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 In this paper, a numerical study on centrifugal instability with convective heat transfer 

through a curved square duct is presented by using a spectral method, and covering a wide 

range of the Dean number ( )0 5000Dn   for a tightly coiled square duct of curvature 

0.5 The outer and bottom walls of the duct are heated while cooling from the inner and the 

ceiling. The main objective of this study is to expose combined effects of centrifugal and 

buoyancy forces on fluid flows through a curved channel. For this purpose, solution 

structure of the steady solutions is obtained first. As a result, four branches of 

symmetric/asymmetric steady solutions are obtained. Linear stability of the steady solutions 

is then investigated. It is found that only the first branch is linearly stable while the other 

branches are linearly unstable. Unsteady flow behavior, obtained by time evolution 

calculations, shows that the steady-state flow turns into chaotic flow via periodic and multi-

periodic flows, if Dn is increased. Typical contours of secondary flow pattern, stream-wise 

velocity distribution and temperature profiles are obtained at several values of Dn and it is 

found that the flow consists of asymmetric two- to four-vortex solutions. The present study 

shows that convective heat transfer is significantly enhanced by the secondary flow; and 

the chaotic flow, which occurs at large Dn’s, enhances heat transfer more effectively than 

the steady-state or periodic solutions. Finally, a comparison between the numerical and 

experimental investigations has been made, and it is found that there is a good agreement 

between the numerical and experimental investigations.  

 

Keywords: 

Curved square duct, secondary flow, steady 

solution, unsteady solution, heat transfer 

 

 

 
1. INTRODUCTION 

 

Fluid flow through curved passages is a common 

occurrence in a vast range of industrial applications, such as in 

gas turbine blades, air conditioning, heat exchangers and 

rocket engine coolant passages. In a curved passage, 

centrifugal forces are developed in the flow due to channel 

curvature causing a counter rotating vortex motion applied on 

the axial flow through the passage. This creates characteristic 

spiraling fluid flow in the curved passage known as secondary 

flow. At a certain critical flow condition and beyond, 

additional pairs of counter rotating vortices appear on the outer 

concave wall of curved fluid passages. This flow condition is 

referred to as Dean’s Hydrodynamic Instability and the 

additional vortices are known as Dean vortices, in recognition 

of the pioneering work in this field by Dean [1]. The readers 

are referred to Ito [2], Joseph et al. [3] and Mondal et al. [4] 

for some outstanding reviews on curved duct flows.  

Centrifugal forces are very efficient mechanism to 

destablize flows. Among generic cases one can cite the Dean 

flow between two curved walls close to each other, the Taylor–

Couette flow between two rotating cylinders and the Görtler 

flow over a concave wall [5]. In all these cases, the geometry 

is infinite in one direction perpendicular to centrifugal forces, 

and the basic flow is two-dimensional.  However, an important 

circumstance of the flow through a curved duct is the 

bifurcation of the flow because various types of steady 

solutions are existed for the presence of centrifugal force 

which is affected by the curvature of the duct. It has already 

seen that many authors have been presented the bifurcation 

structure both numerically and experimentally for various 

types of duct such as helically coiled ducts [3, 6], rectangular 

ducts [7] and oval [8]. Wang et al. [9] performed both 

bifurcation and stability for coiled ducts, where the same 

phenomena was studied by Yamamoto et al. [10] for helical 

tube. Chandratilleke et al. [11-13] reported extensive 

parametric study examining the effects of curvature ratio and 

aspect ratio as well as the wall heat flux. The validation of their 

numerical work had been performed against their experimental 

data [11, 12]. Their numerical method, that was effectively a 

two-dimensional formulation, used toroidal coordinate system 

and utilized a stream function approach with dynamic 

similarity in axial direction. Mondal et al. [14] presented 

numerical simulation of the flow characteristics and found 

substantial results where the secondary flow was affected by 

the convective heat transfer. Recently, Mondal et al. [15] 

discussed the onset of secondary vortices with a large range of 

Grashof numbers.  

