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 The automatic train driving (ATD) can greatly improve the efficiency and safety of train 

operations in urban rail system. This paper mainly establishes a multi-objective optimization 

model and designs a fuzzy controller for the ATD. Firstly, the relevant parameters of train 

operations were analyzed, including, safety, punctuality, parking accuracy, passenger comfort 

and energy consumption. Then, a multi-swarm optimization algorithm was developed to 

optimize the train operation curve, coupling the particle swarm optimization (PSO) and the 

cuckoo search (CS) algorithm. Taking the optimized curve as the input, the author finalized 

the design of the fuzzy controller. The simulation results show that our method can effectively 

solve the multi-objective problem of the ATD in urban transit system. 
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1. INTRODUCTION 

 

The current urban transit systems generally operate at a high 

speed and a high density. This operation mode calls for 

advanced management and control systems. One of such 

systems is automatic train control (ATC), which integrates the 

technologies on control, rail traffic signal and communication 

into automated traffic command, control and management.  

In urban transit systems, train operations are highly 

nonlinear, complex and uncertain. It is difficult to simulate 

train operations with traditional control methods, which 

cannot work effectively without high-accuracy mathematical 

models. Therefore, many scholars have attempted to develop 

a smart automatic control method for train operations in urban 

transit systems. 

The first step to design such a method is to solve the 

automatic train driving (ATD) problem [1-3]. The ATD refers 

to the automatic start-up, acceleration, deceleration, cruise, 

parking and return of trains under the given schedule without 

driver intervention. 

This paper firstly describes the ATD system, and reviews 

the existing ATD optimization algorithms. Then, the multi-

objective optimization of the ATD was analyzed, and a novel 

smart control algorithm was developed for train operations in 

urban transit systems. After that, the author set up a multi-

objective optimization model for the ATD and created a fuzzy 

controller. Finally, the control performance of our model and 

controller was verified through simulation experiments. 

 

 

2. LITERATURE REVIEW 

 

The ATC is the key to train operations in urban transit 

system. The ATC system can be breakdown into three 

subsystems: automatic train protection, the ATD and 

automatic train supervision. Among them, the ATD subsystem 

is the most important part of the ATC system. 

Being a multi-objective optimization problem, the ATD can 

be solved by various algorithms, ranging from multi-objective 

particle swarm optimization (PSO) [4-6], predictive fuzzy 

control [7], multi-modal dynamic programming [8], the hybrid 

algorithm of the differential evolution (DE) and simulated 

annealing (SA) [9] to cellular automata algorithm [10].  

In recent years, much progress has been made on the ATD. 

For example, Shen et al. [4] investigated passenger satisfaction 

in train operations of the urban rail system, established a 

calculation model for this factor, and optimized the multi-

objective ATD problem with DE algorithm. Cao et al. [5] 

adjusted train operations between stations by fuzzy ATD 

control method. 

To minimize travel time and energy consumption, 

Domínguez et al. [11] proposed a multi-objective PSO to 

optimize the velocity curve of the ATD, and found that the 

algorithm converged to the Pareto frontier solution under 

constraint conditions, which means the algorithm has diversity 

and convergence than Non-dominated Sorting Genetic 

Algorithm II (NSGA-II). Carvajal et al. [12] developed a fuzzy 

NSGA-II algorithm to analyze the relationship between travel 

time and energy consumption of trains, and obtained a novel 

train control strategy.  

Kim et al. [13] optimized train operation curve with the DE 

algorithm, aiming to reduce the total energy consumption of 

trains within the constraint on travel time. Considering train 

load and line delay, Fernandez-Rodriguez et al. [14] adopted 

the PSO to minimize the travel time and energy consumption 

of the ATD, and successfully minimized the energy 

consumption without violating the line delay. 

