in the work. Data for the 

upcoming year is crucial for market and system planning. A 

comprehensive review of each category of DL techniques 

currently used in electrical systems is given in this work. 

Ağbulut et al. [52] applied four distinct ML algorithms: 

SVM, KNN, DL and ANN to forecast the daily global 

radiation for the four Turkish regions. In this work, the 

efficiency of these algorithms is assessed using seven 

statistical criteria. Out of all the methods, the ANN algorithm 

performed the best, and the findings demonstrate a high level 

of accuracy. For cloudy and sunny days, ANN obtained R2 

values of 0.96 and 0.97, respectively [53]. Another ANN 

model achieved prediction accuracy of 94% on cloudy days 

and 98% on sunny days when it was used to estimate 24-hour 

ahead of solar irradiance for a grid of a solar power plant in 

Italy [54]. 

The use of ANN for solar radiation in Nigeria was examined 

in the study of Bamisile et al. [55]. Their goal is to create ANN 

techniques that can forecast solar radiation on an hourly basis. 

With the current techniques, solar radiation predictions are 

feasible. When ANN approaches are used to forecast solar 

irradiation, the coefficient of determination values range from 

0.9046 to 0.9777. According to the study's findings, Nigeria 

should develop and deploy solar systems for power generation. 

A technique for forecasting solar irradiance over a number of 

time horizons that considers 3, 6, and 24-hour conditions is 

presented by Chandola et al. [56]. An LSTM network is used 

in the suggested model to account for the hours that separate 

the typical day from other days. Statistical criteria, such as 

standard deviation and RMSE, are used to evaluate the 

performance of the algorithm. Low MAE and MSE 

percentages demonstrate the effectiveness of the proposed 

approach. 

Recurrent neural networks (RNNs), which include LSTM 

networks, are capable to learn about long-term dependencies 

without experiencing gradient vanishing. Another DL model 

that was recently suggested for the solar irradiance forecasting 

problem is LSTM, which performs better than SVR. For 

continuous data, such as time series analysis and natural 
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language processing, LSTMs have emerged as a key 

component of DL [57]. Because they have unique filtering 

mechanisms that allow them to selectively update and forget 

information, they are excellent at acquiring and storing 

information over extended periods of time. The dependency 

between hours within a single day is also considered by the 

LSTM model. To determine the ideal parameter values, the 

LSTM uses hyper-parameter tuning. Subsequent data is then 

included to observe its impact on the enhanced model [58]. 

Because of this, LSTMs are ideally suited for tasks like speech 

recognition, machine translation, and language modeling, 

where it's crucial to comprehend relationships and context 

across time. DL has greatly benefited from LSTMs, which are 

still a crucial part of many contemporary sequential data 

processing methods. To forecast the short- and long-term solar 

irradiance using observed data, LSTM is improved by 

Jayalakshmi et al. [59]. Alam et al. [60] applied four ensemble 

ML models to forecast solar radiation in Bangladesh using a 

comprehensive set of meteorological features, including 

sunshine duration, cloud coverage, and humidity. Their study 

reported a remarkably high coefficient of determination 

(R2=0.9995) using the GB regression method, emphasizing the 

potential use of ensemble techniques in solar radiation 

prediction. A similar study was done by Allal et al. [61], who 

conducted a comparative study in Izmir-Turkey, over a three-

year period, experimenting with both deep learning and 

traditional ML models for solar irradiance forecasting. Their 

results showed that MLP achieved superior predictive 

performance compared to other methods. In order to forecast 

solar irradiance in Islamabad, El-Shahat et al. [62] compare 

ML and DL algorithms utilizing some of the most widely used 

models in the literature. This study's findings demonstrated 

that the CNN-LSTM model beats nine popular DL models 

with an adjusted R2 value of 0.984, while GB regression from 

ML techniques beats its competitors with an R2 value of 0.962 

for the other six ML models. 

To sum up, numerous studies have been conducted in recent 

decades to forecast solar irradiance availability because of its 

significance as a renewable energy source and to achieve 

planning, management, and stabilization of the energy sector. 

According to the literature, ML and DL algorithms are just two 

of the many algorithms that have been employed for this aim. 