Time-dependent behavior of the curved duct flow was 

analyzed both numerically and experimentally by Arnal et al. 

[16], where the solution structure of the unsteady solution was 

first introduced by Yanase and Nishiyama [17]. Time 
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evolution calculations of the Nusselt number were performed 

for a wide range of Dean number by Mondal et al. [18]. Yanase 

et al. [19] also obtained the unsteady solutions for aspect ratio 

2 and a flow characteristics is found (steady state→ periodic

→ chaotic). Wang and Liu [20] performed numerical as well 

as experimental investigations of periodic oscillations for the 

fully developed flow in a curved square duct. Flow 

visualization in the range of Dean numbers from 50 to 500 was 

conducted in their experiment. Flow transitions in the curved 

square duct for various types of curvatures were also 

investigated by Mondal et al. [21]. The fluctuation of heat 

between the steady solutions and the unsteady solutions are 

also showed by them. Later Mondal et al. [14] discussed that 

the fluid flow undergoes various types of instabilities in the 

unstable region. However, solution structure as well as 

transient behavior of the unsteady solution is not yet resolved 

for the flow through a strongly curved square duct with 

differentially heated sidewalls, which motivated the present 

study to fill up this gap. 

A remarkable characteristic of the flow through a curved 

duct is to enhance heat transfer to the fluid from two 

differentially heated sidewalls. However, experimental 

investigations of heat transfer in curved duct flows are limited 

because of the difficulties associated with the measurement of 

fluid temperature profile, while corresponding numerical 

calculations are reported by many authors. Chandratilleke et 

al. [22] presented a numerical investigation to examine the 

secondary vortex motion and heat transfer process in fluid 

flow through curved rectangular ducts of aspect ratios 1 to 6. 

The study formulated an improved simulation model based on 

3-dimensional vortex structures for describing secondary flow 

and its thermal characteristics. Wu et al. [23] performed 

numerical study of the secondary flow characteristics in a 

curved square duct by using spectral method, where the walls 

of the duct except the outer wall rotate around the centre of 

curvature and an azimuthal pressure gradient was imposed. 

The secondary flow characteristics in a curved square duct 

were investigated experimentally by using visualization 

method by Yamamoto et al. [24]. Recently, Razavi et al. [25] 

investigated flow characteristics, heat transfer and entropy 

generation in a curved duct by using control volume method. 

Very recently, Li et al. [26] conducted a combined 

experimental and numerical study on 3D flow development in 

a curved rectangular duct with varying curvature. Effects of 

curvature, Reynolds number and aspect ratio on hydrodynamic 

instability were discussed in that paper to accurately predict 

the core of secondary base vortices.  

In the present paper, we propose to study fully developed 

2D flow through a tightly coiled square duct of strong 

curvature. The main objective of this study is to find out 

solution structure of the steady solutions and to investigate 

unsteady flow behavior with effects of secondary vortices on 

convective heat transfer. The study formulates and verifies a 

novel approach for computational scheme in identifying onset 

of hydrodynamic instability in a curved passage reflected by 

Dean vortex generation.  

 

 

2. GOVERNING EQUATIONS AND THE FLOW 

MODEL 
 

Consider a hydro-dynamically and thermally fully 

developed two-dimensional (2D) flow of viscous 

incompressible fluid through a curved square duct. The 

physical geometry is shown in Figure 1, where the x′ and y′ 

axes are taken in the horizontal and vertical directions 

respectively, and z′ in the flow direction. It is assumed that the 

outer and bottom walls of the duct are heated while cooling 

from the inner and the ceiling walls. It is assumed that the flow 

is driven by a constant pressure gradient G along the centre-

line of the duct as shown in Figure 1. The dimensional 

variables are made non-dimensional by using the 

representative length d and the representative velocity 

0 /U d= , where   is the kinematic viscosity of the fluid.  

