
Lung Mass Identification Using Tiny Deep Learning Based on Lightweight MobileNet and

Raspberry Pi 5 for Low Source Medical Diagnostic

Yasir Salam Abdulghafoor* , Auns Qusai Al-Neami , Ahmed Faeq Hussein

Biomedical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad 10011, Iraq

Corresponding Author Email: yasir.salam.phd2023@ced.nahrainuniv.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300714 ABSTRACT

Received: 17 June 2025

Revised: 20 July 2025

Accepted: 25 July 2025

Available online: 31 July 2025

Medical imaging analysis has greatly benefited from deep learning, especially

Convolutional Neural Networks (CNNs). However, their enormous parameter sizes and

high computational cost restrict their use on low-resource systems. This paper suggests a

small deep learning solution for resource-constrained contexts that uses a lightweight CNN,

MobileNetV2, deployed on a Raspberry Pi 5 to enable lung mass identification from chest

X-ray (CXR) pictures. A total of 2,322 NIH CXR pictures tagged as normal or mass were

used to assess two iterations of the model: pretrained and trained from scratch. With just

3.4 million parameters and 300 million FLOPs, the pretrained MobileNetV2 obtained a

validation accuracy of 95.25%, test accuracy of 89.9%, precision of 91.43%, and F1 score

of 90.14%. A validation accuracy of 91.03%, test accuracy of 85.06%, precision of 88.24%,

and F1 score of 85.21% were attained by the scratch-trained version. The results show that

it is possible to implement precise CNN-based medical diagnostics on inexpensive, low-

power devices, which could increase access to AI-assisted healthcare in underprivileged

areas. This study demonstrates the feasibility of a lightweight deep learning model for real-

time lung mass detection in resource-constrained medical settings by presenting its end-to-

end deployment on the Raspberry Pi 5, from training to on-device inference.

Keywords:

tiny deep learning, lung mass, MobileNetV2,

resource-constrained devices, Raspberry Pi

5, medical imaging, edge AI

1. INTRODUCTION

An abnormal spot, tumor, nodule, or area in the lungs that

is more than 3 cm (1.5 inch) in size is defined as a "lung mass"

[1]. This mass can be caused by lung infection and diseases or

may be fibrosis that resulted from tuberculosis and Covid19

disease, almost the mass may be tumors and these tumors may

be benign such hamartoma, lipoid, lipoma and pneumonia, But

the commonest cause of a pulmonary mass is lung cancer

which is malignant tumors. One of the most common cancers

is lung cancer, yearly, over 225,000 cases, 150,000 deaths, and

$12 billion in medical expenses occurred in the United States

[2]. Lung cancer is regarded as one of the most deadly

malignancies; in the United States, just 17% of patients

survive five years after receiving a diagnosis, and the survival

rate is worse in developing nations. How the cancer it has

metastasized, it refers to cancer’s stage. Cancers that localized

to the lungs refer to Stages 1 and 2 and cancers that have

spread to other organs refer to latter stages. Biopsies and

imaging are the current diagnostic methods, such as CT scans.

Early discovery of lung cancer significantly increases the

chances of survival; yet, because there are fewer symptoms, it

is more challenging to diagnose lung cancer in its early stages

[3]. The two most common and distinct forms of lung cancer

are non-small cell lung cancer (NSCLC) and small cell lung

cancer (SCLC) [2]. Regardless of gender, small cell lung

cancer typically develops in chronic smokers. NSCLC, a

unique word among several forms of lung cancer, is the most

prevalent type of the disease overall. NSCLC will mostly

contain large cell carcinoma, adenocarcinoma, and squamous

cell carcinoma. Computer-aided techniques are mostly used

for lung cancer identification in order to increase accuracy and

lower costs, which facilitates a quicker and more effective

recovery from the illness. Deep learning techniques can

address a variety of issues, including speech recognition,

object recognition, and natural language processing.

CNN is extensively utilized since it is the primary deep

learning tool for extraction; multilayer convolution and max

pooling techniques are employed to extract features. CNN

extracts a number of features that are present at the buried

layer. The CNN network primarily consists of two

convolutional layers, namely a pooling layer and a drop out

layer for segmentation [4]. Pooling reduces the size of the

representation and the network estimation. Additionally, max

pooling is employed, and the subsequent layer, known as the

dropout layer, keeps the neural network from overfitting by

ignoring the randomly chosen neurons during training.

Well-known deep neural networks (NNs) usually have tens

of millions of parameters, and the most sophisticated models

use a lot of memory. Moreover, the implementation of the

most sophisticated model on portable devices is challenging

due to the high-performance hardware resources needed for

deep neural networks [5].

Aside from the technological constraints, ML and CNN

models have demonstrated promising results in previous

studies; yet, certain problems remain. The computational

Ingénierie des Systèmes d’Information
Vol. 30, No. 7, July, 2025, pp. 1813-1822

Journal homepage: http://iieta.org/journals/isi

1813

https://orcid.org/0009-0006-6054-4917
https://orcid.org/0000-0001-9069-1586
https://orcid.org/0000-0003-2483-0028
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300714&domain=pdf

expense of these models is a major disadvantage; their millions

of parameters necessitate fine tuning and take more time,

making them inappropriate for devices with low resources.

Super computers or special hardware having super features

that related to (CPU, GPU, memory, power) are required to

deploy heavy weight CNN models and these features need a

high cost besides these special computers or traditional

hardware consume a large amount of power and energy to

implement image classification.

Researchers recommended using Tiny ML and Tiny DL

approaches as a result. They created CNN models that are

lightweight, resource-constrained, and useful for a variety of

medical applications, including the diagnosis of various and

deadly diseases like cancer, particularly lung tumor/cancer

prediction.

