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 In the split delivery vehicle routing problem with minimum delivery amounts (SDVRP-MDA), 

the customer demand can be split among different distribution routes, as long as the quantity 

delivered to the customer each time remains above the minimum threshold. Despite saving 

transport cost, the split of customer demand may complicate the order processing and disturb 

the customer. These problems can be solved satisfactorily by the constraint of the minimum 

delivery amounts. Therefore, this paper puts forward an adaptive tabu search (ATS) algorithm 

to solve the SDVRP-MDA. Two new neighbourhood structures are adopted, the adaptive 

adjustment strategy involving both intensification and diversification search is introduced. The 

proposed method was tested on 32 standard examples, using 4 different splitting coefficients. 

On average, the test results only deviated from the current best solution by -0.50~0.22. A total 

of 94 best solutions were derived and 1 new best solution was obtained. This means our method 

enjoys good adaptability and robustness. 
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1. INTRODUCTION 

 

The Split Delivery Vehicle Route Problem (SDVRP) is one 

extension of the classic VRP. Despite the constraint of the 

VRP that Each customer can only be served by one vehicle, 

the SDVRP allows multiple vehicles to serve one customer at 

the same time. Therefore, the customer demands can be split 

between several routes. Dror and Trudeau [1] and Archetti et 

al. [2] respectively demonstrated that the number of vehicles 

used and the total cost of delivery can be reduced under 

conditions that allow for splitting delivery. 

The classic SDVRP assumes that the customer demands can 

be split into any units. In the practical logistics distribution 

process, split delivery will complicate the order processing and 

interfere with the customers many times. These interferences 

are not desirable for customers. Therefore, the minimum 

threshold should be specified for the quantity delivered to the 

customer each time, which has certain practical significance 

for both the supply and demand sides. Gulczynski et al. [3] 

first proposed a split delivery vehicle routing problem with 

minimum delivery amounts (SDVRP-MDA), i.e., the amount 

of delivery service for each time should not be lower than a 

minimum amount, but this constraint is expressed as a limit on 

the delivery amount of money. For instance, Gulczynski et al. 

[3] mentioned that the American Pizza Hunt has a take-away 

of about $8, and in Newfoundland the oil transport company 

only provides home delivery services for customers with 

orders greater than $200. Anthony Han et al. [4] pointed out 

that the threshold amount of distribution in 7-11, Taiwan's 

largest supermarket chain was NT$300. In addition, many e-

commerce enterprises charge an additional fee for orders 

below a certain amount. In summary, further research on the 

SDVRP-MDA has important theoretical and practical 

significance. 

Gulczynski et al. [3] used the splitting coefficient p(0≤ 𝑝 ≤
1) to define the minimum delivery amounts, i.e., the minimum 

delivery amount of customer i, MDA𝑖 = ⌈𝑝𝑑𝑖⌉, where 𝑑𝑖 is the 

demand of customer i, and ⌈∙⌉ is upward rounding function. 

Obviously, each customer can be served by ⌊1 𝑝⁄ ⌋  ( ⌊∙⌋ is a 

round-down function). When 𝑝 > 0.5 , SDVRP-MDA 

degenerates to a non-splittable VRP; when 𝑝 = 0 , the 

SDVRP-MDA is equivalent to the SDVRP. Thus, the splitting 

coefficient p is set to the interval (0.0.5) in this paper.  

The SDVRP-MDA is mainly studied in two aspects: the 

property of the solution and the solution algorithm. In terms of 

the property of the solution, Gulczynski et al. [3] proved that 

if the distance satisfies the triangle inequality, there may be 

two identical customer nodes in the two different routes of the 

optimal solution in the SDVRP-MDA, namely, the 2-split 

cycle defined by Dror et al. This is not held for the SDVRP, 

indicating that the structure of the optimal solution in the 

SDVRP-MDA is more complicated. Xiong et al. [5] through 

analysis for the best situation of the SDVRP-MAD, proved 

that when the splitting coefficient p<0.5, the DVRP-MAD can 

save up to 50 % of the delivery cost, and at p=0.5, it can save 

up to 1/3. 

Compared with abundant research results on the SDVRP, 

there have been few studies on the SDVRP-MDA solution 

algorithm. Gulczynki et al. [3] proposed the first hybrid 

heuristic algorithm for the SDVRP-MDA, which is called as 

the EMIP-MDA+ERTR: Firstly, the improved clark-wright 

algorithm was used to construct feasible solutions of the VRP 

as the initial solutions; then the initial solutions were improved 

by an endpoint mixed integer program with minimum delivery 

amounts (EMIP-MDA) to provide the first solutions for the 

SDVRP-MDA; since the scale of the model increases 

exponentially with the number of customer points, the model 

Journal Européen des Systèmes Automatisés 
Vol. 52, No. 3, June, 2019, pp. 257-265 

 

Journal homepage: http://iieta.org/journals/jesa 
 

257



solves the strategy of controlling the calculation time to obtain 

a satisfactory solution; finally an enhanced record-to-record 

travel algorithm (ERTR) was applied to optimize the solution. 

Numerical experiments showed that EMIP-MDA+ERTR can 

obtain a satisfactory solution within a reasonable comupting 

time. Besides, Gulczynki also proposed 21 new instances of 

the SDVRP-MDA. Anthony Fu et al. [4] put forward a multi-

start variable neighbourhood search algorithm (SCR+VND). 

The SCR+VND introduces five kinds of neighbourhood 

structures, and tests all their 120 sorts to determine the search 

order of the neighbourhoods. The experimental results show 

that the SCR+VND is superior to the EMIP-MDA+ERTR in 

solving efficiency and quality. 

The tabu search algorithm (TS) is generally used as a meta 

heuristic algorithm for solving combinatorial optimization 

problems. It’s also adopted by many scholars to solve the 

SDVRP. Ho and Haugland [6] first applied the TS algorithm 

to solve SDVRP with time windows. Archetti et al. [7] 

proposed a three-stage tabu search algorithm (SPLITABU). 