 

 
 

Figure 1. Non-rotating co-ordinate system of the curved duct 

 

By assumption of symmetric flow, stream functions for the 

cross-sectional velocities have the following form  
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Equation (1) satisfies the continuity equation. Now stream-

wise velocity ( )w , cross-sectional stream function ( )  and 

energy/temperature ( )T  are defined based on the Navier-

Stokes equation as follows:  
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The non-dimensional parameters Dn , the Dean number; 

Gr , the Grashof number and Pr , the Prandtl number, which 

appear  in equation (2) to (4) are defined as 

398



 

3 3

2

2
,  , Pr

Gd d g Td
Dn Gr

L

 

 


= = =       (5) 

 

The no-slip rigid boundary conditions for w and  are 

taken as 
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and temperature T  is assumed to be constant on the walls as 

 

( ) ( ) ( ),1 1,  T x,-1 1,  T 1,yT x y= = −  =                  (7) 

 

 

3. NUMERICAL CALCULATIONS 

 

3.1 Method of numerical calculations 

 

In order to get numerical solution, spectral method is used 

(Gottlieb and Orazag [27]). By this method the variables are 

expanded in the series of the function consisting of Chebychev 

polynomials. The expansion functions ( )n x  and ( )n x  are 

expressed as 
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where, ( ) ( )( )1cos cosnC x n x−=  is the n -th order Chebyshev 

polynomial. ( ), ,w x y t , ( ), ,x y t  and ( ), ,T x y t  are 

expanded in terms of ( )n x  and ( )n x  as 
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Here, M and N are the truncation numbers in the x − and 

y − directions respectively, and mnw , mn
 
and 

mnT are the 

coefficients of expansion. To obtain steady solution ( ),w x y , 

( ),x y and ( ),T x y , the expansion series (9) is then 

substituted into the basic equations (2) - (4), and the 

collocation method is applied.  

Linear stability of the steady solutions is investigated 

against only two-dimensional perturbations (z-independent). 

For this purpose, the eigenvalue problem is solved by 

application of the function expansion method together with 

collocation method to the linearized equations for the 

perturbation of ( ),w x y , ( ),x y  and ( ),T x y . It is supposed 

that the time dependence of the perturbation is te , where

r ii  = + . If all the real parts
r of the eigenvalue   are 

negative, the steady solution is linearly stable, but if there exist 

at least one positive real part, it is linearly unstable. In the 

unstable region, the perturbation grows monotonically for

0i = and oscillatory for 0i  . Finally, in order to calculate 

the unsteady solutions, the Crank-Nicolson and Adams-

Bashforth methods together with the function expansion (9) 

and the collocation methods are applied to equations (2) - (4). 

 

3.2 Resistance coefficient 

 

The resistance coefficient  is used as the representative 

quantity of the flow state. It is also called the hydraulic 

resistance coefficient, and is generally used in fluids 

engineering, defined as 
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where, quantities with an asterisk denote dimensional ones, 
*

hd  is the hydraulic diameter,  stands for the mean over the 

cross section of the duct,  is the density is the density, and 
*

1P  and *

2P are the pressure at the upstream and downstream 

positions of the duct respectively. The mean axial velocity 
*w  is calculated by 
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,   is related to the mean non-

dimensional axial velocity *2 /w d w = as 
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4 2 Dn

w


 =                           (12) 

 

It should be remarked that 1Dn − in the limit of 

0Dn → with   kept constant, since w Dn  in this limit. 

  

3.3 Numerical accuracy 

 

Here, the validation of the numerical study has been tested 

with changing the truncation numbers. As the paper is based 

on curved square duct, we therefore consider N = M, where M 
and N are the grid sizes along the horizontal and vertical axis 

respectively. Table 1 shows the values of the resistance 

coefficient ( ) and the axial flow ( )w  at the origin for 

various values of M and N. As seen in Table 1, the numerical 

accuracy is attained if we take M = 24 and N = 24. Therefore, 

throughout this investigation, we use the truncation number M 

= 24 and N = 24. 
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Table 1. The values of   and ( )0,0w  for various M and N 

at 100Dn = , 500Gr =  and 0.5 =  

 