Based on genetic algorithm (GA) and fuzzy model, Sicre et 

al. [15] developed a train operation control strategy that 

greatly saves the energy of train operations. Tao and Han [16] 

improved the multi-objective GA to optimize the operation 

model of urban express trains, obtained the optimal train 

operation control curve with the minimal energy consumption, 

and produced multiple sub-optimal solutions. 
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Considering train operation modes, Huang et al. [17] 

derived the optimal control strategy for train operations that 

minimizes the energy consumption. Chen et al. [18] tracked 

train speed with predictive fuzzy proportional–integral–

derivative (PID) controller, and designed an adaptive 

controller to improve the accuracy of train parking. 

 

 

3. CONSTRUCTION OF MULTI-OBJECTIVE 

OPTIMIZATION MODEL 

 

The stress pattern of a running train can be derived from the 

mechanical principles and the track parameters. Based on the 

stress pattern, the speed, travel distance, travel time and energy 

consumption of the train can be calculated, and used to design 

the train control strategy. 

 

3.1 Train motion equation 

 

Compared with the track length, the length of a train is so 

short as to be negligible. Here, each train is considered as a 

particle, and a single particle model is constructed to analyze 

the stress pattern of the train operation. The traction, braking 

force and resistance of the train were computed separately by 

the model. 

According to Newton’s second law of motion, the 

differential equation of train particle motion [19] can be 

defined as: 

 
𝑑𝑣

𝑑𝑡
= 𝜀 ∙ 𝑐                                    (1) 

 
𝑑𝑠

𝑑𝑡
= 𝑣                                      (2) 

 

where, 𝑐  is the unit resultant force of traction; 𝜀  is the 

acceleration coefficient; 𝑣 is the speed; 𝑠 is the travel distance; 

𝑡 is the travel time. 

By the differential equation of train motion, the speed-

distance curve of the train in the whole travel interval can be 

drawn, and the speed change of the train running can also be 

monitored. 

 

3.2 Train dynamics model 

 

The resultant force of the running train can be expressed as: 

 

𝑚𝑎 = 𝐹 − 𝑔(𝑣) − 𝑤(𝑥, 𝑣)                        (3) 

 

where, 𝑚  is the mass of the train; 𝑎  is the acceleration 

produced by the resultant force on the train; 𝐹 are the forces 

of the train; 𝑔(𝑣) is the basic resistance formula of the train, 

which is a function of speed; 𝑤(𝑥, 𝑣)  is the additional 

resistance of train; 𝑥 is the location of track. The mass of the 

train can be computed by: 

 

𝑚 = 𝑚1 + 𝑚2                                  (4) 

 

where, 𝑚1  is the mass of the train body; 𝑚2  is the mass of 

passengers. 

The resultant force 𝐹  can be divided into traction 𝑓1  and 

braking force 𝑓2. If the train is in traction state, 𝐹 > 0; if the 

train is idle, 𝐹 = 0; if the train is in braking state, 𝐹 < 0. 

The greater the load of the train, the greater the braking 

force. The acceleration produced by the resultant force 𝑎 =

𝐹 𝑚⁄ , indicating that 𝑎  will remain unchanged if 𝐹  and 𝑚 

increase in the same proportion.  

The braking force decreases once the train reaches a certain 

speed. This speed is determined by the maximum power of the 

train. From the power formula 𝜌 = 𝐹 ∙ 𝑣, it can be seen that 

the train power will not change after reaching the maximum, 

and the increase of speed 𝑣 will cause 𝐹 to decrease. Hence, 

the braking force will decline if the train speeds up under the 

maximum power. This situation should be considered in train 

control. 

The running train mainly suffers from two external forces, 

namely, basic resistance 𝑔(𝑣)  and additional resistance 

𝑤(𝑥, 𝑣). The former is the result of multiple factors, such as 

the friction and impact between locomotive and rolling stock, 

between train surface and the air, and between wheels and the 

rail. During train operations, the generation of basic resistance 

is extremely complex, making it difficult to compute the basic 

resistance theoretically. Thus, this paper computes the basic 

resistance by empirical formula: 

 

𝑔 = 𝑎𝑣2 + 𝑏𝑣 + 𝑐                               (5) 

 

where, 𝑣  is the train speed; 𝑎 , 𝑏  and 𝑐  are three constants, 

representing the coefficients of the basic resistance. 