The significant interest in research and industry has sparked

by convergence of machine learning and Internet of Things

(IoT) because the processing of local data is enabled by

embedded hardware and interacted with their environment in

an intelligent and automated way. This intersection creates the

new field of TinyML, a term that Han and Siebert first used in

2019 [6]; see Figure 1. Designing small and effective neural

network models and deployment strategies for energy-

constrained devices, like those found in the Internet of Things

(IoT), are the main goals of TinyML. Devices can sense and

analyze local data like sound, temperature, pressure, and

motion right at the source thanks to Microcontroller units

(MCUs) and Micro-Electro-Mechanical Systems (MEMS),

which are commonly used in Internet of Things systems.

Common uses include gesture recognition, event counting,

predictive maintenance, keyword identification in voice

assistants, and integration into consumer goods, including

augmented reality glasses, smartphones, smart watches, smart

appliances, and remote controls. The ability of powerful

hardware, especially graphics processing units (GPUs), to

handle the high computational needs of deep learning has been

a major factor in its quick development. On the other hand,

edge deployment has proven more difficult because to the

delayed acceptance of deep learning on systems with minimal

resources, like microcontrollers. However, the rising variety

of embedded devices and the potential of deep learning present

exciting prospects for industry and scholars alike [7].

Figure 1. TinyML as the nexus of embedded systems and

artificial intelligence [7]

SqueezeNet [8], MobileNet V1, V2, and V3 [9, 10], or

EfficientNet [10] are regarded as new, effective deep learning

models that have arisen. They are capable of operating on

mobile devices with one to five million parameters. When

compared to AlexNet [10]. These new models can reduce the

model size by up to 5-10 times while maintaining the same

level of performance. In general, the size of the models is at

least 106.

Responsive wearable applications and smart embedded are

enabled by on-device deep learning in which, image, audio and

other data of sensor from the user for to do specific task such

as human activity recognition (HAR) are processed by the

studies [11, 12], sensing of audio [12], tracking of hand [13],

recognition of handwriting [14], classification of image [15],

and enhancement of images [16]. Microcontroller units

(MCUs) are often supplying the power to embedded systems

and wearable internally. Microcontroller units are single-chip

devices that usually have a single-core processor (like the

ARM M-series), on-chip persistent Flash, and temporary

SRAM memory. They are also often found close to additional

application-specific peripherals like sensors and radio

microphones. When designing an MCU, cost and power

efficiency should be considered. This architecture can reduce

onboard memory and computing resources. For many users,

getting beyond microcontrollers' resource limitations is not a

small matter. Even when compared to microcomputers like

Raspberry Pi, MCUs have instructions that are a lot slower

(GHz vs. 100s MHz) and have less SRAM and storage (GBs

vs. 100s KB). As a result, it is very difficult to run fully

functional neural networks on MCUs. This study

accomplishes complete end-to-end deployment on the recently

announced Raspberry Pi 5, in contrast to research that only

assess models in high-computational contexts. The suggested

system demonstrates the viability of providing portable,

affordable, and self-contained diagnostic tools for clinical

application in resource-constrained environments by covering

the entire pipeline, from model training to direct on-device

inference.

2. RELATED WORK

In this section, some related works that focused on light

weight MobileNet model and tiny deep-learning techniques

and algorithms that were used for lung cancer, lung diseases

and other diseases classification.

Ghosh et al. [17] suggested automatic categorization of lung

nodules in CT images using Dl models, such as CNN, VGG16,

and effective MobileNet models, to increase diagnostic speed

and accuracy. The findings showed that employing MobileNet

with transfer learning achieved high accuracy of 99.11%.

Mothkur and Veerappa [18], to detect early stages of lung

cancer in CT images, researchers employed vanilla CNN and

two lightweight deep neural networks, MobileNet and

SequeezeNet. The results indicate that MobileNet had the

highest accuracy while SequeezeNet had the shortest

processing time.

Mohammed [19] employed light weight MobileNet model

& CNN model with energy valley optimization for

hyperparameter tuning to classify pulmonary diseases in Xray

images, the results show that using MobileNet model with

energy valley optimization improved accuracy to reach

85.91%. Rahman et al. [20], to predict lung cancer in CT scans,

the VGG8 model, Inception v3, and lightweight MobileNet

model were recommended and used by authors, the results

show that MobileNet model has a better performance while

splitting CT images than inception v3 and VGG8 mdodels.

Souid et al. [21] proposed modified MobileNetV2 model to

classify lung diseases using NIH X-ray chest dataset images,

the results indicate that accuracy reached to 90% and the area

1814

under receiver operating characteristic curve AUC was

0.811%. Mengistie and Kumar [22], in order to classify and

predict lung diseases using X-ray images, the authors

suggested using VGG19, ResNet50, DensNet201, and the

lightweight model MobileNetV2. The results indicate that

MobileNetV2 performs better, with an accuracy of 98.49%,

while the remaining models, VGG19, ResNet50, and

DensNet201, achieved accuracy of 97.43%, 94.64%, and

98.05&, respectively. The MobileNetV2 model also required

less training time than the other models. Yaqoob et al. [23]

employed light weight MobileNetV2 and SequeezeNet models

to classify Covid19 using X ray chest images, the results show

that the MobileNetV2 achieved better performance with F1-

score of 97.06%, accuracy of 97%, specificity of 95%, area

under the curve of 98.93%, precision of 95.19%, recall of

100%. Kumar et al. [24] employed deep learning technique to

detect breast cancer in histopathylogical images, they

deployed light weight MobiHisNet model on Raspberry pi2,

they achieved good accuracy, lesser computational memory

cost and requirement. Biswas and Barma [25] achieved

98.43% accuracy in detecting cancer in histopathology

pictures by implementing deep learning using a lightweight

MicroMobileNet on a mobile device. The new network was

installed on an edge device with a fast speed (140 ms) and very

little memory (7.4 MB).