A variety of factors, such as the study site, the number of 

features used, the forecast timestamp, weather conditions, and 

the size of observed data, all affected the results of the 

employed techniques to predict the solar radiation. In addition, 

these variables determine the level of accuracy of the models 

used to investigate solar radiation availability at any site. 

Particularly, in Palestine, the lack of appropriate datasets and 

the small number of researchers in this domain have resulted 

in insufficient studies on the solar irradiance forecasting 

research line. 

 

 

3. DATASET ANALYSIS: EXPLORING AND 

PREPROCESSING DATA 

 

This section presents an in-depth analysis of the used 

dataset, focusing on data exploration and preprocessing 

mechanisms to prepare the dataset for applying ML models. 

Data exploration and visualization are employed to find 

relationships, explore patterns and distributions among 

features, offering more insights into the dataset's structure and 

its main characteristics. Some preprocessing steps were also 

carried out, including handling missing values; filtering, 

normalization, aggregation, and feature importance analysis 

were applied to ensure data quality, compatibility and its 

applicability with all selected ML models. 

 

3.1 Dataset exploration 

 

The data was collected from a meteorological station 

located in a study site in Jerusalem city for a duration of one 

year, from January 1, 2023, to December 31, 2023, with a total 

of 52,405 samples, with a sampling frequency of 10 mins (6 

readings per hour). The dataset consisted of eight features, 

they are Diffused solar irradiance (Diff-R), Direct solar 

irradiance (DR), Global solar irradiance (GR), all with a unit 

of W/m2, Relative Humidity (RH, %), Temperature (TR, ℃), 

Wind Direction (WD, °), Wind Speed (WS, m/s), and Pressure 

(PR, hPa), where GR is the target variable. Some descriptive 

statistics of the dataset is listed in Table 1. This table provides 

more insights into the central tendencies, variability, and 

unique values, aiding in the exploration and understanding of 

the structure of the dataset. For Diff-R, the mean value is 56.61 

W/m2, its range is from 0 to 89 W/m2, where 75% of the values 

are below 89 W/m2. For DR, the mean is 246.32 W/m2, and 

the range is from 0 to 552.67 W/m2, where 50% of the values 

are 0. For RH, the mean is 60.24% and the range is from 10% 

to 99%. The mean temperature (TR) is 18.44℃ and the range 

is from 1.86℃ to 40.8℃. For WD, the mean is 232.98° and its 

values range from 0° to 360°. The mean value for WS is 3.23 

m/s and the range are from 0 m/s to 13.4 m/s. For the pressure, 

the mean is 992.17 hPa and the range is from 912.49 Pa to 

933.37 Pa. Finally, for the target variable, GR, the mean is 

229.18 W/m2 and the range is from 0 to 1211 W/m2. 

To study the relationships between input features and the 

target variable, a set of experiments was conducted. Figure 1 

shows a series of scatter plots visualizing the relationship 

between the target variable, GR, and the different features. 

Each subplot focuses on the correlation between GR and one 

of the meteorological features. It is clearly observed that there 

is a strong positive correlation between GR and both DR and 

TR. This means these two features are major components of 

evaluating the amount of GR. For features RH and WS, a 

negative correlation seems to exist; this clearly indicates that 

higher values tend to be associated with lower GR, and this is 

as expected, since increasing the amount of clouds and other 

atmospheric factors such as wind speed will reduce the amount 

of GR reaching the earth's surface. These findings are also 

observed when calculating the correlation coefficients that 

give numeric measures of the relationship between variables, 

either positive or negative correlation. The heatmap presented 

in Figure 2 shows that DR has the highest positive correlation 

coefficient (0.74), and RH has the lowest among the others 

with -0.54. Other features have either low or moderate 

correlation with GR. 