M N   ( )0,0w  

16 16 0.634661134821 341.43833392975 

18 18 0.6347971982070 341.704442189362 

20 20 0.6347909128331 341.931772761516 

22 22 0.6347702723961 342.094338341262 

24 24 0.6347763788143 342.220108367290 

26 26 0.6347764048319 342.321432031774 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Steady solutions and linear stability analysis 

  

In this study, solution structure of the steady solutions has 

been investigated by Newton-Raphson iteration method, and 

pattern variation of secondary flows on various branches of 

steady solutions has been discussed. After an extensive survey 

over the range of the parameters, four branches of asymmetric 

steady solutions are obtained over the Dean number

0< 5000Dn  for 100Gr = . A bifurcation diagram of steady 

solutions is shown in Figure 2(a) using  , the representative 

quantity of the solutions. The four steady solution branches are 

named the first steady solution branch (Branch 1, solid line), 

the second steady solution branch (Branch 2, dashed dot dot 

line), the third steady solution branch (Branch 3, dashed dot 

line), the fourth steady solution branch (Branch 4, dotted line), 

respectively. The solution branches are obtained by the path 

continuation technique with various initial guesses and are 

distinguished by the nature and the number of secondary flow 

vortices appearing in the cross section of the duct. In this 

regard, it should be noted that this type of solution structure 

was observed by Mondal et al. [4] for the isothermal flow 

through a curved square duct of curvature 0. 2797. Figure 3 

shows typical contours of stream-wise velocity, secondary 

flow patterns and isotherm on various branches of steady 

solutions at different Dean numbers. It is found that the 

branches consist of asymmetric two- to four-vortex solutions; 

two-vortex at moderate Dn’s while two- and four-vortex at 

large Dn’s.  Linear stability of the steady solutions shows that 

among four branches of steady solutions, only the first branch 

is linearly stable while the other branches are linearly unstable. 

The first branch is linearly stable for 0 4410.14Dn  and 

unstable otherwise. Thus a saddle-node bifurcation occurs at 

4410.14Dn = .  

As seen in Table 2, the perturbation grows oscillatorily 

( )0i 
 
for 4410.14Dn  . Therefore, a Hopf bifurcation 

occurs at 4410.14Dn = . The stability region on the first 

branch is shown by a blue solid line in Fig. 2(b), where linearly 

unstable region by thin solid black line. In this regard, it should 

be remarked that this kind of bifurcation has also been 

obtained by Winters [28] for the isothermal flow through non-

rotating curved ducts with square and rectangular cross section 

of small curvature ( 0.02). =
 

In this study, contours of temperature profiles show that the 

streamlines of the heat flow are uniformly distributed to all 

parts of the contour transferring heat from the heated walls to 

the fluid, and the contribution of the buoyancy and pressure on 

secondary flows significantly change and increase the number 

of secondary vortices. It is clearly evident that heating the 

bottom and outer wall causes the temperature contours to 

become asymmetrical in comparison to isothermal cases. This 

essentially arises from the interaction between the heating-

induced buoyancy force and the centrifugal force that drives 

secondary vortices. In this regard, it should be noted that the 

centrifugal force due to the duct curvature creates two effects; 

it generates a positive radial fluid pressure field in the duct 

cross section and induces a lateral fluid motion driven from 

inner wall towards the outer wall. This lateral fluid motion 

occurs against the radial pressure field generated by the 

centrifugal effect and is superimposed on the axial flow to 

create the secondary vortex flow structure. As the flow 

through the curved duct is increased, the lateral fluid motion 

becomes stronger and the radial pressure field is intensified. In 

the vicinity of the outer wall, the combined action of adverse 

radial pressure field and viscous effects slows down the lateral 

fluid motion and forms a stagnant flow region. Beyond a 

certain critical value of Dn, the radial pressure gradient 

becomes sufficiently strong to reverse the flow direction of the 

lateral fluid flow. A weak local flow re-circulation is then 

established creating an additional pair of vortices in the 

stagnant region near the outer wall. This flow situation is 

known as Dean’s hydrodynamic instability. 