Compared with the local search algorithm proposed by Dror 

and Trudeau [1], the SPLITABU can achieve better results for 

the test examples. Aleman and Hill [8] presented a tabu search 

with vocabulary building approach (TSVBA). Berbotto et al. 

[9] put forward a random granularity tabu search algorithm

(RGT). Both TSVBA and RGT enjoy excellent search

performance and are comparable to other algorithms for

solving the SDVRP. Sicilia et al. [10] proposed a hybrid

optimization algorithm based on the tabu search and variable

neighborhood search metaheuristic for the rich vehicle routing

problem. In view of this, this paper designs an adaptive TS

algorithm combining diversification and intensification search

according to the characteristics of the SDVRP-MDA.

2. PROBLEM DESCRIPTION AND MATHEMATICAL

MODEL

The SDVRP-MDA problem is described as follows. in a 

logistics distribution system, the distribution centre shall 

provide distribution services for a group of customers with 

determined demands; starting from the distribution centre, a 

fleet of vehicles will serve the customers along the planned 

route, and meet the two constraints: (1) The load of the vehicle 

cannot exceed its capacity; (2) The customer demand must be 

met and can be serviced by multiple vehicles, but the quantity 

of delivery per time cannot be lower than the given minimum 

amounts. The goal of the SDVRP-MDA is to minimize the 

total transport cost. 

It assumes that each vehicle starts from the distribution 

centre to serve the customer along the route in turn, and finally 

returns to the distribution centre; the vehicle has the same 

capacity and the number of vehicles is unlimited; the delivery 

cost of the vehicle is proportional to the distance. 

The SDVRP-MDA is defined on a complete graph G=(V,E), 

where V = {0,1,⋯ , n}  is the vertex set and E =

{eij|i, j ∈ V, i ≠ j} is the edge set. Vertex 0 is the distribution

centre, and other vertexes {1,⋯ , n} represent customers; 𝑐𝑖𝑗  is

the travel distance between the customer nodes i and j; m is the 

number of vehicles available; Q is the capacity of the vehicle. 

𝑑𝑖 represents the demand quantity of customer i; p represents

the splitting coefficient; MDAi = ⌈𝑝𝑑𝑖⌉ , indicating the

minimum amount of delivery service for customer i. 𝑥𝑖𝑗𝑘  is a

set of Boolean variables. When the vehicle serving the kth 

route arrives at the customer point j from the customer point i, 

𝑥𝑖𝑗𝑘  is equal to 1; otherwise, it is 0.
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In the model, equation (1) is the objective function with the 

smallest total distance; equation set (2) indicates that each 

customer is served by at least one vehicle; equation set (3) is 

the flow conservation constraint, and (4) is the subtour 

elimination constraints. equation set (5) indicates that the 

delivery amount of customer i cannot be less than the 

minimum at each time, and not exceed the demand; equation 

set (6) indicates that the customer demand must be satisfied; 

equation set (7) means that the vehicle's load cannot exceed its 

capacity. 

3. TABU SEARCH ALGORITHM

The TS algorithm was proposed by Glover [11]. Its 

framework is similar to the local neighbourhood search 

algorithm. The most important feature of the TS algorithm is 

reflected in introducing the optimization process of the tabu 

table record and guiding the movement from the current 

solution to the neighbourhood solution. A large number of 

numerical experiments show that the TS algorithm is one of 

the most effective methods for solving the VRPs. In this paper, 

a new adaptive search TS algorithm was proposed to solve 

SDVRP-MDA. It’s innovated in the aspects as follows: (1) 

Two new neighbourhood structures are proposed; (2) 

According to the positional relationship between customer 

nodes, the similarity between customer nodes and the adjacent 

route of the customer point are defined; (3) Based on the 

concept of adjacent route, an adaptive search strategy 

combining intensification and diversification strategies is 

proposed. 
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3.1 Initial solution 

 

The initial solution was generated quickly by the greedy 

insertion algorithm. First, select the customer node farthest 

from the depot to generate the first route; then, select the 

customer node with the smallest insertion cost, and incorporate 

all or part of the demands into the route; finally, repeat this 

process until all demands for all customer node were merged 

into the route. In particular, it depends on the remaining 

capacity of the vehicle in the service route, the unsatisfied 

demand of the customer and the minimum split amount to 

judge whether the demand of the customer point is completely 

or partially inserted into a route. 

let 𝑢𝑖 indicate the amount of demand that the customer 𝑖 has 

not yet satisfied, and 𝑝𝑟 represents the remaining capacity of 

the vehicle in the route 𝑟. If 𝑢𝑖 ≤ 𝑝𝑟 , the customer i can be 

directly inserted into the route r; otherwise, the unsatisfied 

demand 𝑢𝑖 of the customer i will be split into two parts: one is 

the service quantity 𝑞𝑖𝑟  inserted in the route r, and the other is 

the remaining unserved demand. Considering the limitation of 

vehicle capacity and minimum delivery amounts, the 

remaining demand should be 𝑚𝑎𝑥{𝑢𝑖 − 𝑝𝑟 , 𝑀𝐷𝐴𝑖}, and the 

quantity of service inserted in route r is: 

 

𝑞𝑖𝑟 = 𝑢𝑖 − 𝑚𝑎𝑥{𝑢𝑖 − 𝑝𝑟 , 𝑀𝐷𝐴𝑖}                   (9) 

 

If 𝑞𝑖𝑟 < 𝑀𝐷𝐴𝑖 , the minimum delivery amount cannot be 

met, and the insertion of route r is not allowed in the customer 

node. The initial solution was constructed in the steps as 

follows: 

Step 1: Initialize the list of unserved customer nodes 𝐿 =
{1,2,⋯ , 𝑛}, and the demand quantity of the customer point 

service 𝑢𝑖 = 𝑞𝑖(𝑖 = 1,⋯ , 𝑛). initialized the route set 𝑅 = 𝛷 

and the non-insertable route set of each customer node 𝐹𝑖 =
𝛷(𝑖 = 1,⋯ , 𝑛), 𝑘:= 1; 