3. METHODOLOGY

3.1 Dataset preprocessing

In our work, we collected the chest X-ray images dataset

from National Institute healthcare NIH chest X-ray dataset

website. The NIH Clinical Center contributed the data, which

can be downloaded from the NIH website at

https://nihcc.app.box.com/v/ChestX-rayNIHCC, the images

with PNG file format, the images were pre-processed by

resizing the images from the size 1024×1024×3 to

(224×224×3) dimension and then normalized. For

normalization, the pixel values were scaled to the [0,1] range,

this was achieved by dividing each pixel by 255. This ensures

compatibility with MobileNetV2 models and increases

convergence stability. We also augmented the training split of

dataset to prevent overfitting. Four operations were

implemented to expand the training set of 1626 photos (70%

of the original 2323-image dataset): up-down side flipping,

repeated rotations (90°, 180°, 270°) following flipping, a

unique black-and-white conversion, and consecutive rotations

(90°, 180°, 270°). To improve feature extraction for the model,

the converter employed a computed pixel threshold of ((max-

min)/2)+min), when max and min represented the maximum

and minimum values of pixels respectively, designating pixels

above the threshold as white (255) and those below as black

(0). In Figure 2, we show samples of NIH dataset used in

proposed method that were taken from NIH dataset.

We collected 2323 images and selected them among 8000

chest X-ray images samples, we collected these samples from

NIH for training MobileNetV2 model, we labeled these input

images dataset as two groups, first group included (normal or

not finding) images, the second group of the input images

dataset was labeled as (mass) images that include (mass,

nodule, tumor, fibrosis). We trained both models of

MobileNetV2 (pretrained and scratch trained) by these input

image dataset groups. The target is to classify chest X-ray

images into two classes: normal and mass, the classification

was done according to input group of images dataset, the

dataset was splitted into 3 sets, training set, validation set and

testing set. 70% of dataset used for training, 15% used for

validation and 15% used for testing, we trained each model

and validated at 10 epochs with batch size of 32, we trained

both models of MobileNetV2 and deployed them on

Raspberry Pi 5, we used it as limited constrained resource

hardware. We implemented our work by Python software

version 3.7, we imported the Pytorch software library and

parameter server of deep learning that support Raspberry Pi

platform. The methodology of proposed approach can be

shown in Figure 3.

Figure 2. Samples of NIH X-ray images dataset: a) lung

mass; b) normal lung

Figure 3. Proposed method of tiny deep learning

3.2 MobileNetV2 model

In our method, we implemented the MobileNetV2 [26] and

trained from scratch and also we used a pretrained

MobileNetV2, we trained both models by the same dataset and

then deployed them on Raspberry Pi 5, MobileNetV2 is

introduced as enhanced version of MobileNetV1 that makes it

more powerful and efficient. In architecture of the

MobileNetV2, the block of the depthwise separable

convolution has been re-designed as shown in Figure 4. In the

new depthwise separable convolution block there are 3

convolutional layers. Prior to entering the depthwise

1815

convolution layer, the input feature map's channel count is

increased in the first layer, a 1×1 convolution layer. The

intermediate layer, a 3×3 depthwise convolution layer similar

to the MobileNetV1, filters the input feature map. However,

the input feature map's channel count will be decreased

because the data is projected with a large number of channels

into a tensor with a significantly smaller number of channels

in the final layer, which is made up of a 1×1 convolution layer.

Because less data will be moving across the network, this last

layer is also known as a bottleneck layer. In addition, to help

with the flow of gradients through the network, the residual

connection as in ResNet [27] is adopted in the MobileNet v2

architecture. In the new depthwise separable convolution, each

layer is followed by batch normalization and ReLU6 as

activation function (using non linearity after the last bottleneck

will lose useful information, hence it cannot be used in this

layer). The 17 new depthwise separable convolution blocks in

MobileNet v2 are followed by a standard 1×1 convolution

layer, A standard 3×3 convolution layer with 32 channels

makes up the first layer.

Figure 4. Fundamental functional unit of MobileNetV2 [26]

3.3 Hardware requirement-Raspberry Pi 5

In our work, we used the MobileNetV2 model to detect lung

mass, we deployed MobileNetV2 on latest version of

Raspberry Pi (Raspberry Pi 5), we used Raspberry Pi 5 as

limited constrained resource. Raspberry Pi 5 was protected by

cover with active cooler of 2 fans to cool the system,

Raspberry Pi 5 draws 5 Ampere (Amp) as maximum current,

so, the power supply should be capable of drawing that much

instantaneously. The power needed is (5 Amp * 5 Volt(V) =

25) Watt. Also the power supply should be uninterruptable

while it operates, which it means the power supply should be

continuous and must be provided using batteries, and because

of instability of electric power here in Iraq, at the first, we

connected power bank of 10 Amp/hour as a power supply of

our Raspberry Pi 5, but this power bank couldn’t provide

adequate time for the training process to train MobileNetV2

from scratch and it enabled the Raspberry Pi 5 to operate 8

hours only, so, we designed a step down power supply of dc-

dc converter as shown in Figure 5 to supply power for

Raspberry Pi 5 instead of the power bank, this dc-dc converter

power supply consist of 4 stack sealed acid batteries we

connected these batteries in parallel, each battery delivers 12V

and 5 (Amp/h) of total power equal to 240 watt, we finally

connected these batteries to voltage regulator module XL4015

and we set this regulator to deliver 5 V for Raspberry Pi 5,

thus, this step down converter power supply will deliver 48

Amp/h and it was enough for training time process that was

required for each epoch, each epoch required approximately

more than 3 hours to train MobileNetV2 from scratch and

more than 2 hours for pretrained MobileNetV2 as shown in

Table 1 that referred to the training time consumed by both

models in hours, minutes and seconds (“h:min:s”).

Table 1. The training time consumed by both scratch trained

and pretrained MobileNetV2 models for 10 epochs in our

proposed study

No. of

Epochs

Training Time Consumed

by Trained Scratch

MobileNetV2 Model

Displayed as “h:min:s”

Training Time

Consumed by

Pretrained MobileNetV2

Model Displayed as

“h:min:s”

1 24:02:06 4:46:12

2 3:04:12 2:33:18

3 3:00:18 2:33:18

4 3:14:42 2:32:42

5 3:11:06 2:30:00

6 3:04:30 2:30:18

7 3:12:18 2:29:42

8 3:11:06 2:29:42

9 3:06:54 2:33:00

10 3:03:54 2:29:42

It can be shown from Table 1 that the training time

consumed by pretrained model is less than the training time

taken by scratch trained model.