 

 
(a) 

 
(b) 

 

Figure 2. (a) Solution structure of steady solutions for 

0 5000,  =0.5Dn   , (b) Linear stability of the 1st steady 

solution branch 
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Figure 3. Flow patterns on the steady solution branches for 

0.5 =  at various values of Dn  

 

Table 2. Stability analysis for the first steady solution branch 

for 0.5,  Gr =100 =
 
and 0<Dn 5000  

 

Dn   r  i  

100 

500 

0.95301468192 

0.92801497890 

-0.5835 

-1.4232 
0 

0 

1000 0.62940475033 -1.6886 0 

2000 0.43985239666 -2.0121 0 

3000 0.35922535134 -2.2368 0 

4000 0.31290872468 -2.4153 0 

4410.14 0.29882585018 −1.84 × 10−4 −8.79 × 101 

4410.15 0.29882553444 3.87 × 10−5 −8.79 × 101 

4500 0.29607508513 1.9523 −9.04 × 101 

5000 0.28206939463 1.22 × 101 1.04 × 102 
 

4.2 Unsteady solutions by time-evolution calculation 

 

In order to investigate non-linear behavior of the unsteady 

solutions, time evolution calculations are performed. First, 

time evolutions of   are performed for 500 4410Dn   as 

shown in Figure 4. It is found that the unsteady flow is a 

steady-state solution for all values of Dn in the range, which 

agrees well with the linear stability results presented in Sec. 

4.1. Since the flow is steady-state, a single contour of each of 

the stream-wise velocity, secondary flow and isotherm is 

shown in Figure 5 for 500 4410Dn  . As seen in Fig. 5, the 

unsteady flow is an asymmetric two-vortex solution. The study 

shows that the streamlines of the secondary flow consist of two 

opposite vortices; one is an outward flow (anticlockwise 

direction) shown by solid line and the other one inward flow 

(clockwise direction) shown by dotted lines. The flow is 

accelerated due to combined action of the centrifugal and 

buoyancy forces; centrifugal force is created due to the motion 

through a curved channel while buoyancy forces because of 

the thermal gradient. 

 

 
 

Figure 4. Unsteady solution for 0.5 = and 

500 4410Dn   
 

Then we increased Dean number and predicted unsteady 

solution at Dn = 4420. Figure 6(a) shows time-history result 

for Dn = 4420, which shows that the unsteady flow is a 

periodic oscillating flow at Dn = 4420. This periodic 

oscillation is well justified by sketching the power spectrum 

density using log-log scale as shown in 6(b). Figure 6(b) shows 

that a fundamental frequency with large amplitude and its 

harmonics are seen which justifies that the unsteady flow 

presented in Figure 6(a) is periodic. To observe the flow 

patterns, as time proceeds, we obtain typical contours of 

secondary flow, stream-wise velocity distribution and 

isotherms for Dn = 4420 as shown in Figure 7. Figure 7 shows 

that the time-dependent flow at Dn = 4420 is an asymmetric 

two-vortex solution. As seen in Figures. 4 and 6, the transition 

from steady-state to periodic oscillation occurs between Dn = 

4410 and Dn=4420, which agrees with the linear stability 

result. 
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Figure 5. Streamlines of stream-wise velocity (top), 

secondary flow (middle) and isotherm (bottom) for
500,  1000, 2000, 2500, 3500, 4410Dn =

 
 

 

 
 

Figure 6. (a) Unsteady solution, (b) Power spectrum density 

for 4420Dn = and = 0.5.  

