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Medical imaging analysis has greatly benefited from deep learning, especially 

Convolutional Neural Networks (CNNs). However, their enormous parameter sizes and 

high computational cost restrict their use on low-resource systems. This paper suggests a 

small deep learning solution for resource-constrained contexts that uses a lightweight CNN, 

MobileNetV2, deployed on a Raspberry Pi 5 to enable lung mass identification from chest 

X-ray (CXR) pictures. A total of 2,322 NIH CXR pictures tagged as normal or mass were

used to assess two iterations of the model: pretrained and trained from scratch. With just

3.4 million parameters and 300 million FLOPs, the pretrained MobileNetV2 obtained a

validation accuracy of 95.25%, test accuracy of 89.9%, precision of 91.43%, and F1 score

of 90.14%. A validation accuracy of 91.03%, test accuracy of 85.06%, precision of 88.24%,

and F1 score of 85.21% were attained by the scratch-trained version. The results show that

it is possible to implement precise CNN-based medical diagnostics on inexpensive, low-

power devices, which could increase access to AI-assisted healthcare in underprivileged

areas. This study demonstrates the feasibility of a lightweight deep learning model for real-

time lung mass detection in resource-constrained medical settings by presenting its end-to-

end deployment on the Raspberry Pi 5, from training to on-device inference.
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1. INTRODUCTION

An abnormal spot, tumor, nodule, or area in the lungs that 

is more than 3 cm (1.5 inch) in size is defined as a "lung mass" 

[1]. This mass can be caused by lung infection and diseases or 

may be fibrosis that resulted from tuberculosis and Covid19 

disease, almost the mass may be tumors and these tumors may 

be benign such hamartoma, lipoid, lipoma and pneumonia, But 

the commonest cause of a pulmonary mass is lung cancer 

which is malignant tumors. One of the most common cancers 

is lung cancer, yearly, over 225,000 cases, 150,000 deaths, and 

$12 billion in medical expenses occurred in the United States 

[2]. Lung cancer is regarded as one of the most deadly 

malignancies; in the United States, just 17% of patients 

survive five years after receiving a diagnosis, and the survival 

rate is worse in developing nations. How the cancer it has 

metastasized, it refers to cancer’s stage. Cancers that localized 

to the lungs refer to Stages 1 and 2 and cancers that have 

spread to other organs refer to latter stages. Biopsies and 

imaging are the current diagnostic methods, such as CT scans. 

Early discovery of lung cancer significantly increases the 

chances of survival; yet, because there are fewer symptoms, it 

is more challenging to diagnose lung cancer in its early stages 

[3]. The two most common and distinct forms of lung cancer 

are non-small cell lung cancer (NSCLC) and small cell lung 

cancer (SCLC) [2]. Regardless of gender, small cell lung 

cancer typically develops in chronic smokers. NSCLC, a 

unique word among several forms of lung cancer, is the most 

prevalent type of the disease overall. NSCLC will mostly 

contain large cell carcinoma, adenocarcinoma, and squamous 

cell carcinoma. Computer-aided techniques are mostly used 

for lung cancer identification in order to increase accuracy and 

lower costs, which facilitates a quicker and more effective 

recovery from the illness. Deep learning techniques can 

address a variety of issues, including speech recognition, 

object recognition, and natural language processing. 

CNN is extensively utilized since it is the primary deep 

learning tool for extraction; multilayer convolution and max 

pooling techniques are employed to extract features. CNN 

extracts a number of features that are present at the buried 

layer. The CNN network primarily consists of two 

convolutional layers, namely a pooling layer and a drop out 

layer for segmentation [4]. Pooling reduces the size of the 

representation and the network estimation. Additionally, max 

pooling is employed, and the subsequent layer, known as the 

dropout layer, keeps the neural network from overfitting by 

ignoring the randomly chosen neurons during training. 

Well-known deep neural networks (NNs) usually have tens 

of millions of parameters, and the most sophisticated models 

use a lot of memory. Moreover, the implementation of the 

most sophisticated model on portable devices is challenging 

due to the high-performance hardware resources needed for 

deep neural networks [5].  

Aside from the technological constraints, ML and CNN 

models have demonstrated promising results in previous 

studies; yet, certain problems remain. The computational 
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expense of these models is a major disadvantage; their millions 

of parameters necessitate fine tuning and take more time, 

making them inappropriate for devices with low resources. 