We added an Additional secure digital SD-card of 64 GB to

Raspberry Pi 5 to get more memory storage for Operation

System OP, dataset, model, code, results…etc, and we

installed Debian Linux Operating System OP in Raspberry Pi

5, in the beginning, we connected Raspberry Pi 5 to desktop

monitor through Micro-HDMI cable to complete setting and

software installation because there is no HDMI port in our

laptop personal computer PC, and then, we connected

Raspberry Pi 5 wirelessly to our laptop PC and we used as

portable monitor and control panel for Raspberry Pi 5, we

made the method of wireless connection by connecting

Raspberry Pi 5 to the monitor of our PC through making our

mobile phone as a router by activating the communication and

conduction point in the mobile phone device and then logging

through the internet network account that have been identified

previously on desktop monitor for Raspberry Pi 5, we

identified the Internet Protocol IP of Raspberry Pi 5 in PC by

using IP scanner software application in PC, we inserted this

IP into Real Virtual Network Connection VNC software in PC

to complete wireless connection method. We implemented all

our proposed method by python version 3.7 and Visual Studio

Code (VSC), we used it as updated integrated developed

environment IDE for Python, Thonny is, a traditional Python

IDE for Raspberry Pi intended for novices, it was substituted

with VSC IDE. VSC was designed specifically for the Python

programming language and is written in Python, to assist users

in writing and testing Python code, VSC offers an intuitive

interface along with a number of features like syntax

highlighting, code completion, and debugging tools. The

1816

specification and features of Raspberry pi 5 hardware of our

proposed study is shown in Table 2.

(a)

(b)

Figure 5. (a) Design of Raspberry Pi 5 power supply; (b)

Proposed hardware system

Table 2. The specification of Raspberry Pi 5 that used in our

proposed study

Raspberry Pi 5 Features

A 5v/5A USB-C power source is advised; a 5v/3A minimum is

needed.

2 micro HDMI ports supports up to 4kp60

LPDDR4X SD RAM 8 GB

CPU Quad Arm Cortex-A76, 2.4 GHz

SWAP file of 4 GB

No GPU

2 USB 3.0 ports

2 USB 2.0 ports

Gigabit Ethernet port

PoE-capable 802 11b/g/n/ac wireless requires a poE HAT, which

is supplied separately.

PCIe expansion connector requires PCIe adaptor, sold separately

64-bit quad core cortex-A76processor

4. RESULTS AND DISCUSSION

As mentioned in methodology, we trained and deployed the

two models: trained from scratch MobileNtev2 and pretrained

MobileNetV2 on Raspberry Pi 5 that we used as limited

constrained resource hardware. The performance parameters

was calculated according to equations of accuracy, precision,

Recall, F1 score shown in Eqs. (1)-(4) below.

Accuracy =
TP + TN

TP + TN + FP + FN
 (1)

Recall =
TP

𝑇𝑃 + 𝐹𝑁
 (2)

F1Score =
2 ∗ precision ∗ Recall

precision + Recall
 (3)

Precision =
TP

TP + FP
 (4)

When accuracy represents the summation of true positive

(TP) and true negative values (TN) divided by the total

components of the confusion matrix (TP, TN, false positive FP

and false negative FN). Precision is a ratio of total number of

cases that expected to be positive and the number of cases that

are really positive. Recall is called also the sensitivity; it can

be defined as the portion of the total number of cases of

correctly classified positive to the total number of positive

cases. F1 score is can be defined as the proportional average

of accuracy and Recall, training and validation behavior of

scratch trained MobileNetV2 can be shown in Figure 6 and

Figure 7, respectively.

(a)

(b)

Figure 6. (a) Training and validation accuracy behavior VS

10 epochs of MobileNetV2 trained from scratch; (b) Training

and validation loss VS 10 epochs of MobileNetV2 trained

from scratch on Raspberry Pi 5

Figure 6(a) makes it evident that the training and validation

accuracy rises with the number of epochs. This behavior is

usually observed when the model starts to learn features and

patterns from training image samples. It is also possible to see

that the validation accuracy is marginally higher than the

training accuracy, which suggests that MobileNetV2 has good

generalization to built-in regularization techniques like batch

normalization and depth-wise separable convolutions. It can

be seen that both the validation and training accuracy reach

more than 91%. Figure 6(b) shows as the number of epochs

rose, the training and validation loss reduced as well, reaching

0.015 approximately. This suggests that the MibileNetv2 is

learning effectively.

1817

Figure 7. Validation precision, Recall and F1 score behavior

VS 10 epochs of MobileNetV2 trained from scratch on

Raspberry Pi 5

It is clearly that from Figure 7, the performance parameters

(precision, Recall, F1 score) increased when number of epochs

increased and goes more than 91%, this indicate to good

performance of MobileNetV2 that was trained from scratch,

the performance confusion matrix of test dataset of

MobileNetV2 trained from scratch can be shown in Figure 8.

Figure 8. Confusion matrix of test dataset of MobilenetV2

trained from scratch

From Figure 8, it can be shown that the parameters values

of confusion matrix of test dataset are:

True Positives (TP):150, True Negatives (TN): 146, False

Positives (FP): 20, False Negatives (FN): 32. This distribution

sums to 150+146+20+32=348 sample (represent the test data

set 15% of total samples). So, Accuracy:

(TP+TN)/Total=(150+146)/348=296/348≈0.8506 or 85.06%.

Precision: TP/(TP+FP)=150/(150+20)=150/170≈0.8824 or

88.24%. Recall (Sensitivity):

TP/(TP+FN)=150/(150+32)=150/182≈0.8242 or 82.42%. F1-

Score=2*(Recall*Precision)/(Recall+Precision)=2*(0.82420*

8824)/(0.8242+0.8824)≈2*0.7272/1.7066≈0.8521 or 85.21%.

The training and validation behavior of pretrained

MobileNetV2 can be shown in Figure 9 and Figure 10

respectively.