 

Then we then proceeded to perform time history of  for

4500Dn = , which is a multi-periodic solution as shown in 

Figure 8(a). To justify the flow characteristics, power 

spectrum density is calculated for 4500Dn =  using log-log 

scale as shown in Figure 8(b). Figure 8(b) shows that 

fundamental frequency and its harmonics are seen but not any 

sub-harmonics of the fundamental frequency are available, 

which justifies that the unsteady flow presented in Figure 8(a) 

is periodic for 4500Dn =  rather than multi-periodic. To 

observe vortex generation and temperature distribution for the 

periodic oscillation at 4500Dn = , stream-wise velocity, 

streamlines and isotherms are obtained as shown in Figure 9 

for 4500Dn = . Figure 9 shows that the flow is an asymmetric 

two-vortex solution for 4500Dn = . In fact, the periodic 

oscillation, which is observed in the present study, is a 

traveling wave solution advancing in the downstream direction 

which is well justified in the investigation by Yanase et al. [29] 

for a three-dimensional travelling wave solutions as an 

appearance of 2D periodic oscillation. If Dn is increased a little, 

for example 4550Dn = , the periodic flow turns into multi-

periodic flow. Figure 10(a) shows time-evolution of  for

4550Dn = , which shows that the time-dependent flow is a 

multi-periodic flow for 4550Dn = and it is well justified by 

obtaining power spectrum density using log-log scale as 

shown in Fig. 10(b). Streamlines of stream-wise velocity, 

secondary flow velocity and isotherm for 4550Dn =  are 

shown in Figure 11. As seen in Figure 11, the time-dependent 

flow is a two-vortex solution for 4550Dn = . From Figures 8(a) 

and 10(a), it is concluded that the transition from periodic to 

multi-periodic oscillation lakes place between Dn = 4500 and 

Dn = 4550. 

 

 

 
 

Figure 7. Streamlines of stream-wise velocity (top), 

secondary flow (middle) and isotherm (bottom) for 

4420Dn = and =0.5.  
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Figure 8. (a) Unsteady solution, (b) Power spectrum density 

for 4500Dn = and = 0.5.  

 

Then we seek for the transition from multi-periodic to 

chaotic oscillation. For this purpose we increased the Dean 

number and predicted unsteady solutions. Figures 12(a) and 

14(a) respectively show time-dependent flows for Dn = 5100 

and Dn = 5150. It is found that the time-dependent flow at Dn 

= 5100 (Figure 12(a)) is a multi-periodic flow while at Dn = 

5150 (Figure 14(a)) a chaotic solution. These multi-periodic or 

chaotic oscillations are well justified by drawing the power 

spectrum density of the unsteady solutions as shown in Figures 

12(b) and Figure 14(b) for Dn = 5100 and Dn = 5150 

respectively. As seen in Fig. 12(b), not only the line spectrum 

of the fundamental frequency and its harmonics but other line 

spectrum with different frequencies are seen, which indicates 

that the flow at Dn = 5100 is multi-periodic. Figure 14(b), on 

the other hand, shows that there appears continuous line 

spectrum of different frequencies, which confirms that the 

flow presented in Figure 14(a) is chaotic. This sort of flow 

behavior has been called transitional chaos (Mondal et al., [4]) 