 

Table 1. Descriptive summary of the dataset features 

 
 Diff-R DR RH TR WD WS PR GR 

count 52405 52405 52405 52405 52405 52405 52405 52405 

mean 56.61 246.32 60.42 18.44 232.98 3.23 922.17 229.18 

std 81.65 333.88 22.60 6.86 88.25 1.86 3.54 321.83 

min 0 0 10 1.9 0 0 912.49 0 

25% 0 0 41 12.8 152 1.8 919.48 0 

50% 4 0 60 18.8 277 3 921.82 2 

75% 89 552.76 81 23.5 296 4.4 924.73 435 

max 550 1040 99 40.8 360 13.4 933.37 1211 
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Figure 1. Pairwise feature relationships: Visualizing correlations between features 

 

 
 

Figure 2. Heatmap visualization of features correlation in the dataset 
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Figure 3. Feature importance analysis for predicting solar 

irradiance 

 

Furthermore, Figure 3 shows the feature importance bar 

chart, which visually ranks the input features based on their 

importance in predicting GR. As expected, DR has the 

strongest positive correlation, as it is the most important 

feature affecting the amount of GR, and RH is the second most 

important feature, but with a negative correlation. This means 

that higher values of RH tend to be associated with lower GR 

values. The other features (Diff-R, TR, WD, WS, PR) have 

low to moderate importance ranking in predicting GR, which 

is also aligned with the previous observations from Figures 1 

and 2. 

 

3.2 Data preprocessing 

 

To prepare the dataset for ML models, a set of preprocessing 

steps was implemented. We first applied linear interpolation 

as an imputation technique to handle missing values. It is a 

mathematical equation used to predict missing values within a 

specific range by analyzing the linear connections between 

existing data points. It mainly uses a linear interpolation of the 

missing values along a predetermined axis, where axis 0 

corresponds to rows, and the interpolation step goes along the 

columns. This method is mathematically represented in Eq. (1) 

[58], given two data points (x1, y2) and (x2, y2). 

 

𝑦 = 𝑦1 +
(𝑥 − 𝑥1)(𝑦2 − 𝑦1)

(𝑥2 − 𝑥1)
 (1) 

 

where, y is the interpolated value at a point x, (x1, y1) and (x2, 

y2) are the known data points, and x is the position where the 

interpolation takes place. 

The dataset samples were recorded every 10 minutes, which 

means that there are 6 readings per hour. To simplify the 

analysis and focus on hourly-based measurements, we applied 

an aggregation step to group each 6 consecutive samples into 

a representative one by taking their mean. Afterward, and 

since the dataset contained samples for 24 hours, we only 

focus on the time interval where the solar radiation is effective, 

the interval that extends from sunshine to sunset duration in 

the region. For the months of January, February, October, 

November, and December, we considered the sun duration to 

be from 6:00 AM to 5:30 PM. For March and April, the 

duration was from 6:00 AM to 6:00 PM, and for May through 

September, it was from 5:00 AM to 7:00 PM. So, all samples 

located outside these periods were filtered out, a manual check 

was done to make sure all filtered samples have a 0 GR. We 

applied another filtering step to remove any outliers found in 

the dataset. For this purpose, we used Inter Quartile Range 

(IQR), it is a statistical method being widely used to detect and 

remove outliers from a dataset, it calculates Q1 (25th 

percentile) and Q3 (75th percentile), it then computes IQR=Q3–

Q1, and next it determines the lower and upper bounds as 

follows: LB=Q1–1.5*IQR, UB=Q3+1.5*IQR, the data points 

located below the lower bound or above the upper bound are 

considered outliers, and consequently removed from the 

dataset [61]. 

For better comparability between models, it is necessary to 

make sure that all features contribute equally to the analysis 

by eliminating differences in magnitude. This process is called 

data normalization or scaling. It retains the relative distribution 

of values while bringing values of all variables to a common 

scale. This process is particularly useful when working with 

datasets that contain features measured in different units or 

scales, as it limits or prevents input features with larger ranges 

from dominating the analysis, ensuring that the results and 

their analysis are not biased to specific models by magnitudes 

across the dataset or differences in scale. In this study, we used 

Min-Max scaling, a widely performed data transformation 

method, which transforms the data to a fixed range of [0, 1] 

following Eq. (2) [62]. 

 

x′ =
x − xmin

xmax − xmin
 (2) 

 

where, x represents the actual value, xmin and xmax is the 

minimum and maximum value, respectively, and 𝑥′  is the 

normalized value. 