The additional resistance refers to the resistance induced by 

external operating conditions. This force is not affected by the 

type of locomotive and rolling stock. The main influencing 

factor of additional resistance is the track condition. The 

additional resistance of the entire train can be computed by: 

 

𝑤 = 𝑤1 + 𝑤2 + 𝑤3 

 

where, 𝑤1  is slope additional resistance; 𝑤2  is curve 

additional resistance; 𝑤3 is tunnel additional resistance. 

 

3.3 ATD index model 

 

The ATD also requires precise parking operation. The 

parking accuracy  𝐾𝐶  of the train can be defined as: 

 

𝐾𝐶 = |𝑆 − 𝑆𝑎𝑑|                                   (6) 

  

where, 𝑆  is the actual travel distance of the train between 

stations; 𝑆𝑎𝑑 is the distance between adjacent stations. 

According to the train motion equation, the travel time 

between stations can be calculated by:   

 

𝑇 = ∑ 𝑇𝑖
𝑁
𝑖=1                                      (7) 

 

where, i=1,2,…,N are the serial numbers of subintervals; 𝑇𝑖  is 

the travel time of each subinterval; 𝑇 is the actual travel time 

between stations. 

The punctuality of the train 𝐾𝑡 can be defined as: 

 

𝐾𝑡 = |𝑇 − 𝑇𝑡𝑎𝑟𝑔𝑒𝑡|                            (8) 

 

where, 𝑇 is the actual travel time between stations; 𝑇𝑡𝑎𝑟𝑔𝑒𝑡  is 

the target travel time between stations. 

Passenger comfort is another key index of the ATD 

performance. The index value can be measured by the change 

rate of acceleration, which is affected by impact rate and travel 

time. Here, the passenger discomfort 𝐾𝑗  is defined as: 
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𝐾𝑗 = ∫ |
𝑑𝑎

𝑑𝑡
|𝑑𝑡                                    (9) 

 

where, 𝑎 is the acceleration of the running train; 𝑡 is the travel 

time. The smaller the 𝐾𝑗  value, the more comfortable the 

passengers feel. 

 

3.4 Multi-swarm optimization of multi-objective ATD 

problem 

 

During train operations, the ATC system optimizes the 

control strategy based on known information, and gets the 

optimal control force to keep the train along the optimal curve. 

In this paper, a multi-swarm optimization model is constructed 

for train operations, coupling the PSO and cuckoo search (CS) 

[20]. 

The PSO combines the merits of heuristic random search 

and several other intelligent algorithms [21]. Unlike many 

other intelligent algorithms, the PSO has no crossover, a 

simple computing process and a strong global search ability. 

In this algorithm, each particle retains its best-known position 

p_Best and the global best-known position g_Best, and 

continuously moves toward the global optimal position by 

exchanging information with other individuals and groups. 

The particle velocity and position are respectively updated by:   

 

𝑣𝑖
𝑡+1 = 𝛼𝑣𝑖

𝑡 + 𝑠1𝑟1(𝑝_𝐵𝑒𝑠𝑡 − 𝑥𝑖
𝑡) + 𝑠2𝑟2(𝑔_𝐵𝑒𝑠𝑡 − 𝑥𝑖

𝑡) (10) 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                             (11) 

 

where, 𝑣𝑖
𝑡  and 𝑣𝑖

𝑡+1 are the velocities of the i-th particle at time 

t and t+1, respectively; 𝑥𝑖
𝑡 and 𝑥𝑖

𝑡+1 are the positions of the i-

th particle at at time t and t+1, respectively; 𝛼 is the inertia 

weight; 𝑠1 is the self-learning factor; 𝑠2 is the group learning 

factor; 𝑟1 and 𝑟2 are two random numbers in [0, 1]. 

The CS algorithm basically involves three operations: 

selection of the best nest, random local movement, and random 

selection in global flight. Firstly, the best nest (optimal 

solution) is preserved to control the search within the domain 

of local optimal solution. Next, the optimal solution is 

searched for by local random movement 𝑥𝑡+1 = 𝑥𝑡 + 𝛼𝜀𝑡 . 