because the multi-periodic flow becomes chaotic through this 

process, where the line spectra with low frequencies turn into 

the continuous spectrum. Thus the transition from multi-

periodic to chaotic oscillation happens between Dn = 5100 and 

Dn = 5150. Streamlines of stream-wise velocity, secondary 

flow velocity and isotherm for Dn = 5100 and Dn = 5150 are 

shown in Figures 13 and 15 respectively. It is found that 

unsteady flows at Dn = 5100 and Dn = 5150 are asymmetric 

two-vortex solution. If the Dean number is increased further, 

for example, Dn = 5500, the unsteady flow remains chaotic as 

shown in Figure 16(a) for time-evolution result and in Figure 

16(b) for power spectrum density. As seen in Figure 16(b), the 

line spectra with smaller frequencies that were observed in 

Figure 12(b) for multi-periodic oscillation completely 

disappear and continuous line spectrum overlap each other in 

a non-linear pattern so that the unsteady flow presented in 

Figure 16(a) is fully chaotic. This type of chaotic oscillation is 

termed as strong chaos (Mondal et al., [4]). It should be noted 

that, the occurrence of the chaotic state, as presented in the 

present study, is related with destabilization of the periodic or 

quasi-periodic solutions which reminds us the case of Lorenz 

attractor [30]. It may be possible that the transition in the 

present study is caused by a similar mechanism as that of 

Ruelle-Takens scenario [31] in the laminar flow. Then we 

obtained streamlines of stream-wise velocity, secondary flow 

pattern and isotherm for Dn = 5500 as shown in Figure 17. It 

is found that the chaotic flow oscillates irregularly in the 

asymmetric two-vortex solution. It is found that axial flow is 

shifted near the outer wall as the pressure gradient force 

becomes strong. Temperature distribution is found to be 

consistent with the secondary vortices and a strong interaction 

is observed between the heating-induced buoyancy force and 

the centrifugal instability, which stimulates fluid mixing and 

thus results in thermal enhancement in the flow. In this study, 

it is found that secondary flow enhances heat transfer in the 

flow and as the flow becomes chaotic heat transfer occurs 

substantially from the heated walls to the fluid. 

 

 

 
 

Figure 9. Streamlines of stream-wise velocity (top), 

secondary flow (middle) and isotherm (bottom) for
4500,  =0.5.Dn =

 
 

By the time-evolution calculations with their power 

spectrum analysis, it is found that stable steady solutions are 

realized for 0 4410Dn  , periodic solution for

4420 4500Dn  , multi-periodic for 4550 5100Dn   

and chaotic for 5150Dn  . Therefore, the transition from 

steady-state to periodic flow occurs between Dn = 4410 and 

Dn = 4420. Linear stability analysis indicates that the stable 

steady solutions exist for 0 4410.14Dn   while unstable 

for 4410.15Dn  . Therefore, the results of the linear stability 

analysis and those of the time-evolution calculations are 

consistent, so that the realizability for the steady and periodic 

solutions is perfectly dominated by the nature of the 

bifurcation diagram. 
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Figure 10. (a) Unsteady solution, (b) Power spectrum density 

forand = 0.5.  

 

 

 
 

Figure 11. Streamlines of stream-wise velocity (top), 

secondary flow (middle) and isotherm (bottom) for
4550,  =0.5.Dn =

 
 

 

 
 

Figure 12. (a) Unsteady solution, (b) Power spectrum density 

for 5100Dn = and = 0.5.  

 

 

 
 

Figure 13. Streamlines of stream-wise velocity (top), 

secondary flow (middle) and isotherm (bottom) for
5100,  =0.5.Dn =
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Figure 14. (a) Unsteady solution, (b) Power spectrum density 

for 5150Dn = and = 0.5.  
 

 

 
 

Figure 15. Streamlines of stream-wise velocity (top), 

secondary flow (middle) and isotherm (bottom) for
5150,  =0.5.Dn =  

 
 

Figure 16. (a) Unsteady solution, (b) Power spectrum density 

for 5500Dn = and = 0.5.  

 

 

 
 

Figure 17. Streamlines of stream-wise velocity (top), 

secondary flow (middle) and isotherm (bottom) for
5500,  =0.5.Dn =
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4.3 Convective heat transfer 

 

To study the phenomena for the convective heat transfer 

from the heated walls to the fluid, temperature gradient on the 

cooling and heated sidewalls are also calculated as shown in 

Figure 18. As seen in Figure 18(a), the temperature gradient 

T

x




on the cooling sidewall declines in the central part near 

the line 0y =  as Dn increases. This is mainly be fallen by the 

advective heat generation of the Dean flow in the outward 

direction around 0y =  due to the centrifugal force. In the 

same figure, it is also shown that 
T

x




 limit to soar up in the 

regions other than the central region for 100Dn = . This 

happens due to advection of the secondary flow in the inward 

direction, which is an opposite flow of the outward secondary 

flow in the central region. As seen in Figure 18(b), 
T

x




 raises 

monotonically over the whole region as Dn goes up from 100. 