In summary, the raw dataset contained 52,405 samples, of 

which 148 had null values. These null values were estimated 

using interpolation. The data was filtered out based on the sun 

duration in the region (from sunrise to sunset), considering 

specific intervals for different seasons, and outliers were 

removed using the IQR statistical method. The dataset was 

reduced to 26,952 samples. After the aggregation step, in 

which every six samples were combined, the processed dataset 

was further reduced to 4,402 samples, which became the final 

count. 

 

 
 

Figure 4. Monthly variation of average global solar 

irradiance (W/m2) 

 

For further visualization of the processed dataset, Figure 4 

shows a bar plot of the mean values of GR per month. It is 

clearly observed that GR values increase from January, reach 

the peak in the summer months (May, June, July, and August), 

and then gradually decrease towards December. This tendency 
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suggests a strong seasonal variation in solar radiation. In 

Winter (Jan, Feb, Dec) there is lower solar radiation due to 

shorter days (sun duration) and lower solar angles. Spring 

(Mar, Apr, May), radiation steadily increases as days become 

longer, and the sun duration, and solar intensity increase. In 

Summer (Jun, Jul, Aug), the maximum solar radiation occurs, 

likely due to the longest days and highest solar angles, and in 

Autumn (Sep, Oct, Nov), solar radiation decreases as days 

become shorter and solar angles decrease further. To get 

deeper, Figure 5 represents a histogram of the hourly variation 

of mean GR (in W/m2) during the day. As it's observed, GR 

starts extremely low in the early morning hours (around 6:00-

7:00 AM), it then increases sharply, reaching the peak around 

late morning to early afternoon (10 AM to 1 PM). After that, 

it starts decreasing steadily toward late afternoon (around 

4:00-6:00 PM), approaching zero as the day ends. 

 

 
 

Figure 5. Hourly variation of average global solar irradiance 

(W/m2) 

 

Figure 6 represents GR values (in W/m2) as a timeseries, 

indicating the intensity of solar radiation received at a given 

time for 2023. It is shown that GR increases steadily, reaching 

a peak in the summer months (May to August) due to longer 

days and higher solar angles, where the highest values of GR 

are observed around the middle of the year, and decreases 

gradually as the year progresses toward winter, with shorter 

days and lower solar angles. 

 

 
 

Figure 6. Time series of global solar irradiance (W/m2) for 

2023 

 

 

4. APPROACH, ML MODELS AND EVALUATION 

CRITERIA 

 

4.1 Approach 

 

A typical ML approach is employed in this study that begins 

with data collection, where relevant data is gathered from 

sensors installed in a meteorological station located in 

Jerusalem city. Several features relevant to this study were 

monitored and recorded, such as temperature, humidity, wind 

speed, wind direction, pressure and solar radiation data. The 

next step involves data preprocessing, including data cleaning 

where missing values are handled; data filtering, where 

outliers and samples recorded outside the sun duration are 

detected and removed; data aggregation, where data is merged 

on hourly-based to facilitate the analysis; then data 

normalization or standardization was applied to ensure that 

input features are on the same scale, which plays a crucial role 

in enhancing the performance and convergence of certain ML 

algorithms. The next step proceeds to the model selection and 

training phase. Eight ML models, they are RF, SVR, LR, GB, 

DT, KNN, MLP, and LSTM, are evaluated based on the 

problem at hand. The models are trained using a subset of the 

dataset, typically split into training and validation subsets to 

avoid overfitting. Hyperparameter tuning is also performed, 

where different configurations of the model’s parameters are 

evaluated to optimize the overall performance. K-fold cross-

validation is also employed to verify that all models generalize 

well to unseen data. Finally, after training, the models’ 

performance is evaluated using a set of predefined evaluation 

metrics such as RMSE, rRMSE, MAE, and R2 [63]. 

 

4.2 ML models 

 

This section presents an overview of the eight ML 

algorithms employed in this study, highlighting their core 

principles. Each algorithm is selected based on its unique 

features, ensuring a diverse range of mechanisms to study the 

solar radiation prediction problem effectively. The selected 

ML algorithms include both traditional techniques, such as 

LR, DT, KNN, and SVM, as well as advanced models like RF 

and GB. Additionally, neural network-based approaches, such 

as MLP and LSTM, are explored to capture nonlinear 

relationships between features. By experimenting with this 

diversity of models, we aim to conduct a comprehensive 

comparison among them in terms of their performance, 

providing more insights into the most effective models for 

predicting global solar irradiance in the region [9, 21, 34, 49]. 