Super computers or special hardware having super features 

that related to (CPU, GPU, memory, power) are required to 

deploy heavy weight CNN models and these features need a 

high cost besides these special computers or traditional 

hardware consume a large amount of power and energy to 

implement image classification. 

Researchers recommended using Tiny ML and Tiny DL 

approaches as a result. They created CNN models that are 

lightweight, resource-constrained, and useful for a variety of 

medical applications, including the diagnosis of various and 

deadly diseases like cancer, particularly lung tumor/cancer 

prediction. 

The significant interest in research  and industry has sparked 

by convergence of machine learning and Internet of Things 

(IoT) because the processing of local data is enabled by 

embedded hardware and interacted with their  environment in 

an intelligent and automated way. This intersection creates the 

new field of TinyML, a term that Han and Siebert first used in 

2019 [6]; see Figure 1. Designing small and effective neural 

network models and deployment strategies for energy-

constrained devices, like those found in the Internet of Things 

(IoT), are the main goals of TinyML. Devices can sense and 

analyze local data like sound, temperature, pressure, and 

motion right at the source thanks to Microcontroller units 

(MCUs) and Micro-Electro-Mechanical Systems (MEMS), 

which are commonly used in Internet of Things systems. 

Common uses include gesture recognition, event counting, 

predictive maintenance, keyword identification in voice 

assistants, and integration into consumer goods, including 

augmented reality glasses, smartphones, smart watches, smart 

appliances, and remote controls. The ability of powerful 

hardware, especially graphics processing units (GPUs), to 

handle the high computational needs of deep learning has been 

a major factor in its quick development. On the other hand, 

edge deployment has proven more difficult because to the 

delayed acceptance of deep learning on systems with minimal 

resources, like microcontrollers. However, the rising variety 

of embedded devices and the potential of deep learning present 

exciting prospects for industry and scholars alike [7]. 

Figure 1. TinyML as the nexus of embedded systems and 

artificial intelligence [7] 

SqueezeNet [8], MobileNet V1, V2, and V3 [9, 10], or 

EfficientNet [10] are regarded as new, effective deep learning 

models that have arisen. They are capable of operating on 

mobile devices with one to five million parameters. When 

compared to AlexNet [10]. These new models can reduce the 

model size by up to 5-10 times while maintaining the same 

level of performance.  In general, the size of the models is at 

least 106. 

Responsive wearable applications and smart embedded are 

enabled by on-device deep learning in which, image, audio and 

other data of sensor from the user for to do specific task such 

as human activity recognition (HAR) are processed by the 

studies [11, 12], sensing of audio [12], tracking of hand [13], 

recognition of handwriting [14], classification of image [15], 

and enhancement of images [16]. Microcontroller units 

(MCUs) are often supplying the power to embedded systems 

and wearable internally. Microcontroller units are single-chip 

devices that usually have a single-core processor (like the 

ARM M-series), on-chip persistent Flash, and temporary 

SRAM memory. They are also often found close to additional 

application-specific peripherals like sensors and radio 

microphones. When designing an MCU, cost and power 

efficiency should be considered. This architecture can reduce 

onboard memory and computing resources. For many users, 

getting beyond microcontrollers' resource limitations is not a 

small matter. Even when compared to microcomputers like 

Raspberry Pi, MCUs have instructions that are a lot slower 

(GHz vs. 100s MHz) and have less SRAM and storage (GBs 

vs. 100s KB). As a result, it is very difficult to run fully 

functional neural networks on MCUs. This study 

accomplishes complete end-to-end deployment on the recently 

announced Raspberry Pi 5, in contrast to research that only 

assess models in high-computational contexts. The suggested 

system demonstrates the viability of providing portable, 

affordable, and self-contained diagnostic tools for clinical 

application in resource-constrained environments by covering 

the entire pipeline, from model training to direct on-device 

inference. 

2. RELATED WORK

In this section, some related works that focused on light 

weight MobileNet model and tiny deep-learning techniques 

and algorithms that were used for lung cancer, lung diseases 

and other diseases classification. 

Ghosh et al. [17] suggested automatic categorization of lung 

nodules in CT images using Dl models, such as CNN, VGG16, 

and effective MobileNet models, to increase diagnostic speed 

and accuracy. The findings showed that employing MobileNet 

with transfer learning achieved high accuracy of 99.11%. 