Step 2: Select the customer node 𝑣 farthest from the depot 

in 𝐿 , and generate the route 𝑟𝑘 = (0 − 𝑣 − 0), 𝑅 = 𝑅 ∪ 𝑟𝑘 , 

𝐿 = 𝐿\{𝑣}, 𝑞𝑣𝑘 = 𝑢𝑣, 𝑟𝑘 = Q − 𝑞𝑣𝑘, 𝑢𝑣 = 0; 

Step 3: For each node 𝑖 in L, update the non-insertable route 

set 𝐹𝑖. When 𝑢𝑖 > 𝑝𝑘 , 𝑞𝑖𝑟  was calculated according to formula 

(9); if 𝑞𝑖𝑟 < 𝑀𝐷𝐴𝑖 , then 𝐹𝑖 = 𝐹𝑖 ∪ {𝑟𝑘}; 
Step 4: Select candidate nodes for insertion. For each point 

𝑖  in 𝐿  and each route 𝑟  in 𝑅\𝐹𝑖 , calculate the minimum 

insertion cost of the customer point 𝑖 into the route 𝑟: 

 

𝐼𝑖𝑟 = 𝑚𝑖𝑛{𝑐𝑎𝑖 + 𝑐𝑖𝑏 − 𝜆𝑐𝑎𝑏|(𝑎, 𝑏) ∈ 𝑟}             (10) 

 

where, a, b are two adjacent nodes of the route 𝑟, and 𝜆 is the 

control parameter, which is 0.7 according to the experiment; 

𝑖∗ and 𝑟∗ are the customer nodes and routes that cause 𝐼𝑖𝑟  to 

reach the minimum, namely: 

 

𝐼𝑖∗𝑟∗ = 𝑚𝑖𝑛{𝐼𝑖𝑟|𝑖 ∈ 𝐿, 𝑟 ∈ 𝑅\𝐹𝑖}                   (11) 

 

Step 5: Insert candidate nodes. If 𝐼𝑖∗𝑟∗ ≤ 2𝑐𝑖∗,0 , i.e., the 

insertion cost is less than the cost of generating a new route, 

then 𝑖∗ is inserted into 𝑟∗, and: 

 

𝑞𝑖∗𝑟∗ = {
𝑢𝑖∗ − 𝑚𝑎𝑥{𝑢𝑖∗ − 𝑝𝑟∗, 𝑀𝐷𝐴𝑖∗}, 𝑢𝑖∗ > 𝑝𝑟∗

𝑢𝑖∗                                                                    , 𝑢𝑖∗ ≤ 𝑝𝑟∗
    (12) 

 

𝑢𝑖∗ = 𝑢𝑖∗ − 𝑞𝑖∗𝑟∗，𝑝𝑟∗ = 𝑝𝑟∗ − 𝑞𝑖∗𝑟∗ , Otherwise, 𝑘:= 𝑘 +
1; a new route 𝑟𝑘 = (0 − 𝑖∗ − 0)  is generated; 𝑅 = 𝑅 ∪ 𝑟𝑘 , 

𝑝𝑘 = 𝑄 − 𝑢𝑖∗，𝑢𝑖∗ = 0;  

Step 6: If 𝑢𝑖∗ = 0, then = 𝐿\{𝑖∗}. If 𝐿 = ∅, return to step 3; 

otherwise the iteration is terminated. 

 

3.2 Definition of adjacent routes 

 

Toth and Vigo [12] found that the edge with a large cost 

value 𝑐𝑖𝑗  has a low probability of being in a high-quality 

solution, and discarding these edges does not affect the effect 

of the solution. In order to improve the efficiency of the search 

and avoid the invalid search process, the adjacent route of the 

customer point was defined. First, taking the two factors of 

delivery cost and relative position between customer nodes 

into account, the similarity between customer nodes was 

defined according to formula (13). 

 

ij

ij ij

max

i

1
s =

c θ
+
θc

                              (13) 

 

where,  𝑐𝑖
𝑚𝑎𝑥  is the maximum distance from the customer 

node 𝑖 to other nodes; with reference to Aleman et al. [13], the 

angle of the route was defined; 𝜃𝑖𝑗  is the position angle 

between the customer nodes 𝑖  and 𝑗 ;  (xi, yi)  is the position 

coordinates of the customer point 𝑖 . Accordingly, the route 

angle was defined as 𝜃𝑟 = 𝑚𝑎𝑥{𝜃𝑖𝑗|(𝑖, 𝑗) ∈ 𝑟} ; θ̅  is the 

average value of the route angle in the initial solution.  

Definition: For the route 𝑟, if 𝑟 contains at least one of the 

q customer nodes nearest to the customer point node 𝑖, then 

route 𝑟 is called an adjacent route of customer node 𝑖, and 𝐴𝑖 

indicates the set of adjacent routes for customer node 𝑖. 
 

3.3 Neighbourhood structure 

 

In order to improve the global search ability of the algorithm, 

this paper uses a hybrid neighbourhood search strategy to 

define six neighbourhood structures (N1, ..., N6). Among them, 

N1, ..., N4 are the neighbourhood search structure between 

routes, which are executed between adjacent routes of the 

customer nodes, and the route operation with the largest cost 

saving value is selected for each iteration; N5 is the 

neighbourhood search structure within the route; N6 is a 

hybrid random neighbourhood search structure. N3 and N4 are 

extensions of the proposed the SDVRP neighbourhood 

structure shift* by Alam, which are two new neighbourhood 

structures. 

(1) Relocation (N1) 

Given a customer node 𝑖 ∈ 𝑟𝑠  and a route 𝑟𝑘 ∈ 𝐴𝑖 , the 

customer node 𝑖 was removed from the current route 𝑟𝑠  and 

then inserted into 𝑟𝑘 . This operation is feasible on the 

condition that the service quantity 𝑞𝑖𝑠 of the customer node 𝑖 
in the route 𝑟𝑠  does not exceed the remaining load 𝑝𝑘  of the 

route 𝑟𝑘. 