The subsequent sections give brief overviews of these 

algorithms. 

 
4.2.1 RF 

Rf is a supervised ML algorithm commonly used in 
regression and classification and regression problems. It is 
based on ensemble methods that build a set of DT utilizing 
random subsets of data samples and features. Each DT is 
trained on a bootstrap sample, where samples are randomly 
selected with replacement. For regression problems, the target 
value is estimated by aggregating the outputs of all DTs. For 
classification, the target class is determined by taking the 
highest majority votes across all trees [28, 64]. 

 

4.2.2 SVR 

SVR is a special type of family of ML algorithms called 

SVM, used mainly for regression tasks. This algorithm aims 

to predict continuous values by deriving a function that best 

fits the data samples while maintaining an acceptable margin 

of tolerance for error rates, i.e., it tries to find an optimal 

hyperplane that minimizes the error rates within a predefined 

margin, allowing some error values as long as they are within 

the determined margin. SVR can handle linear and non-linear 
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problems, but it is particularly useful for the latter one, where 

the relationship between features behaves in a nonlinear 

manner, as kernel functions can be used to map data points to 

a multi-dimensional space [55, 58]. 

 

4.2.3 LR 

LR is one of the oldest, simplest and widespread ML 

algorithms being used to model a targeted predicted 

continuous value. based on one feature (simple LR) or more 

input features (multiple LR). This scheme assumes a linear 

relationship between the independent variables (input 

features) and the dependent one (target). LR aims to find the 

optimal hyperplane in higher dimensions or the best-fitting 

line that minimizes the error rates between predicted and 

actual values [16, 42]. 

 

4.2.4 GB 

GB is a type of ensemble ML technique for classification 

and regression that builds strong predictive models by 

combining multiple results of weak prediction models, 

typically DT. Unlike bagging methods like RF, which build 

DT independently, GB constructs trees sequentially, which 

means that trees are built utilizing the greedy approach with 

multiple split points to minimize the loss functions, where 

each new tree tries to tune the error value made by the previous 

trees. This sequential learning makes GB highly effective for 

both classification and regression tasks [48, 50] 

 

4.2.5 DT 

DT is a widely employed ML algorithm for both regression 

and classification tasks. They recursively divide data into 

smaller subsets based on input features’ values, aiming to 

create a model with a tree-like structure that predicts the value 

of the target variable. Each internal node might represent a 

decision based on a specific feature, each branch represents a 

decision outcome based on values of a feature, each leaf node 

contains a predicted outcome, and the last level of the tree 

(leaves) shows the predicted value for that group/class [58, 

62].  

 

4.2.6 KNN 

KNN is a simple and non-parametric ML algorithm, which 

excels in both regression and classification tasks. It works by 

looking at the nearest data points (neighbors), or the k-closest 

training samples in the feature space, to make predictions 

using some distance metrics, such as Euclidean distance. KNN 

is classified as a ‘lazy learner’ because it does not perform any 

training activities to build an explicit model during the training 

task. Instead, it makes a copy of the training data and tries to 

make predictions only when asked to do that; it has to 

memorize all data points during the prediction task, which 

could be less efficient in dealing with a high volume of data. 

The class value is then determined by either taking the 

majority vote (in classification tasks) or computing the 

average (in regression tasks) of the K neighbors. This 

approach enables the algorithm to self-adapt to different 

patterns and perform predictions based on the local structure 

of the data [44, 52]. 