Mothkur and Veerappa [18], to detect early stages of lung 

cancer in CT images, researchers employed vanilla CNN and 

two lightweight deep neural networks, MobileNet and 

SequeezeNet. The results indicate that MobileNet had the 

highest accuracy while SequeezeNet had the shortest 

processing time. 

Mohammed [19] employed light weight MobileNet model 

& CNN model with energy valley optimization for 

hyperparameter tuning to classify pulmonary diseases in Xray 

images, the results show that using MobileNet model with 

energy valley optimization improved accuracy to reach 

85.91%. Rahman et al. [20], to predict lung cancer in CT scans, 

the VGG8 model, Inception v3, and lightweight MobileNet 

model were recommended and used by authors, the results 

show that MobileNet model has a better performance while 

splitting CT images than inception v3 and VGG8 mdodels. 

Souid et al. [21] proposed modified MobileNetV2 model to 

classify lung diseases using NIH X-ray chest dataset images, 

the results indicate that accuracy reached to 90% and the area 
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under receiver operating characteristic curve AUC was 

0.811%. Mengistie and Kumar [22], in order to classify and 

predict lung diseases using X-ray images, the authors 

suggested using VGG19, ResNet50, DensNet201, and the 

lightweight model MobileNetV2. The results indicate that 

MobileNetV2 performs better, with an accuracy of 98.49%, 

while the remaining models, VGG19, ResNet50, and 

DensNet201, achieved accuracy of 97.43%, 94.64%, and 

98.05&, respectively. The MobileNetV2 model also required 

less training time than the other models. Yaqoob et al. [23] 

employed light weight MobileNetV2 and SequeezeNet models 

to classify Covid19 using X ray chest images, the results show 

that the MobileNetV2 achieved better performance with F1-

score of 97.06%, accuracy of 97%, specificity of 95%, area 

under the curve of 98.93%, precision of 95.19%, recall of 

100%. Kumar et al. [24] employed deep learning technique to 

detect breast cancer in histopathylogical images, they 

deployed light weight MobiHisNet model on Raspberry pi2, 

they achieved good accuracy, lesser computational memory 

cost and requirement. Biswas and Barma [25] achieved 

98.43% accuracy in detecting cancer in histopathology 

pictures by implementing deep learning using a lightweight 

MicroMobileNet on a mobile device. The new network was 

installed on an edge device with a fast speed (140 ms) and very 

little memory (7.4 MB). 

 

 

3. METHODOLOGY 

 

3.1 Dataset preprocessing 

 

In our work, we collected the chest X-ray images dataset 

from National Institute healthcare NIH chest X-ray dataset 

website. The NIH Clinical Center contributed the data, which 

can be downloaded from the NIH website at 

https://nihcc.app.box.com/v/ChestX-rayNIHCC, the images 

with PNG file format, the images were pre-processed by 

resizing the images from the size 1024×1024×3 to 

(224×224×3) dimension and then normalized. For 

normalization, the pixel values were scaled to the [0,1] range, 

this was achieved by dividing each pixel by 255. This ensures 

compatibility with MobileNetV2 models and increases 

convergence stability. We also augmented the training split of 

dataset to prevent overfitting. Four operations were 

implemented to expand the training set of 1626 photos (70% 

of the original 2323-image dataset): up-down side flipping, 

repeated rotations (90°, 180°, 270°) following flipping, a 

unique black-and-white conversion, and consecutive rotations 

(90°, 180°, 270°). To improve feature extraction for the model, 

the converter employed a computed pixel threshold of ((max-

min)/2)+min), when max and min represented the maximum 

and minimum values of pixels respectively, designating pixels 

above the threshold as white (255) and those below as black 

(0). In Figure 2, we show samples of NIH dataset used in 

proposed method that were taken from NIH dataset. 

We collected 2323 images and selected them among 8000 

chest X-ray images samples, we collected these samples from 

NIH for training MobileNetV2 model, we labeled these input 

images dataset as two groups, first group included (normal or 

not finding) images, the second group of the input images 

dataset was labeled as (mass) images that include (mass, 

nodule, tumor, fibrosis). We trained both models of 

MobileNetV2 (pretrained and scratch trained) by these input 

image dataset groups. The target is to classify chest X-ray 

images into two classes: normal and mass, the classification 

was done according to input group of images dataset, the 

dataset was splitted into 3 sets, training set, validation set and 

testing set. 70% of dataset used for training, 15% used for 

validation and 15% used for testing, we trained each model 

and validated at 10 epochs with batch size of 32, we trained 

both models of MobileNetV2 and deployed them on 

Raspberry Pi 5, we used it as limited constrained resource 

hardware. We implemented our work by Python software 

version 3.7, we imported the Pytorch software library and 

parameter server of deep learning that support Raspberry Pi 

platform. The methodology of proposed approach can be 

shown in Figure 3. 