(2) 2-opt* (N2) 

This neighborhood structure was introduced by Potvin and 

Rousseau [14]. Given two customer nodes 𝑖 ∈ 𝑟𝑠 and 𝑗 ∈ 𝑟𝑘 , 𝑟𝑠 

and 𝑟𝑘  are adjacent routes of 𝑗  and 𝑖  respectively, and the 

nodes after node 𝑖 in 𝑟𝑠 and the nodes after the point j in route 

𝑟𝑘 were exchanged. This operation is feasible on condition that 

the total service amount of the customer nodes in the route 

after the exchange does not exceed the capacity of the vehicle. 

(3) Ejection chain (N3) 
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Ejection chains is a novel neighborhood structure defined 

by Glover [15]. Rego [16] Brandão [17] and Euchi [18] adopt 

the idea to the local search for the VRP. A ejection chain can 

be viewed as a series of triplets, each consisting of three 

consecutive nodes in a route. And the neighborhood solution 

is obtained by moving a node to the position occupied by 

another. Inspired by the idea, this paper proposed the new 

neighborhood structure. Given an route 𝑟𝑘 ∈ 𝐴𝑖  between 

customer point 𝑖 ∈ 𝑟𝑠  and 𝑖 , 𝑖  was deleted from the current 

route 𝑟𝑠 , and 𝑟𝑘  was inserted; then, the node 𝑗 was removed 

from the route 𝑟𝑘  to another route 𝑟𝑡 ∈ 𝐴𝑗 . This operation is 

feasible on the condition that when the customer node 𝑖 
removed from 𝑟𝑘 to 𝑟𝑠, the capacity of the service vehicle in 𝑟𝑠 

was overloaded, but the service amount 𝑞𝑗𝑘 of the customer 𝑗 

in 𝑟𝑘 was greater than or equal to the overload amount; when 

𝑗  was removed from 𝑟𝑘 , the vehicle capacity in 𝑟𝑠  can be 

restored, and 𝑟𝑡  has a customer point 𝑗 with sufficient 

remaining capacity. This operator is illustrated in Figure 1. 

 

 
 

Figure 1. Ejection chain 

 

(4) Split ejection chain, (N4) 

This neighborhood structure extends ejection chain by 

permitting the demand of the customer involved in the move. 

Given an adjacent route 𝑟𝑘 ∈ 𝐴𝑖  of the customer nodes 𝑖 ∈
𝑟𝑠  and 𝑖, 𝑖 was removed from the current route 𝑟𝑠, and 𝑟𝑘 was 

inserted; then an adjacent route 𝑟𝑡 ∈ 𝐴𝑗  (𝑟𝑡 ≠ 𝑟𝑠) between the 

point  𝑗 ∈ 𝑟𝑘  and 𝑗 was selected, and 𝑗 was splitted between 

the routes 𝑟𝑘 and 𝑟𝑡. This operation is feasible on the condition 

that after the customer point 𝑖 moved from 𝑟𝑘 to 𝑟𝑠, the vehicle 

capacity of the service in 𝑟𝑠 was overloaded, and the remaining 

capacity of 𝑟𝑡 is greater than or equal to the overload of 𝑟𝑠, but 

less than the service amount 𝑞𝑗𝑘  of the route 𝑟𝑘  for 𝑗 . 

Therefore, part of the service amount at route 𝑟𝑘 is moved into 

𝑟𝑡 to meet the capacity limit of the service route vehicle. This 

operator is illustrated in Figure 2. 

 

 
 

Figure 2. Split ejection chain 

 

(5) 2-opt, (N5) 

The 2-opt in the route was proposed by Lin and Kernighan 

[19], which is the switching operation of the arc in the route. 

Two arcs that are not adjacent in the route were deleted and 

another two arcs were added. 

(6) Mixed neighbourhood, (N6) 

One of the N1, N3, and N4 was randomly selected for the 

neighbourhood operation. 

 

3.4 Intensification and diversification search strategies 

 

Intensification and diversification search are two important 

aspects of the TS algorithm. Intensification search is applied 

to fully search the neighbourhood of the best solution for 

finding a better solution, while diversification search is to 

broaden the search area and jump out of the local optimum. 

Among the six neighbourhood structures designed in Section 

3.3 above, N1, N2, N3, N4, N5 are used for the former search, 

and N6 is for the latter. In the intensification search phase, 

when the customer node and the neighbourhood structure were 

selected, the customer node and each of its neighbouring 

routes were operated accordingly, and the neighbourhood 

solution with the maximum saving cost was selected as a 

candidate solution; in the diversification search phase, for the 

selected customer node, one route was randomly selected a 

route from its adjacent route set in each iteration to perform a 

neighbourhood operation. The entire search process 

adaptively adjusts these two search strategies by combining 

the current best solution and the number of consecutive 

iteration steps without improving the best solution. If a better 

solution is not found after a certain number of iterations in the 

current search area, then a diversification search strategy is 

executed; in this search phase, if the best solution is updated, 

then the intensification search is assumed. 

 

3.5 Tabu duration and aspiration criterion 

 

In order to avoid the search of local loops, the TS algorithm 

records the attributes of the solutions in the tabu list, and in the 

next iteration, uses the information in the tabu list to prohibit 

or conditionally select these searched nodes. If the 

neighbourhood operation N1 is performed and the operated 

customer node is i, then in the next 𝜃 step the customer node i 

is not allowed to execute the N1 operation; if the 

neighbourhood operation N2, N3, N4 is performed and the 

associated customer nodes are respectively i and j, then for the 

next 𝜃 step the customer nodes (i，j) prohibits the execution 

of the corresponding neighbourhood operation. With reference 

to Archetti et al. [7] the tabu duration 𝜃 was randomly taken 

within the interval [√10, √10 + 𝑙] ; if 𝑛 + 𝑔 < 100  (n 

represents the number of customer nodes, g is the number of 

routes in the current solution), then 𝑙 = 𝑛 + 𝑔 ; if 𝑛 + 𝑔 ≥

100 , 𝑙 =
3

2
（𝑛 + 𝑔) . The aspiration criterion is that if the 

delivery cost of the current tabu solution is less than the current 

best solution, the current solution is exempt. 