 

4.2.7 MLP 

MLP is a common type of ANNs consisting of multiple, 

fully connected layers, whether each layer consists of a set of 

perception elements known as neurons, where all neurons in a 

layer are connected to all other neurons in a subsequent one, 

connected in a feedforward manner, and typically use 

nonlinear activation functions to build models that efficiently 

deal with complex patterns in data. MLP can be implemented 

for classification or regression tasks. MLP network typically 

consists of three layers: input layer, which receives input data 

and forwards it to the hidden layers, it contains a number of 

neurons equals to the number of input features; hidden layers, 

which perform computations and transform the input data 

using different number of hidden layers; activation function, it 

is used to apply non-linear transformation to the output of each 

neuron in the hidden layers, hyperbolic tangent (tanh), 

Rectified Linear Unit (ReLU), and sigmoid are examples of 

activation functions. The final output of the network can be a 

classification label or a regression target, and adjustable 

parameters for weights and biases that determine the strength 

of the connection between all neurons in adjacent layers; and 

a loss function that measures the error difference between the 

predictions and the actual values [28, 38]. 

 

4.2.8 LSTM 

LSTM is a specialized type of RNN that is mainly designed 

to efficiently capture any long-term dependencies in sequential 

data. Unlike standard Feedforward Neural Networks (FNN), 

LSTMs include mechanisms for feedback connections, 

enabling them to leverage any temporal dependency across 

sequences. They are also specifically designed to address the 

challenges of the gradient vanishing problem, which is 

common when training traditional RNNs on long sequences. 

In its internal structure, LSTM networks use memory cells to 

regulate the flow of information and are capable of retaining 

information over an extended set of sequences. Each memory 

cell consists of three key components: an input gate, a forget 

gate, and an output gate. The input gate maintains the amount 

of new input, while the forget gate controls the amount of 

information to be discarded from the memory cell. Both gates 

take the current input and the previous hidden state as inputs 

and produce output values in the interval from 0 and 1, where 

0 indicates information to be ignored and 1 indicates 

information to be retained. The output gate determines how 

much content of the memory cell contributes to the hidden 

state [52, 57]. 

 

4.3 Evaluation metrics 

 

In order to assess the effectiveness of the models generated 

using ML algorithms, four commonly used statistical error 

measurements and analysis techniques in time-series 

prediction were employed and described in Eqs. (3) to (6) [45, 

62]. RMSE provides details regarding how effectively the 

prediction models perform, where the average magnitude of 

the error in a sample can be measured by RMSE. Hence, the 

errors are squared before they are averaged, which leads to an 

increase in the weight of large errors in the assessment. 

rRMSE indicates how the residuals are scaled against the 

actual values and the errors appear relatively. MAE is a 

measure of the differences between two observations that 

indicate the same occurrence. The mean absolute values of 

individual prediction errors for all instances in the test dataset 

are provided by MAE. R2 evaluates the degree to which actual 

data points correlate with the statistical assessment of 

regression prediction accuracy. A model can achieve a high 

level of prediction accuracy when RMSE, rRMSE and MAE 

are close to 0 and R2 is close to 1. 

It is worth mentioning that the accurate performance 
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analyses that aid in ranking the prediction models can be 

obtained using any of the statistical approaches described 

above. 

 

RMSE = (
1

n
∑(yi − yî)

2

n

j=1

)
1
2 (3) 

 

rRMSE = (

1
n

∑ (yi − yî)
2n

j=1

∑ (ŷi)
2n

j=1

)
1
2 (4) 

 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑗=1

 (5) 

 

𝑅2 = 1 −
∑ (yi − yî)

2𝑛
𝑗=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑗=1

 (6) 

 

where, 𝑦𝑖 and 𝑦𝑖̂ represent the actual solar irradiance value and 

the predicted value of solar irradiance of the sampled data 

points at the jth moment, respectively. n is the number of 

sampled moments of the sample, 𝑦̅ is the average value of the 

solar irradiance. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

 

In this section, we discuss the performance of the eight ML 

algorithms used to forecast solar irradiance in Jerusalem. In 

order to provide an equitable comparison of ML algorithms, 

they were trained in identical environmental conditions. The 

algorithms employed in this work (RF, SVR, LR, GB, DT, 

KNN, MLP, and LSTM) are compared against each other 

using widely used statistical performance metrics, namely, 

RMSE, rRMSE, MAE and R2 to maintain the commendable 

model in predicting solar irradiance at the study site. 

Furthermore, we employed a grid search method combined 

with 5-fold cross-validation to optimize the hyperparameters. 