It is obviously from Figure 9(a) that the accuracy of

validation is slightly higher than training accuracy and this

indicate to good generalization of pretrained MobileNetV2 on

Raspberry Pi 5 and belong to regularization effect of this

model due to technique of depth wise convolutions and batch

normalization technique, it is clearly that validation accuracy

reached to more than 95% and it’s higher than the validation

accuracy of MobileNetV2 trained from scratch, this indicate

that the model perform better and learn faster because the early

layers which has been already adapted to general feature

extraction, while scratch trained MobileNetV2 model start

with random weights and learns feature extraction directly

from lung mass dataset, so, the scratch trained model will face

difficulty to learn complex patterns with this limited dataset,

also from Figure 9(b), it’s clearly that training and validation

loss reached to 0.015 approximately and it is the same of

trained scratch model because both models are optimizing the

loss function effectively, this confirm to well learning of this

model in Figure 10, it can be shown the validation precision,

Recall and F1-score behavior in 10 epochs.

Figure 9. (a) The accuracy behavior of training and

validation of pretrained MobileNetV2 for 10 epochs; (b)

Training and validation loss of pretrained MobileNetV2 for

10 epochs

Figure 10. Validation precision, Recall and F1-score

behavior VS 10 epochs of pretrained MobileNetV2 on

Raspberry Pi 5

It is clearly that from Figure 10, the performance parameters

(precision, Recall, F1 score) increased when number of epochs

increased and goes more than 94% and this is higher than

performance parameters value of trained scratch model, this is

also indicate to good performance of MobileNetV2 that was

trained from scratch, Figure 11 show the confusion matrix of

test dataset performance of pretrained MobileNetV2.

From Figure 11, it’s clearly that the parameter’s values of

confusion matrix of test dataset of pretrained MobileNetV2

1818

are: True Positives (TP): 160, True Negatives (TN): 153, False

Positives (FP): 15, False Negatives (FN): 20. This distribution

sums to 160+153+15+20=348 samples (represent the test data

set 15% of total samples), so, Accuracy:

(TP+TN)/Total=(160+153)/348=313/348≈ 0.8994 or 89.94%,

Precision: TP/(TP+FP)=160/(160 +15)=160/175≈0.9143 or

91.43%, Recall or (Sensitivity): TP/(TP+FN)=160/(160+20)

=160/180≈0.8889 or 88.89%, F1-Score:

2*(Recall*Precision)/(Recall+Precision)= 2*(0.9143 *

0.8889)/(0.9143+0.8889)≈2*0.8127/1.8032≈ 0.9014 or

90.14%.

Figure 11. Confusion matrix of test dataset of pretrained

MobileNetV2

It’s clearly that the pretrained MobileNetV2 performed

better on test data than the scratch trained model, the

pretrained model not only generalized better but also achieved

a clinically more acceptable balance between false positives

and false negatives, the reduction in false negatives from 32 in

scratch model to 20 in the pretrained model is particularly

significant, as missed detection of lung masses could lead to

late diagnosis and treatment.

Pretrained models make use of transfer learning, in which

weights from extensive datasets (like ImageNet) are used to

initiate convolutional layers. Rich and generalized low- and

mid-level features, like edges, textures, and forms, are already

captured by these pretrained layers and can be applied to

medical images. Compared to training from scratch, when the

network must learn all features from random initialization, this

background information enables the model to converge more

quickly, use less data, and achieve higher accuracy.

4.1 Computation and energy load analysis

4.1.1 MAC operations

• MobileNetV2 performs approximately 300 million

inference multiply-accumulate operations (MACs) per

224×224×3 image.

• For each epoch, training step handles approximately 13.17

trillion MACs. This is calculated by (multiplying 300

million by 3 (for training MACS that included forward and

backward pass which equal to 3 times of inference MACs)

and then multiply the result by 14634 images (which

represent 70% of training dataset 1626 images multiplied

by 9), when 9 represents the 8 operations of augmentation

(twice rotation and one flipping and one converted

operation) plus the original training dataset.

4.1.2 Power and energy estimation

• Raspberry Pi 5 consumed up to 6.4 Watt under full CPU

load, so, the measured value of current during full CPU

load was around 1.28 Amp.

• Energy usage per epoch was estimated by multiplying the

power drawn from device (6.4 Watt) by the training time

per epoch (in hours) as shown in Table 3 that summarizes

the estimated MACs and power consumption across 10

training epochs.

Table 3. Power and energy consumption of pretrained

MobileNetV2 across 10 epochs

Epoch

Max Power for

CPU Load in

Watt

Time

(h)

Energy (Watt

Hour)

MACs/Epoch

(Trillions)

1 6.4 4.770 30.53 13.17

2 6.4 2.555 16.35 13.17

3 6.4 2.555 16.35 13.17

4 6.4 2.545 16.29 13.17

5 6.4 2.500 16.00 13.17

6 6.4 2.505 16.03 13.17

7 6.4 2.495 15.97 13.17

8 6.4 2.495 15.97 13.17

9 6.4 2.550 16.32 13.17

10 6.4 2.495 15.97 13.17

It’s clearly that from Table 3, the total number of MACs of

10 epochs was 131.7 trillion MAC, also, the total energy that

consumed in 10 epochs was approximately 175.78 Watt hour

(Wh), each Watt hour equivalent to 3600 Joule, so, the total

energy in Joule=632808 Joule, then the energy consumed per

MAC can be obtained from division of 632808 Joule by 131.7

trillion MACS, so the energy consumed per MAC will be

4.803 nano Joule/MAC.

Furthermore, the computational cost of Raspberry Pi 5 is

still lower, so, over ten epochs, the Raspberry Pi 5 consumed

only 6.4 Watt and 175.78 Watt hour (about 0.176 kilo Watt h

(kWh)) to train model. Contrast this with: super computers

(that consume kilo Watts and megawatts power), or large

model training on the NVIDIA V100 or A100 that can quickly

consume more power (about 350-500 Watt), and also

consumed more or the same energy in (Watt hours) for the

same small task in our work (when a small dataset and small

model were used) that makes these traditional hardware to be

overkill for small tasks, this clearly support power and energy

efficient and low computational cost deep learning in

embedded systems.