 

 
 

Figure 2. Samples of NIH X-ray images dataset: a) lung 

mass; b) normal lung 

 

 
 

Figure 3. Proposed method of tiny deep learning 

 

3.2 MobileNetV2 model 

 

In our method, we implemented the MobileNetV2 [26] and 

trained from scratch and also we used a pretrained 

MobileNetV2, we trained both models by the same dataset and 

then deployed them on Raspberry Pi 5, MobileNetV2 is 

introduced as enhanced version of MobileNetV1 that makes it 

more powerful and efficient. In architecture of the 

MobileNetV2, the block of the depthwise separable 

convolution has been re-designed as shown in Figure 4. In the 

new depthwise separable convolution block there are 3 

convolutional layers. Prior to entering the depthwise 
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convolution layer, the input feature map's channel count is 

increased in the first layer, a 1×1 convolution layer. The 

intermediate layer, a 3×3 depthwise convolution layer similar 

to the MobileNetV1, filters the input feature map. However, 

the input feature map's channel count will be decreased 

because the data is projected with a large number of channels 

into a tensor with a significantly smaller number of channels 

in the final layer, which is made up of a 1×1 convolution layer. 

Because less data will be moving across the network, this last 

layer is also known as a bottleneck layer. In addition, to help 

with the flow of gradients through the network, the residual 

connection as in ResNet [27] is adopted in the MobileNet v2 

architecture. In the new depthwise separable convolution, each 

layer is followed by batch normalization and ReLU6 as 

activation function (using non linearity after the last bottleneck 

will lose useful information, hence it cannot be used in this 

layer). The 17 new depthwise separable convolution blocks in 

MobileNet v2 are followed by a standard 1×1 convolution 

layer, A standard 3×3 convolution layer with 32 channels 

makes up the first layer. 

 

 
 

Figure 4. Fundamental functional unit of MobileNetV2 [26] 

 

3.3 Hardware requirement-Raspberry Pi 5 

 

In our work, we used the MobileNetV2 model to detect lung 

mass, we deployed MobileNetV2 on latest version of 

Raspberry Pi (Raspberry Pi 5), we used Raspberry Pi 5 as 

limited constrained resource. Raspberry Pi 5 was protected by 

cover with active cooler of 2 fans to cool the system, 

Raspberry Pi 5 draws 5 Ampere (Amp) as maximum current, 

so, the power supply should be capable of drawing that much 

instantaneously. The power needed is (5 Amp * 5 Volt(V) = 

25) Watt. Also the power supply should be uninterruptable 

while it operates, which it means the power supply should be 

continuous and must be provided using batteries, and because 

of instability of electric power here in Iraq, at the first, we 

connected power bank of 10 Amp/hour as a power supply of 

our Raspberry Pi 5, but this power bank couldn’t provide 

adequate time for the training process to train MobileNetV2 

from scratch and it enabled the Raspberry Pi 5 to operate 8 

hours only, so, we designed a step down power supply of dc-

dc converter as shown in Figure 5 to supply power for 

Raspberry Pi 5 instead of the power bank, this dc-dc converter 

power supply consist of 4 stack sealed acid batteries we 

connected these batteries in parallel, each battery delivers 12V 

and 5 (Amp/h) of total power equal to 240 watt, we finally 

connected these batteries to voltage regulator module XL4015 

and we set this regulator to deliver 5 V for Raspberry Pi 5, 

thus, this step down converter power supply will deliver 48 

Amp/h and it was enough for training time process that was 

required for each epoch, each epoch required approximately 

more than 3 hours to train MobileNetV2 from scratch and 

more than 2 hours for pretrained MobileNetV2 as shown in 

Table 1 that referred to the training time consumed by both 

models in hours, minutes and seconds (“h:min:s”). 