This method gives more flexibility to systematically explore 

combinations of parameter values and select the 

configurations that yield the best performance based on the set 

of performance metrics. As discussed later in this section, the 

following hyperparameter ranges were explored for the best-

performing model, RF, as an example: number of trees 

(n_estimators): [50, 100, 150, 200]; maximum tree depth 

(max_depth): [10, 20, 30, None]; and minimum samples per 

leaf (min_samples_leaf): [2, 5, 10]. The final selected 

parameters were: n_estimators =200, max_depth=None, and 

min_samples_leaf =5. 

 

 
 

Figure 7. Performances of the models (a) R2, (b) RMSE, (c) rRMSE, and (d) MAE 
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(a) RF 

 
(b) SVR 

 
(c) LR 

 
(d) GB 

 
(e) DT 

 
(f) KNN 

 
(g) MLP 

 
(h) LSTM 

 

Figure 8. Scatter plots of predicted versus actual global solar irradiance (W/m2) 
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The values of the statistical indicators obtained by the eight 

models are depicted in Figure 7. R2 values as a function of 

model performance, as depicted in Figure 7 (a) providing that 

RF has a value of 0.90, the best accuracy rating out of all the 

models that were compared. GB, KNN and DT yield values of 

0.89, 0.88 and 0.84, respectively. The prediction R2 

performance of the other four models (MLP, SVR, LSTM and 

LR) provide values below 0.8. The value of LR is 0.71, which 

is the lowest among all compared models. 

Figure 7 (b) displays the RMSE performance of the models 

employed. RF is the model that gives the best prediction of the 

target global solar irradiance variable, delivering predictions 

with the lowest RMSE value 104.57 W/m2. The GB and KNN 

returns a value of 107.86 and 114.78, respectively. The other 

models (DT, SVM, MLP, LSTM and LR) provide relatively 

high RMSE values of more than 130 W/m2. Meanwhile, LR 

comes in the last rank and returns a value of 180.49W/m2 with 

the worst performance. 

To gain more deeper understanding of how the actual values 

are scaled over the residuals. The rRMSE values in Figure 7 

(c) range from 0.24 for the RF, which is the most efficient 

model, to 0.43 for the LR, which is the least efficient model. 

According to the literature [65, 66], RF with such rRMSE 

value can be classified as a model with good accuracy. 

In Figure 7 (d), the MAE comparison with the ML models 

is shown. It is found that RF presents the best MAE score with 

associated value of 63.29 W/m2. Meanwhile, GB, KNN, DT, 

SVM, MLP and LSTM present MAE values ranging from 

67.24 to 113.55 W/m2. Once again, the LR performs worst 

amongst all, with a very high MAE rating of 134.90 W/m2. 

Furthermore, the model performances of R2, RMSE, rRMSE 

and MAE provides consistency in ranking the best and worst 

prediction models; i.e., the higher R2 value matches with the 

lower RMSE, rRMSE and MAE values. To sum up, the results 

depicted in Figure 7 show the superiority of RF (R2 = 0.90, 

RMSE=104.57, rRMSE=0.24 and MAE=63.29) that 

outperforms the others in predicting solar irradiance in 

Jerusalem. Among all the models employed, LR (R2=0.71, 

RMSE=180.49, rRMSE=0.42 and MAE=134.90) presents the 

worst performance. 

Figure 8 shows comparative scatter plots between actual 

global solar irradiance versus predicted values of the models 

employed. As shown in Figure 8 (a), the plotted data points of 

the best performance model (RF) are generally located near 

the 1:1 line with very close predictions of lower values and 

slightly underestimates of higher solar irradiance values. RF 

provides lower residuals compared to the other models. Very 

similar results for GB and KNN models (Figures 8 (d) and 8 

(f)) with more residuals for both models. Clear 

underestimation of moderate and higher solar irradiance 

values provided by SVR (Figure 8 (b)). DT provides good 

predictions for lower values and overestimates the moderate 

values as shown in Figure 8 (e), while MPL as presented in 

Figure 8 (g) overestimates the lower values and 

underestimates the moderate and higher values. LSTM 

overestimates the lower and moderate values and 

underestimates the maximum values as shown in Figure 8 (h). 