 

3.6 Algorithm framework 

 

The termination criterion of the algorithm is that the total 

number of iterations reaches a given maximum value, or that 

the current best solution is not improved within a given 

number of consecutive iterations. 

According to the update rule of the current solution, if the 

objective function value of the best solution in the candidate 

solution set is lower than the current best solution, the best 

candidate solution is selected as the current solution, and the 

current best solution is updated, otherwise from the top 5 best 

non-tabu solutions of the candidate solution set, one is 

randomly selected as the current solution. 

The relevant parameters in the algorithm are denoted as: 

Iter: number of current iterations 

maxIter: total number of maximum iterations 

consIter: consecutive iterations without improving the 

current best solution 

max-consIter: maximum number of consecutive iterations 
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that allow the current best solution to be unimproved 

diver-consIter: iteration threshold for transferring to a 

diversity search 

Step 1: Initialize the parameters and set 𝐼𝑡𝑒𝑟:=0; 

Step 2: Generate an initial solution and use it as the current 

solution s and the current best solution s∗; 

Step 3: If 𝑐𝑜𝑛𝑠𝐼𝑡𝑒𝑟 < 𝑑𝑖𝑣𝑒𝑟 − 𝑐𝑜𝑛𝑠𝐼𝑡𝑒𝑟 , transfer to the 

intensification search, and randomly select a neighbourhood 

structure from N1, N2, N3, N4, N5 to search; otherwise, switch 

to diversification search and use N6 for neighbourhood search; 

Step 4: Update the current solution s under the condition 

that the Tabu rule and the aspiration criteria are met.  

If 𝑓(𝑠) < 𝑓(𝑠∗), thens∗: = s, consIter:=0;  

otherwise consIter:= 𝑐𝑜𝑛𝑠𝐼𝑡𝑒𝑟 + 1; 

Step 5: Update the Tabu list and the adjacent route set of 

the customer nodes; 

Step 6: If 𝐼𝑡𝑒𝑟 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟  or 𝑐𝑜𝑛𝑠𝐼𝑡𝑒𝑟 < 𝑚𝑎𝑥 −
𝑐𝑜𝑛𝑠𝐼𝑡𝑒𝑟 , returns to step 3; otherwise, the algorithm 

terminates. 

 

 

4. NUMERAL EXPERIMENTS 

 

4.1 Test instances 

 

The performance of this algorithm was tested on two sets of 

standard examples. The first set of examples (set B) includes 

the test examples of the SDVRP proposed by Belenguer, and 

the second set (set G) was constructed by Gulczynski et al. [3] 

according to the test examples of SDVRP proposed by Chen 

et al. [20] In set G, customer nodes were symmetrically 

distributed, and the approximate optimal solutions could be 

visualized and generated by pre-designed route patterns. In 

order to keep the routes in these approximate optimal solutions 

unchanged, Gulczynski designed a systematic method which 

can modify the customer demand according to different 

splitting coefficients. This algorithm was programmed with 

Matlab R2014a and implemented on the i5-2430M, 2.4GHz 

processor, and 4GB memory microcomputer. It’s also 

compared with the results of the EMIP-MDA+ERTR 

algorithm proposed by Gulczynski et al. [3] and the 

SRC+VND algorithm by Anthony Fu et al. [4] 

 

4.2 parameter value 
 

The test parameters of the algorithm were set as follows: (1) 

The threshold q for selecting the adjacent route. When the 

number of customer nodes is n<50, q = 10; when n≥50, q=15; 

(2) Total number of maximum iterations maxIter. it’s set 

maxIter=1000+10n by experiments; (3) The maximum 

number of consecutive iterations max-consIter=5n that allows 

the current best solution to be unimproved. 

 

4.3 Test results 

 

Table 1~4 list the test results of the algorithms in Set B 

under the four splitting coefficients p=0.1, 0.2, 0.3, and 0.4. 

The ATS stands for the adaptive TS algorithm proposed in this 

paper. The proposed ATS is compared with two other 

representative algorithms. SRC+VND denoted the multi-start 

variable neighbourhood algorithm (Anthony Fu et al.) which 

contains five kinds of neighbourhood structures. Anthony Fu 

et al. [4] tested all the 120 sorting sequences, and SRC+VND 

represents the variable neighbourhood algorithm with the 

optimal neighbourhood search order; SRC+ VNDall is a 

variable neighbourhood algorithm that runs all 120 

neighbourhood sorts. EMIP-MDA+ERTE is the hybrid 

heuristic algorithm proposed by Gulczynski e t al. [3] BKS is 

provided by Gulczynski et al. [3] The calculation time of the 

algorithms is in seconds.  

It can be found from Table 1~4 that SRC+VNDall almost 

obtained all the best solutions with highest solution quality, 

but it took the longest calculation time and had the lowest 

operation efficiency; all test results of EMIP-MDA+ERTE are 

inferior to the current best solution; SRC+VND had a 

calculating example (in bold in the table) achieving the current 

best results; the ATS proposed in this paper output two current 

best solutions, and the results of one example (S101D2_100, 

p=0.1) is better. In terms of the evaluation deviation (Aver. 

gap) of solution results from the current best solution, the 

deviation of ATS under the four splitting coefficient is -0.42 %, 

-0.56 %, -0.27 %, -0.50 %, respectively, which are all below 

the average deviation of EMIP-MDA+ERTE. Under the 

condition of p=0.1and 0.3, the average deviation of ATS is 

higher than that of SRC+VND, while under other conditions, 

it is lower than that of SRC+VND. Generally speaking, ATS 

differ less to SRC+VND. Due to different programming 

language and test platform, the solution time of the algorithm 

also vary, making it difficult to directly compare. From the last 

column of Table 1~4, it can be seen that the ATS calculation 

time is within an acceptable time range. 