Moreover, the Raspberry Pi 5 offers low cost and requires

minimal infrastructure, with its price around $100, whereas the

price of an NVIDIA A100 server is about $15,000, not

including additional costs such as cooling systems and data

center power.

So, the Raspberry Pi 5 is appropriate for low-resource,

edge-based, and sustainable deployments because it provides

competitive AI performance for medical imaging workloads

utilizing a fraction of the overall energy and hardware cost.

When compared to conventional deep learning systems that

depend on GPUs or supercomputers, the training done on a

Raspberry Pi 5 demonstrates a noticeable decrease in energy

and operating costs. The Raspberry Pi offers a very energy-

efficient substitute for training or optimizing lightweight

models in limited settings, even though it cannot match the

sheer speed or capacity of such systems. This finding bolsters

the expanding sustainable AI movement and highlights how

low-power edge devices might increase deep learning's

affordability, accessibility, and environmental friendliness-

particularly for medical applications in distant or

underdeveloped locations. To further contextualize the

measured energy efficiency of our proposed Raspberry Pi 5-

1819

based MobileNetV2 system, we compared its energy per MAC

and MACs/Watt with a selection of edge AI platforms and

model deployments reported in the literature Table 4. Our

pretrained MobileNetV2 achieves 4.803 nJ/MAC, equivalent

to ~2.08×10⁸ MACs/Watt, during on-device training and

inference. This performance is competitive with many

embedded AI accelerators while maintaining the advantages

of general-purpose programmability. For example, Jetson

Nano running ResNet-18 achieves ~93 nJ/MAC (~1.07×10⁹

MACs/Watt) [28] and Google Edge TPU running

MobileNetV2 achieves ~73 nJ/MAC (~1.36×10⁹

MACs/Watt), but these accelerators are limited to inference-

only workloads. Raspberry Pi 4 running MobileNetV1

demonstrates lower efficiency (~150 nJ/MAC; ~6.67×10⁸

MACs/Watt) [29].

These results show that although certain specialized

accelerators can achieve higher absolute MACs/Watt, the

proposed Raspberry Pi 5 system offers a favorable trade-off

between energy efficiency, hardware accessibility, and full

training capability—qualities critical for real-world

deployment in rural or resource-constrained medical

environments. This balance supports sustainable AI solutions

while avoiding the infrastructure requirements of GPU servers

or FPGA tool chains.

Table 4. The comparison with other studies

Study Model Used Dataset
Deployment

Platform
Accuracy Performance Metrics Study Finding

This study

MobileNetV2

(pretrained &

scratch)

NIH Chest X-ray

dataset (2322 images,

binary: mass vs.

normal)

Raspberry Pi 5

(64-bit quad-core

Cortex-A76, 8 GB

RAM)

89.94%

(pretrained)

85.06%

(scratch)

Precision: 91.43%

F1-Score: 90.14%

Recall: 88.89%

4.803 nJ/MAC

(~2.08Ã—108

MACs/Watt)

(pretrained)

On-device training &

inference;

sustainable edge

deployment.

Hadidi et al.

[28]

ResNet-18,

MobileNetV2
ImageNet

Jetson Nano,

Google Edge TPU
69.8%, 71.8% 93 nJ/MAC, 73 nJ/MAC

Edge inference

baseline; moderate

efficiency.

Dunkel et al.

[30]
ResNet-50 ImageNet

Jetson Nano

(GPU)
76.2%

Est. 120 nJ/MAC

(~8.33Ã—108

MACs/Watt)

Better than CPU-only

inference, but less

efficient than

TPU/FPGA.

Mohammed

[19]

MobileNet + CNN

+ Energy Valley

Optimization

NIH Chest X-ray

dataset

Standard PC with

TensorFlow

backend

85.91%

Precision: Not available

Recall: Not available,

No energy/power metric

specified

Introduced

metaheuristic

optimization; no

actual deployment or

edge feasibility tested.

Souid et al.

[21]

Modified

MobileNetV2

NIH Chest X-rays

(multi-label)

Google Colab

GPU (Tesla K80)
90%

AUC: 0.811F1-score:

not available, No

energy/power metric

specified

Improved

performance on NIH

data; no hardware

constraint, no power

profiling.

Baller et al.

[29]
MobileNetV1 ImageNet Raspberry Pi 4 70.6%

Est. 150 nJ/MAC

(~6.67Ã—108

MACs/Watt)

General-purpose

board; less efficient

than AI accelerators.

Sandler et al.

[31]
MobileNetV2 ImageNet

Smartphone (Pixel

4)
71.8%

Est. 90 nJ/MAC

(~1.11Ã—109

MACs/Watt)

Mobile deployment

feasible; efficiency

depends on SoC NPU.

Kumar et al.

[24]

MobiHisNet

(custom

lightweight CNN)

Histopathological

images (breast cancer)

Raspberry Pi 2

(ARM Cortex-A7)

Reported "Good

accuracy" (value

not specified)

Low memory & cost-

efficient histopathology

deployment, No

energy/power metric

specified

Validated DL on Pi2,

but older device &

unrelated to lung

imaging.

Tan and Le

[10]
EfficientNet-B0 ImageNet

NVIDIA Jetson

Nano
77.1%

Est. 110 nJ/MAC

(~9.09Ã—108

MACs/Watt)

Better accuracy but

slightly lower

efficiency than

MobileNet.

Hou and

Navarro-Cia

[32]

EfficientNetB0

CT images from

COVID19-CT dataset

to detect COVID19

Intel(R) Core i7-

10875H

, NVIDIA GeForce

RTX 2060 6G

91.15%-95.5%

AUC of 96.4%-98.5%

No energy/power metric

specified

Improved

classification

performance, no

limited hardware

resource,

Wang et al.