The worst performance prediction values were generated by 

LR as shown in Figure 8 (c), where LR presents negative 

predictions for lower solar irradiance values, overestimation 

of moderate values and highly underestimation of higher 

values. 

Finally, the results presented in Figure 8 are in consistent 

with those provided by Figure 7. RF is a commendable model 

in predicting solar irradiance and the results outperform the 

others, while the results obtained by LR showed lower 

accuracy; hence, this model should not be used for predicting 

solar irradiance in the study site. 

 

Table 2. Comparison of the proposed approach with others in terms of the adjusted R2 

 
Reference Location Prediction Models Best Model R2 

[35] Global ANN, MEA-ANN, RF, WNN, Empirical MEA-ANN 0.885 

[67] Global MLR, ANN, Empirical ANN 0.884 

[68] Global SVR, XGBT, CatBoost, VOA VOA 0.848 

Present work Jerusalem, Palestine RF, GB, KNN, DT, MLP, SVR, LSTM, LR RF 0.90 

 

 
(a) Winter weeks 
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(b) Summer weeks 

 

Figure 9. Actual and predicted global solar irradiance (W/m2) comparative performance plot of RF model for six weeks: (a) 

Winter weeks, (b) Summer weeks 

 

Table 2 presents a comparative analysis against a selection 

of studies conducted in various regions, including Turkey, 

Bangladesh, and others. This comparison focuses on the 

adjusted R2 metric to provide a more equitable assessment of 

predictive performance and to ensure consistency across 

different studies. The results indicate that the proposed model 

demonstrates competitive performance metrics compared to 

models from other regions, despite some regional variability. 

Global solar irradiance pattern in Palestine changes from 

lower values in winter and higher values in summer. The 

comparisons of the solar irradiance predictions and real 

measurement results of the best performance model (RF) that 

was developed by an ML algorithm for a period of six weeks 

for both winter and summer in Jerusalem is given in Figure 9. 

It is seen that RF better estimates the minimum and lower 

values of global solar irradiance for both winter and summer 

months. As illustrated in Figure 9 (a) the model presents an 

overestimation of the maximum values in winter weeks, while 

it underestimates the maximum global solar irradiance values 

in summer weeks as depicted in Figure 9 (b). 

It’s worth mentioning that the summer season in East 

Jerusalem is characterized by consistently high irradiance 

levels and prolonged periods of clear skies—conditions that 

may not be adequately represented in the training data, 

especially if such periods occur infrequently in other parts of 

the year. This tendency of RF models to underestimate high 

irradiance under clear-sky conditions is also supported in the 

literature. For example, Wan et al. [69] reported a similar 

underestimation behavior when applying RF to solar radiation 

estimation in Chongqing, China, particularly during clear and 

high-radiation periods. This suggests that RF may be limited 

in extrapolating beyond the range of observed training values 

or may be affected by averaging effects inherent to ensemble 

methods. 

 

 

6. CONCLUSION AND FUTURE WORK 

 

In this study, we evaluated eight ML models - RF, GB, 

KNN, DT, MLP, SVR, LSTM, and LR to predict solar 

irradiance in a study site located in East Jerusalem, Palestine, 

a city situated within the latitude range of the Mediterranean 

region. We also analyzed the relative importance of input 

meteorological features for each model. Among the models 

tested, RF yielded the best performance, achieving the lowest 

prediction error (RMSE=104.57, rRMSE=0.24, MAE=63.29) 

and the highest coefficient of determination (R2=0.90). In 

contrast, LR exhibited the weakest performance, with 

RMSE=180.49, rRMSE=0.43, MAE=134.90, and R2=0.71. 

Future research directions include exploring temporal and 

spatial generalization by extending the study to additional 

geographic locations; incorporating additional meteorological 

and environmental features—such as cloud cover, aerosol 

optical depth, and atmospheric pressure—where applicable, as 

these are known to influence solar irradiance levels; 

investigating real-time deployment scenarios with a focus on 

lightweight models suitable for solar forecasting on low-

power edge devices; and exploring hybrid modeling 

techniques that combine physical models with data-driven 

approaches to achieve greater prediction stability and 

accuracy. 
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