 

Table 1. Results for the SDVRP-MDA test for Set B: p=0.1 

 

p Set B BKS 
EMIP-MDA+ERTEa SRC+VNDb SRC+VNDall

b ATSc 

cost cost Timeb (s)  cost Timeb (s) cost timec (s) 

0.1 S51D2_50 717.35 717.35 713.30 3.99 709.77 439.65 711.25 50.94 
 S51D3_50 969.99 969.99 953.17 4.84 949.78 561.03 956.31 33.77 
 S51D4_50 1588.91 1588.91 1569.89 6.68 1569.89 775.82 1578.40 62.88 
 S51D5_50 1373.98 1373.98 1344.68 5.49 1335.55 666.33 1353.20 33.89 
 S51D6_50 2225.51 2225.51 2197.64 7.96 2197.04 916.53 2221.70 75.64 
 S76D2_75 1106.86 1106.86 1100.90 15.85 1095.53 1782.50 1108.40 172.24 
 S76D3_75 1446.48 1457.40 1448.39 20.78 1440.56 2362.41 1445.10 502.93 
 S76D4_75 2118.86 2123.16 2095.95 25.96 2095.95 3040.63 2121.90 435.90 
 S101D2_100 1398.13 1398.13 1407.35 48.20 1395.42 5600.83 1391.70 1002.56 
 S101D3_100 1929.96 1930.86 1900.60 46.29 1899.66 5404.45 1931.00 437.80 
 S101D5_100 2862.14 2862.34 2851.33 53.01 2839.49 6325.75 2868.90 879.00 
 Average 1612.56 1614.04 1598.47 21.73 1593.51 2534.18 1607.98 335.23 
 Avg. gap (%)  0.09 -0.87  -1.23  -0.42  

 BKS improved  - 9  11  7  

a P4, 3.0GHz, b i7-3770, 3.4GHz, c i5-2430M, 2.4GHz 
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Table 2. Results for the SDVRP-MDA test for Set B: p=0.2 

 

p Set B BKS 
EMIP-MDA+ERTE [6]a SRC+VNDb SRC+VNDall

b ATSc 

cost cost Timeb (s) cost Timeb (s) cost timec (s) 

0.2 S51D2_50 717.35 717.35 712.59 3.79 709.77 424.37 714.32 48.03 
 S51D3_50 969.99 969.99 959.49 4.26 955.45 511.86 960.20 25.43 
 S51D4_50 1593.69 1593.69 1589.32 6.19 1578.15 709.12 1603.10 30.73 
 S51D5_50 1377.99 1377.99 1359.22 4.66 1351.12 553.29 1353.30 25.06 
 S51D6_50 2285.37 2285.37 2240.14 5.07 2240.14 619.05 2245.20 73.99 
 S76D2_75 1116.64 1116.64 1116.07 13.53 1104.27 1621.75 1105.23 158.12 
 S76D3_75 1446.48 1446.48 1450.04 17.07 1445.63 2095.96 1450.30 157.96 
 S76D4_75 2118.86 2118.86 2112.62 22.89 2103.78 2837.47 2106.12 736.53 
 S101D2_100 1398.87 1398.87 1401.57 44.32 1396.78 5544.72 1399.50 389.45 
 S101D3_100 1929.96 1929.96 1917.56 43.31 1904.09 5319.77 1917.60 687.78 
 S101D5_100 2862.14 2862.14 2866.29 42.96 2861.88 5379.26 2866.20 535.15 
 Average 1619.76 1619.76 1611.36 18.91 1604.64 2328.78 1611.01 260.75 
 Avg. gap (%)  0 -0.52  -0.99  -0.56  

 BKS improved  - 8  11  7  

 

Table 3. Results for the SDVRP-MDA test for Set B: p=0.3 

 

p Set B BKS 
EMIP-MDA+ERTEa SRC+VNDb SRC+VNDall

b ATSc 

cost Timeb (s) cost Timeb (s) cost timec (s) Timeb (s) 

0.3 S51D2_50 717.35 717.35 716.17 3.09 711.56 370.07 712.52 63.52 
 S51D3_50 969.99 969.99 966.68 4.32 959.16 508.91 968.15 27.30 
 S51D4_50 1597.89 1597.89 1597.10 4.43 1595.40 528.17 1601.40 41.27 
 S51D5_50 1383.71 1383.71 1356.64 4.02 1349.55 488.59 1353.40 76.10 
 S51D6_50 2301.51 2301.51 2307.14 2.84 2307.14 357.24 2323.30 40.42 
 S76D2_75 1116.64 1116.64 1118.41 14.20 1108.20 1676.14 1118.20 402.00 
 S76D3_75 1453.17 1453.25 1446.81 15.23 1446.81 1912.85 1449.90 267.65 
 S76D4_75 2151.49 2151.49 2123.06 17.88 2123.06 2255.93 2138.60 322.76 
 S101D2_100 1398.88 1401.85 1407.19 40.76 1396.99 5108.96 1403.90 371.11 
 S101D3_100 1939.96 1939.96 1921.27 37.44 1918.41 4678.31 1925.60 830.99 
 S101D5_100 2901.76 2901.76 2887.90 38.45 2873.36 4691.72 2899.80 474.15 
 Average 1630.21 1630.49 1622.58 16.61 1617.24 2052.44 1626.80 265.21 
 Avg. gap (%)  0.02 -0.43  -0.82  -0.27  

 BKS improved  - 8  21  6  

 

Table 4. Results for the SDVRP-MDA test for Set B: p=0.4 

 

p Set B BKS 
EMIP-MDA+ERTRa SRC+VNDb SRC+VNDall

b ATSc 

cost cost Timeb (s) cost Timeb (s) cost timec (s) 