This is actually caused as the secondary flow enhances enough 

T

x




 not only in the central region but in other areas as well, if 

Dn is increased. Thus as seen in Figure 18, the tendency of 

increasing the temperature gradient at the heated wall is much 

significant than that in the cooling wall, which can be 

explained by the fact that heat transfer occurs frequently from 

the heated wall to the fluid as Dn increases. 

 

 

 
 

Figure 18. Temperature Gradient (T.G). (a) cooling wall, (b) 

heating wall 

4.4 Validation of the numerical result 

 

Here, the validation of our numerical result has been shown 

with the experimental data. By using visualization method, 

Wang and Yang [32] conducted experimental investigations of 

the flow through a stationary curved square duct of curvature 

0.03 =  while Chandratilleke [11] conducted that for 

0.032 = (Fig. 19(a)). On the contrary, Yamamoto et al. 

(2006) performed experimental investigations of the flow 

through a rotating curved square duct of curvature 0.03 =

for positive rotation of the duct at the Taylor number Tr =150 

(Figure 13(b)). For comparison, as shown in Figure 19, we 

obtain the flow pattern for the same curvature as Wang and 

Yang [32], Chandratilleke [11] and Yamamoto et al. [24] used, 

and we see that our numerical results have a good agreement 

with the experimental investigations.  

 

 

 
 

Figure 19. Experimental vs. numerical results for curved 

square duct flow. (a) Stationary duct. Left: Experimental 

result by (i) Wang and Yang [32] and (ii) Chandratilleke 

[11], right: numerical result by the authors. (b) Rotating duct. 

Left: Experimental result by Yamamoto et al. [24], right: 

numerical result by the authors (right) 

 

 

5. CONCLUSION 

 

The present paper investigates numerical simulation of two-

dimensional laminar flow of viscous incompressible fluid 
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streaming through a tightly coiled square duct of strong 

curvature ( )0.5 = . The outer and bottom walls of the duct 

are heated while cooling from the inner and ceiling. First, 

solution structure of the steady solutions is investigated by 

using path using continuation technique. As a result, we 

obtained four branches of symmetric/asymmetric steady 

solutions comprising with two- to four-vortex solutions. 

Linear stability analysis shows that only the first branch is 

linearly stable in the region 0 4410.14Dn   while the other 

branches are completely linearly unstable.  Time-evolution 

results, justified by power spectrum density of the solutions, 

show that the unsteady flow undergoes in the scenario “Steady

→ periodic→ multi-periodic→ chaotic”, if Dn is increased. 

The transition process from periodic to multi-periodic and then 

to chaotic state is well determined by power spectrum analysis, 

which may correspond to the destabilization of travelling 

waves in the curved channel flow like that of Tollmien-

Schlichting waves in the boundary layer. The study shows that 

bifurcation diagram perfectly dominate the realizability of the 

steady and periodic solutions. The present study also shows 

that secondary flow enhances heat transfer in the flow 

particularly when Dean vortices emerge at the outer concave 

wall and if the flow is multi-periodic and then chaotic, as Dn 

increases, heat transfer occurs significantly. Finally, our 

numerical results have been compared with the experimental 

investigations obtained by some authors, and it is found that 

there is a good agreement between the numerical and 

experimental investigations. 
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NOMENCLATURE 

Dn Dean number 

Gr Grashof number 

Pr Prandtl number 

a Aspect ratio 

L Radius of the curvature 

x Horizontal axis 

y
 

Vertical axis 

z Axis in the direction of the main flow 

u Velocity components in the x − direction

v Velocity components in the y − direction

w Velocity components in the z − direction

T Temperature

t Time

Greek symbols 

 Curvature of the duct 

 Density 

 Resistance coefficient

 Viscosity 

 Thermal diffusivity 

 Kinematic viscosity

 Sectional stream function 
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