Finally, the step size is determined by Lévy flight [22], aiming 

to diversify the solutions in the search space. The position 

update formula of Lévy flight can be expressed as: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼⨁𝐿(𝜏)                          (12) 

 

where, 𝑥𝑖
𝑡 and 𝑥𝑖

𝑡+1 are the positions of the i-th bird’s nest at 

time t and t+1, respectively; 𝛼  is the step size; 𝐿(𝜏)  is a 

random search vector subjected to a parameter of 𝜏. 

 
 

Figure 1. Flow chart of the PSO-CS 
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The PSO and the CS each has its own strength. In the PSO, 

the particles can quickly converge to the global optimal 

position by comparing its current position with the best-known 

positions of itself and the swarm. In the CS, the optimal 

solution is always retained in the next generation, rather than 

be expelled from the population. In this paper, the two 

algorithms are integrated into a hybrid algorithm (PSO-CS), 

giving full play to their respective strength. In the hybrid 

algorithm, the particle positions are updated iteratively by the 

PSO, and then further optimized with a certain probability by 

the CS. The workflow of the PSO-CS is illustrated in Figure 1 

below. 

 

3.5 Optimization curve 

 

The PSO and CS both have continuous search spaces, while 

the spaces between train stations are discrete. The working 

conditions of the train were considered as discrete values and 

coded (Table 1). The working condition with the highest 

traction acceleration was coded as 1, and that with the second 

highest traction acceleration was coded as 2. The rest can be 

deduced by analogy. Then, the working conditions form a 

solution space. 

 

Table 1. The coded working conditions 

 
No. Name Value 

1 3-stage traction acceleration 0.7 

2 2-stage traction acceleration 0.5 

3 1-stage traction acceleration 0.3 

4 1-stage braking deceleration -0.1 

5 2-stage braking deceleration -0.3 

6 3-stage braking deceleration -0.5 

7 4-stage braking deceleration -0.7 

 

During train operations, the ATC must consider the various 

working conditions. Different control strategies should be 

implemented at different track positions, and the overall 

control effect should be achieved through the cooperation 

between different working conditions. Due to the difference in 

track conditions, the number of working conditions can be 

selected flexibly, and the particle size can be determined by 

number of working conditions. Then, the population can be 

initialized under the constraints on the working conditions, 

such that each particle also satisfy these conditions. Then, the 

feasible solution can be obtained through PSO-CS 

optimization.  

Let 𝐾𝑎, 𝐾𝑝, 𝐾𝑐  and 𝐾𝑒 be the finesses of parking accuracy, 

punctuality, passenger comfort and energy consumption, 

respectively. Then, the multi-objective ATD problem can be 

expressed as: 

 

min {𝐾𝑎, 𝐾𝑝, 𝐾𝑐, 𝐾𝑒}                           (13) 

 

The above problem can be converted into single-objective 

optimization problem by weighted summation method: 

 

 𝑓 = 𝑤1𝐾𝑎 + 𝑤2𝐾𝑝 + 𝑤3𝐾𝑐 + 𝑤4𝐾𝑒                 (14) 

 

s.t. {
𝑣(0) = 𝑣(𝑆) = 0

𝑣(𝑠) < 𝑣𝑙𝑖𝑚(𝑠),   𝑠 ∈ [0, 𝑆]
                   (15) 

 

where, 𝑤1 , 𝑤2 , 𝑤3  and 𝑤4  are the weights of each fitness 

index; 𝑣(0)  and 𝑣(𝑆)  are the initial and final train speeds, 

respectively; 𝑣(𝑠) and 𝑣𝑙𝑖𝑚(𝑠) are actual and restricted train 

speeds at location 𝑠 , respectively. In this way, the multi-

objective ATD problem was converted into the search for the 

min{𝑓} under the constraints in formula (15). 

The f value is negatively correlated with the control effect. 