0.4 S51D2_50 717.35 717.35 717.31 3.10 713.60 367.89 713.56 51.49 
 S51D3_50 978.41 978.41 962.21 3.70 959.16 445.00 969.66 34.14 
 S51D4_50 1621.30 1612.30 1619.87 3.40 1613.06 405.11 1612.30 75.17 
 S51D5_50 1389.32 1389.32 1373.82 3.32 1360.01 399.73 1363.10 66.05 
 S51D6_50 2402.35 2402.35 2395.33 1.37 2395.33 174.85 2402.30 30.63 
 S76D2_75 1116.64 1116.64 1113.78 13.51 1112.58 1656.92 1116.10 315.40 
 S76D3_75 1453.17 1453.17 1453.43 14.21 1446.88 1712.80 1454.60 211.06 
 S76D4_75 2167.27 2167.27 2143.90 16.50 2129.97 2035.99 2148.20 458.08 
 S101D2_100 1398.88 1398.88 1403.70 39.42 1397.75 4862.50 1398.80 554.73 
 S101D3_100 1942.94 1942.94 1935.08 31.09 1922.10 3938.04 1929.80 756.74 
 S101D5_100 2904.61 2904.61 2898.98 32.15 2890.76 3950.67 2900.90 594.70 
 Average 1643.93 1643.93 1637.95 14.71 1631.02 1813.59 1637.21 286.20 

 Avg. gap (%)  0.00 -0.38  -0.82  -0.50  

 BKS improved  - 8  10  10  

 

Table 5~7 give the test results of the algorithm in Set G. The 

best solution (BKS) in the tables is the sum of the route lengths 

of the solutions generated based on the pre-designed route 

patterns. Since the calculation times of EMIP-MDA+ERTE 

and SRC+VND under different splitting coefficients p are 

approximately equal, the calculation time under the condition 

of p=0.1 was only listed in Table 5 and Table 6. Test results 

consistent with the best solution were marked in bold. The 

rounding error of the data may cause slight deviations between 

the test results and the best solutions. These test results were 

indicated by underlined boldfaces in the tables. From the test 

results of Table 5~7, it can be seen that ATS can find the best 

solution when the customer nodes do not exceed 144; with the 

enlargement of the problem scale, the test results were 

compared with the best solution to find that the average 

deviation of ATS does not exceed 0.22 %, while that of EMIP-

MDA+ERTE is between 0.93 % and 1.42 %, indicating that 

ATS can obtain better calculation results. 

The test results show that the calculation performance of 

ATS is significantly superior to that of EMIP-MDA+ERTE, 

but slightly worse than SRC+VND. The neighbourhood search 

order of SRC+VND is preferably selected according to the test 

results of the example in advance, and the calculation effect of 

such a search order may vary due to different examples. 
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However, compared with SRC+VND, the neighbourhood 

search of ATS is more flexible, and the intensification or 

diversification strategy can be adaptively adjusted according 

to the calculation effect. Therefore, the ATS algorithm is of 

greater applicability and robustness. 

 

Table 5. Results for the SDVRP-MDA test for Set G: p=0.1 

 

Set G BKS 

p=0.1 

EMIP-MDA+ERTRa SRC+VNDb ATSc 

cost time (s) cost time (s) cost time (s) 

MD1_8 228.28 228.28 1.06 228.28 0.09 228.28 0.53 

MD2_16 720.00 720.00 291.81 720.00 0.11 720.00 12.57 

MD3_16 430.58 430.58 5.52 430.58 0.11 430.58 1.24 

MD4_24 631.05 631.05 227.62 631.05 0.22 631.05 6.78 

MD5_32 1402.40 1402.43 644.03 1402.40 0.47 1402.40 17.32 

MD6_32 831.24 831.24 644.95 831.24 0.47 831.24 16.48 

MD7_40 3588.28 3588.28 645.52 3588.30 0.86 3588.28 65.23 

MD8_48 5040.00 5060.00 646.91 5040.00 1.37 5040.00 68.23 

MD9_48 2044.20 2074.12 645.16 2044.20 1.47 2044.20 107.55 

MD10_64 2684.88 2691.69 648.84 2684.90 3.29 2684.88 154.68 

MD11_80 13200.00 13220.00 662.44 13200.00 6.08 13200.00 14.36 

MD12_80 7150.58 7182.93 659.81 7150.58 5.99 7150.59 211.54 

MD13_96 10042.40 10111.80 667.02 10042.40 10.90 10042.40 256.17 

MD14_120 10711.06 10845.90 1644.98 10711.07 23.45 10711.07 564.53 

MD15_144 15004.20 15181.70 1640.47 15004.22 43.09 15004.20 574.89 

MD16_144 3631.30 3755.70 1625.83 3631.30 40.09 3750.10 568.32 

MD17_160 26362.46 26628.40 1654.72 26362.36 52.03 26381.24 587.54 

MD18_160 14200.90 14477.80 1639.72 14200.92 70.28 14219.34 543.89 

MD19_192 19964.86 20432.20 1649.31 19964.87 126.77 20033.00 675.21 

MD20_240 39484.23 40202.50 1691.84 39484.21 219.84 39484.23 1000.60 

MD21_288 11645.50 12014.60 1656.14 11645.47 488.91 11740.00 1135.72 

Average 8999.92 9129.06 933.03 8999.90 52.18 9015.09 313.49 

Avg. gap (%)  0.93  0.00  0.22  

BKS found  6  21  15  

 

Table 6. Results for the SDVRP-MDA test for Set G: p=0.2 

 

Set G BKS 

p=0.2 

EMIP-MDA+ERTRa SRC+VNDb ATSc 

cost cost cost time (s) 