[33]
SequeezeNet

Mammography images

from MIAS dataset for

breast cancer

Workstation with

GPU
94.1%

Sensitivity of 94.3%,no

energy metric specified

Hybrid model for

effectively

diagnostic,no

constraint device

validation

Generalizability may be limited by the very small dataset

(2323 photos) used in this study, which came from a single

public source. Inference speed and robustness in real-world

scenarios are yet unknown because real-time testing and

clinical integration were not assessed. Future research will

include clinical validation in partnership with healthcare

1820

organizations, real-time deployment on Raspberry Pi 5, and

bigger, more varied datasets.

5. CONCLUSIONS

The Raspberry Pi 5's capacity to support lightweight CNN

models for medical image processing was demonstrated by the

successful training and testing of both models on the device.

This supports its application in actual offline or low-resource

healthcare settings, particularly those with restricted access to

cloud computing, It can be concluded that the achievement of

pretrained MobileNetV2 model is better than MobileNetv2

trained from scratch, this is demonstrating the advantage of

transfer learning of the pretrained MobileNetV2 ,the prior

knowledge of pretrained MobileNetV2 help the model to

generalize better even with relatively limited dataset and

allows the model to extract more meaningful features with

limited resource, so, the pretrained MobileNetV2 is more

comfortable for Raspberry Pi 5 platform to make efficient

portable tiny deep learning system to predict lung mass disease

and enable low expert doctors who working in the rural

medical centers for lung tumors diagnosis using low

computational cost hardware and low cost chest X-ray exam

with a competitive obtained accuracy value if it was compared

with other Artificial intelligent models that require a high level

hardware and high computational cost. Furthermore, the

training pipeline's successful implementation on the Raspberry

Pi 5 shows that low-cost, portable AI systems for medical

diagnostics are feasible. These findings support the larger

objective of democratizing medical AI and advance the

expanding field of AI-powered point-of-care imaging.

For future research attempting to integrate deep learning,

transfer learning, and embedded systems for practical

healthcare applications, the study thus offers a useful resource.

In future work, accuracy may be enhanced when pretrained

MobileNetv2 is fine-tuned and performance of both models

can be enhanced by increasing the size of training dataset and

by deploying other light weight CNN models.

AUTHOR CONTRIBUTIONS

Conceptualization, methodology, software, and validation,

Yasir Salam Abdulghafoor; formal analysis, investigation,

resources, data curation, Yasir Salam Abdulghafoo; and

Ahmed Faeq Hussein; writing—original draft preparation,

writing— review and editing, visualization, Yasir Salam

Abdulghafoor; supervision, Auns Qusai Al-Neami, project

administration, Auns Qusai Al-Neami and Ahmed Faeq

Hussein; funding acquisition, Yasir Salam Abdulghafoor.

REFERENCES

[1] Jan, A., Ahmed, N., Awan, N.I., Khan, B., Ul-Islam, M.,

Ahmed, I., Shabbir, A., Mohammad, A., Shah, H. (2021).

The lung mass and nodule: A case series: The lung mass

and nodule. Pakistan BioMedical Journal, 4(1): 37-43.

https://doi.org/10.52229/pbmj.v4i1.61

[2] Vinushree, S., Gowda, R.M. (2019). Segmentation of

lung cancer using deep learning. International Journal of

Recent Technology and Engineering (IJRTE), 8(2):

1188-1192. https://doi.org/10.35940/ijrte.B1849.078219

[3] Alakwaa, W., Nassef, M., Badr, A. (2017). Lung cancer

detection and classification with 3D convolutional neural

network (3D-CNN). International Journal of Advanced

Computer Science and Applications, 8(8): 409-417.

https://doi.org/10.14569/IJACSA.2017.080853

[4] Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.

(2018). Convolutional neural networks: An overview and

application in radiology. Insights into Imaging, 9(4):

611-629. https://doi.org/10.1007/s13244-018-0639-9

[5] Xiao, P., Qin, Z., Chen, D., Zhang, N., Ding, Y., Deng,

F., Pang, M. (2023). FastNet: A lightweight

convolutional neural network for tumors fast

identification in mobile-computer-assisted devices. IEEE

Internet of Things Journal, 10(11): 9878-9891.

https://doi.org/10.1109/JIOT.2023.3235651

[6] Han, H., Siebert, J. (2022). TinyML: A systematic review

and synthesis of existing research. In 2022 International

Conference on Artificial Intelligence in Information and

Communication (ICAIIC), Jeju Island, Korea, pp. 269-

274.

https://doi.org/10.1109/ICAIIC54071.2022.9722581

[7] Lê, M.T., Wolinski, P., Arbel, J. (2023). Efficient neural

networks for tiny machine learning: A comprehensive

review. arXiv preprint arXiv:2311.11883.

https://doi.org/10.48550/arXiv.2311.11883

[8] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K.,

Dally, W.J., Keutzer, K. (2016). SqueezeNet: AlexNet-

level accuracy with 50x fewer parameters and <0.5 MB

model size. arXiv preprint arXiv:1602.07360.

https://doi.org/10.48550/arXiv.1602.07360

[9] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., Adam, H. (2017). Mobilenets:

Efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861.

https://doi.org/10.48550/arXiv.1704.04861

[10] Tan, M., Le, Q. (2019). Efficientnet: Rethinking model

scaling for convolutional neural networks. In

Proceedings of the 36th International Conference on

Machine Learning, PMLR, pp. 6105-6114.

[11] Abedin, A., Ehsanpour, M., Shi, Q., Rezatofighi, H.,

Ranasinghe, D.C. (2021). Attend and discriminate:

Beyond the state-of-the-art for human activity

recognition using wearable sensors. Proceedings of the

ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies, 5(1): 1-22.

https://doi.org/10.1145/3448083

[12] Georgiev, P., Bhattacharya, S., Lane, N.D., Mascolo, C.