In the PSO-CS, the reciprocal of the f value was taken as the 

fitness evaluation function: 

 

F =  1 𝑓⁄                                    (16) 

 

 

4. DESIGN OF FUZZY CONTROLLER 

 

Based on fuzzy set theory, fuzzy linguistic variables and 

fuzzy logic reasoning, the fuzzy control is an intelligent 

control method mimicking fuzzy human behaviors like 

reasoning and decision-making. In the fuzzy theory, the fuzzy 

rules of the fuzzy controller are known as fuzzy conditional 

statements. Thus, the fuzzy controller is essentially a linguistic 

controller. The block diagram of the fuzzy controller is shown 

in Figure 2. 

 

 
 

Figure 2. The block diagram of fuzzy controller 
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Figure 3. The design of fuzzy controller 

 

As shown in Figure 3, our fuzzy controller has two inputs 

and one output. The inputs and output were separately 

fuzzified and divided into 7 fuzzy sets. A total of 49 fuzzy 

rules were designed.  

The fuzzy set is the result of fuzzy reasoning. The center of 

gravity method was adopted to transform the fuzzy result into 

an exact value. The transform formula is as follows: 

 

𝑣0 =
∑ 𝑣𝑘𝑢𝑣(𝑣𝑘)𝑛

𝑘=1

∑ 𝑢𝑣(𝑣𝑘)𝑛
𝑘=1

                              (17) 

 

where, 𝑣𝑘 is the exact value of control output; 𝑢𝑣(𝑣𝑘) is the 

corresponding membership. The membership function is 

shown in Figure 4. 

As shown in Figure 4, the seven fuzzy sets are Negative Big 

(NB), Negative Middle (NM), Negative Small (NS), Zero 

(ZO), Positive Small (PS), Positive Middle (PM), Positive Big 

(PB). More fuzzy sets mean more precise control effect, and 

more complex control rules. 

To verify the effect of the fuzzy controller, the PSO-CS, the 

PSO and the CS were adopted to optimize the train operations. 

The optimization results of the three algorithms are listed in 

Table 2 below. 

 

 
 

Figure 4. The membership functions 

 

Table 2. Optimization results of the three algorithms 

 
Number of iterations Algorithm Parking accuracy Punctuality Passenger comfort Energy consumption Total fitness 

20 PSO 0.152 52.1 3.53 29851 0.467 

CS 0.967 37.4 2.87 33821 0.491 

PSO-CS 0.336 26.5 2.21 32981 1.092 

100 PSO 0.062 22.8 3.38 44781 1.287 

CS 0.102 21.9 2.52 49521 1.652 

PSO-CS 0.073 3.5 2.01 50972 3.723 

200 PSO 0.113 20.4 3.21 43859 3.190 

CS 0.132 20.1 3.31 48750 5.821 

PSO-CS 0.009 0.52 2.05 51082 7.524 

500 PSO 0.009 18.7 3.19 44921 4.192 

CS 0.007 17.2 3.01 47814 5.982 

PSO-CS 0.003 0.08 2.02 50982 9.178 

 

From Table 2, it can be seen that the PSO-CS and the PSO 

both converged to feasible solutions satisfying all constraints 

in the 100th iteration. The results demonstrate the convergence 

quality and speed of the PSO-CS. After 500 iterations, the 

PSO-CS achieved higher total fitness than the contrastive 

algorithms, indicating that our algorithm boasts the best effect 

of multi-objective global optimization and the optimal control 

effect. 

 

 

5. CONCLUSIONS 

 

This paper examines the functions of the ATC system and 

analyzes the indices of ATD optimization, namely, safety, 

punctuality, parking accuracy, passenger comfort and energy 

consumption. On this basis, the train operation curve was 

optimized by the multi-swarm optimization algorithm, 

coupling the PSO and the CS, and a fuzzy controller was 

designed to use the optimized operation curve as the input. The 

simulation results show that our method can effectively solve 

281



the multi-objective problem of the ATD in urban transit 

system, and outperform the traditional optimization 

algorithms like the PSO and the CS. 
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