MD1_8 228.28 228.28 228.28 228.28 0.53 

MD2_16 720.00 720.00 720.00 720.00 12.57 

MD3_16 430.58 430.58 430.58 430.58 1.24 

MD4_24 631.05 631.05 631.05 631.05 6.78 

MD5_32 1402.40 1402.40 1402.40 1402.40 17.32 

MD6_32 831.24 831.24 831.24 831.24 16.48 

MD7_40 3588.28 3588.28 3588.28 3588.28 65.23 

MD8_48 5040.00 5060.00 5040.00 5040.00 68.23 

MD9_48 2044.20 2063.50 2044.20 2044.20 107.55 

MD10_64 2684.88 2704.89 2684.88 2684.88 154.68 

MD11_80 13200.00 13280.00 13200.00 13200.00 214.36 

MD12_80 7150.58 7182.93 7150.58 7150.59 211.54 

MD13_96 10042.40 10131.60 10042.40 10042.40 256.17 

MD14_120 10711.06 10733.10 10711.07 10711.80 564.53 

MD15_144 15004.20 15116.40 15004.22 15004.20 574.89 

MD16_144 3631.30 3865.24 3631.30 3753.10 568.32 

MD17_160 26362.46 26519.50 26362.36 26383.12 587.54 

MD18_160 14200.90 14559.20 14200.92 14218.20 543.89 

MD19_192 19964.86 20300.40 19964.87 20033.00 675.21 

MD20_240 39484.23 40102.30 39484.21 39484.23 1000.60 

MD21_288 11645.50 12438.60 11645.47 11740.00 1135.72 

Average 8999.92 9137.55 8999.92 9015.31 323.02 

Avg. gap (%)  1.17 0.00 0.22  

BKS found  7 21 15  

 

Table 7. Results for the SDVRP-MDA test for Set G: p=0.3 and 0.4 

 

Set G BKS 

p=0.3 p=0.4 

EMIP-MDA+ERTRa SRC+VNDb ATSc EMIP-MDA+ERTRa SCR+VNDb ATSc 

cost cost cost time (s) cost cost cost time (s) 
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MD1_8 228.28 228.28 228.28 228.28 0.53 228.28 228.28 228.28 0.40 

MD2_16 720.00 720.00  720.00 720.00 12.57 720.00 720.00 720.00 12.57 

MD3_16 430.58 430.58 430.58 430.58 1.24 430.58 430.58 430.58 1.24 

MD4_24 631.05 631.05 631.05 631.05 6.78 631.05 631.05 631.05 6.78 

MD5_32 1402.40 1402.40 1402.40 1402.40 17.32 1414.75 1402.40 1402.40 17.32 

MD6_32 831.24 831.24 831.24 831.24 16.48 830.26 831.24 831.24 16.48 

MD7_40 3588.28 3588.28 3588.28 3588.28 65.23 3588.28 3588.28 3588.28 65.71 

MD8_48 5040.00 5040.00 5040.00 5040.00 68.23 5040.00 5040.00 5040.00 69.13 

MD9_48 2044.20 2063.50 2044.20 2044.20 107.55 2059.03 2044.20 2044.20 107.45 

MD10_64 2684.88 2710.64 2684.89 2684.89 154.68 2708.80 2684.88 2684.88 124.51 

MD11_80 13200.00 13334.10 13200.00 13200.00 214.36 13240.00 13200.00 13200.00 216.33 

MD12_80 7150.58 7170.58 7150.58 7150.59 211.54 7260.01 7150.58 7150.59 210.11 

MD13_96 10042.40 10112.40 10042.40 10042.40 256.17 10233.50 10042.40 10042.40 267.14 

MD14_120 10711.06 10836.30 10711.07 10711.07 564.53 10865.10 10711.07 10711.80 533.60 

MD15_144 15004.20 15172.10 15004.22 15004.20 574.89 15202.80 15004.22 15004.20 590.12 

MD16_144 3631.30 3962.67 3631.30 3631.30 568.32 3445.50 3443.69 3631.13 565.41 

MD17_160 26362.46 26646.50 26362.36 26381.24 587.54 26904.70 26362.35 26383.12 587.54 

MD18_160 14200.90 14420.20 14200.92 14218.20 543.89 14447.60 14200.92 14218.20 543.89 

MD19_192 19964.86 20355.70 19964.87 20033.00 675.21 20608.90 20032.12 20043.76 675.21 

MD20_240 39484.23 40018.30 39484.21 39484.23 1000.60 40551.40 39484.21 39484.23 1010.53 

MD21_288 11645.50 12652.90 11645.47 11740.00 1135.72 11909.10 11457.88 11772.14 1137.12 

Average 8999.92 9158.46 8999.92 9009.38 323.02 9158.08 8985.25 9011.54 321.84 

Avg.gap (%)  1.42 0.00 0.06  1.00 -0.06 0.08  

BKS found  8 21 17  7 21 17  

 

 

5. CONCLUSIONS AND PROSPECT  

 

In the logistics process, the split of customer demand is 

beneficial to internal logistics operations, but it usually leads 

to additional order processing and interference with customers. 

The SDVRP-MDA can effectively solve this dilemma. 

However, compared with the SDVRP, the current research on 

SDVRP-MDA is not sufficient enough. For this, the adaptive 

TS algorithm was proposed in this paper to solve the SDVRP-

MDA. The proposed method was tested on 32 standard 

benchmarks, using 4 different splitting coefficients. In the 128 

examples tested, the average deviation between the test results 

and the current best solution ranged from -0.50 to 0.22; 94 best 

solutions were obtained, and a new best solution was found. 

This algorithm is innovated in the following aspects: 

(1) Two new neighbourhood structures are proposed; 

(2) According to the positional relationship between the 

customer nodes, the similarity between the customer nodes 

and the adjacent route of the customer node are defined; 

(3) Based on the concept of adjacent routes, an adaptive 

search strategy combining intensifying and diversifying 

strategies is proposed; 

(4) The algorithm can adaptively adjust between 

intensification and diversification search, which has better 

adaptability and robustness. 

Although this algorithm has achieved certain results, further 

research is needed for the VRPs with minimum delivery 

constraints due to its strong applicability and complexity. It’s 

expected that the proposed adaptive search strategy and 

neighbourhood structure shall be applied to other issues 

related to the SDVRP, which can develop more practical 

computing tools for other related solutions. 
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