(2017). Low-resource multi-task audio sensing for

mobile and embedded devices via shared deep neural

network representations. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous

Technologies, 1(3): 1-19.

https://doi.org/10.1145/3131895

[13] Liu, Y., Lin, C., Li, Z. (2021). WR-hand: Wearable

armband can track user's hand. Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous

Technologies, 5(3): 1-27.

https://doi.org/10.1145/3478112

[14] Yin, H., Zhou, A., Su, G., Chen, B., Liu, L., Ma, H.

(2020). Learning to recognize handwriting input with

acoustic features. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous

Technologies, 4(2): 1-26.

https://doi.org/10.1145/3397334

1821

[15] Chowdhery, A., Warden, P., Shlens, J., Howard, A.,

Rhodes, R. (2019). Visual wake words dataset. arXiv

preprint arXiv:1906.05721.

https://doi.org/10.48550/arXiv.1906.05721

[16] Liu, X., Li, Y., Fromm, J., Wang, Y., Jiang, Z.,

Mariakakis, A., Patel, S. (2021). SplitSR: An end-to-end

approach to super-resolution on mobile devices.

Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, 5(1): 1-20.

https://doi.org/10.1145/3448104

[17] Ghosh, R., Ahamed, A., Sadhukhan, B., Das, N. (2023).

Lung nodule classification using mobilenet transfer

learning. In 2023 9th International Conference on Smart

Computing and Communications (ICSCC), Kochi,

Kerala, India, pp. 290-295.

https://doi.org/10.1109/ICSCC59169.2023.10335043

[18] Mothkur, R., Veerappa, B.N. (2023). Classification of

lung cancer using lightweight deep neural networks.

Procedia Computer Science, 218: 1869-1877.

https://doi.org/10.1016/j.procs.2023.01.164

[19] Mohammed, O.N. (2024). Enhancing pulmonary disease

classification in diseases: A comparative study of CNN

and optimized MobileNet architectures. Journal of

Robotics and Control (JRC), 5(2): 427-440.

https://doi.org/10.18196/jrc.v5i2.21422

[20] Rahman, M.S., Shill, P.C., Homayra, Z. (2019). A new

method for lung nodule detection using deep neural

networks for CT images. In 2019 International

Conference on Electrical, Computer and Communication

Engineering (ECCE), Cox'sBazar, Bangladesh, pp. 1-6.

https://doi.org/10.1109/ECACE.2019.8679439

[21] Souid, A., Sakli, N., Sakli, H. (2021). Classification and

predictions of lung diseases from chest X-rays using

mobilenet V2. Applied Sciences, 11(6): 2751.

https://doi.org/10.3390/app11062751

[22] Mengistie, T.T., Kumar, D. (2021). Comparative study

of transfer learning techniques for lung disease

prediction. In 2021 10th International Conference on

Internet of Everything, Microwave Engineering,

Communication and Networks (IEMECON), Jaipur,

India, pp. 1-6.

https://doi.org/10.1109/IEMECON53809.2021.9689159

[23] Yaqoob, M., Qayoom, H., Hassan, F. (2021). Covid-19

detection based on the fine-tuned MobileNetv2 through

lung X-rays. In 2021 4th International Symposium on

Advanced Electrical and Communication Technologies

(ISAECT), Alkhobar, Saudi Arabia, pp. 1-6.

https://doi.org/10.1109/ISAECT53699.2021.9668425

[24] Kumar, A., Sharma, A., Bharti, V., Singh, A.K., Singh,

S.K., Saxena, S. (2021). MobiHisNet: A lightweight

CNN in mobile edge computing for histopathological

image classification. IEEE Internet of Things Journal,

8(24): 17778-17789.

https://doi.org/10.1109/JIOT.2021.3119520

[25] Biswas, S., Barma, S. (2023). MicrosMobiNet: A deep

lightweight network with hierarchical feature fusion

scheme for microscopy image analysis in mobile-edge

computing. IEEE Internet of Things Journal, 11(5):

8288-8298. https://doi.org/10.1109/JIOT.2023.3317878

[26] Nguyen, H. (2020). Fast object detection framework

based on mobilenetv2 architecture and enhanced feature

pyramid. Journal of Theoretical and Applied Information

Technology, 98(5): 812-824.

[27] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual

learning for image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, Las Vegas, NV, USA, pp. 770-778.

https://doi.org/10.1109/CVPR.2016.90

[28] Hadidi, R., Cao, J., Xie, Y., Asgari, B., Krishna, T., Kim,

H. (2019). Characterizing the deployment of deep neural

networks on commercial edge devices. In 2019 IEEE

International Symposium on Workload Characterization

(IISWC), Orlando, FL, USA, pp. 35-48.

https://doi.org/10.1109/IISWC47752.2019.9041955

[29] Baller, S.P., Jindal, A., Chadha, M., Gerndt, M. (2021).

DeepEdgeBench: Benchmarking deep neural networks

on edge devices. In 2021 IEEE International Conference

on Cloud Engineering (IC2E), San Francisco, CA, USA,

pp. 20-30.

https://doi.org/10.1109/IC2E52221.2021.00016

[30] Dunkel, E.R., Swope, J., Candela, A., West, L., Chien,

S.A., Towfic, Z., Fernandez, M.R. (2023).

Benchmarking deep learning models on myriad and

snapdragon processors for space applications. Journal of

Aerospace Information Systems, 20(10): 660-674.

https://doi.org/10.2514/1.I011216

[31] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A.,

Chen, L.C. (2018). MobileNetV2: Inverted residuals and

linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, pp. 4510-4520.

https://doi.org/10.1109/CVPR.2018.00474

[32] Hou, Y., Navarro-Cia, M. (2023). A computationally-

inexpensive strategy in CT image data augmentation for

robust deep learning classification in the early stages of

an outbreak. Biomedical Physics & Engineering Express,

9(5): 055003. https://doi.org/10.1088/2057-1976/ace4cf

[33] Wang, J., Khan, M.A., Wang, S., Zhang, Y. (2023).

SNSVM: SqueezeNet-guided SVM for breast cancer

diagnosis. Computers, Materials & Continua, 76(2):

2201-2216. https://doi.org/10.32604/cmc.2023.041191

1822