 

Table 1. The training time consumed by both scratch trained 

and pretrained MobileNetV2 models for 10 epochs in our 

proposed study 

 

No. of 

Epochs 

Training Time Consumed 

by Trained Scratch 

MobileNetV2 Model 

Displayed as “h:min:s” 

Training Time 

Consumed by 

Pretrained MobileNetV2 

Model Displayed as 

“h:min:s” 

1 24:02:06 4:46:12 

2 3:04:12 2:33:18 

3 3:00:18 2:33:18 

4 3:14:42 2:32:42 

5 3:11:06 2:30:00 

6 3:04:30 2:30:18 

7 3:12:18 2:29:42 

8 3:11:06 2:29:42 

9 3:06:54 2:33:00 

10 3:03:54 2:29:42 

 

It can be shown from Table 1 that the training time 

consumed by pretrained model is less than the training time 

taken by scratch trained model. 

We added an Additional secure digital SD-card of 64 GB to 

Raspberry Pi 5 to get more memory storage for Operation 

System OP, dataset, model, code, results…etc, and we 

installed Debian Linux Operating System OP in Raspberry Pi 

5, in the beginning, we connected Raspberry Pi 5 to desktop 

monitor through Micro-HDMI cable to complete setting and 

software installation because there is no HDMI port in our 

laptop personal computer PC, and then, we connected 

Raspberry Pi 5 wirelessly to our laptop PC and we used as 

portable monitor and control panel for Raspberry Pi 5, we 

made the method of wireless connection by connecting 

Raspberry Pi 5 to the monitor of our PC through making our 

mobile phone as a router by activating the communication and 

conduction point in the mobile phone device and then logging 

through the internet network account that have been identified 

previously on desktop monitor for Raspberry Pi 5, we 

identified the Internet Protocol IP of Raspberry Pi 5 in PC by 

using IP scanner software application in PC, we inserted this 

IP into Real Virtual Network Connection VNC software in PC 

to complete wireless connection method. We implemented all 

our proposed method by python version 3.7 and Visual Studio 

Code (VSC), we used it as updated integrated developed 

environment IDE for Python, Thonny is, a traditional Python 

IDE for Raspberry Pi intended for novices, it was substituted 

with VSC IDE. VSC was designed specifically for the Python 

programming language and is written in Python, to assist users 

in writing and testing Python code, VSC offers an intuitive 

interface along with a number of features like syntax 

highlighting, code completion, and debugging tools. The 
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specification and features of Raspberry pi 5 hardware of our 

proposed study is shown in Table 2. 
 

 
(a) 

 
(b) 

 

Figure 5. (a) Design of Raspberry Pi 5 power supply; (b) 

Proposed hardware system 
 

Table 2. The specification of Raspberry Pi 5 that used in our 

proposed study 

 
Raspberry Pi 5 Features  

A 5v/5A USB-C power source is advised; a 5v/3A minimum is 

needed. 

2 micro HDMI ports supports up to 4kp60 

LPDDR4X SD RAM 8 GB 

CPU Quad Arm Cortex-A76, 2.4 GHz 

SWAP file of 4 GB 

No GPU 

2 USB 3.0 ports 

2 USB 2.0 ports 

Gigabit Ethernet port 

PoE-capable 802 11b/g/n/ac wireless requires a poE HAT, which 

is supplied separately. 

PCIe expansion connector requires PCIe adaptor, sold separately 

64-bit quad core cortex-A76processor 

 

 

4. RESULTS AND DISCUSSION 

 

As mentioned in methodology, we trained and deployed the 

two models: trained from scratch MobileNtev2 and pretrained 

MobileNetV2 on Raspberry Pi 5 that we used as limited 

constrained resource hardware. The performance parameters 

was calculated according to equations of accuracy, precision, 

Recall, F1 score shown in Eqs. (1)-(4) below. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (1) 

 

Recall =
TP

𝑇𝑃 + 𝐹𝑁
 (2) 

 

F1Score =
2 ∗ precision ∗ Recall

precision + Recall
 (3) 

 

Precision =
TP

TP + FP
 (4) 

 

When accuracy represents the summation of true positive 

(TP) and true negative values (TN) divided by the total 

components of the confusion matrix (TP, TN, false positive FP 

and false negative FN). Precision is a ratio of total number of 

cases that expected to be positive and the number of cases that 

are really positive. Recall is called also the sensitivity; it can 

be defined as the portion of the total number of cases of 

correctly classified positive to the total number of positive 

cases. F1 score is can be defined as the proportional average 

of accuracy and Recall, training and validation behavior of 

scratch trained MobileNetV2 can be shown in Figure 6 and 

Figure 7, respectively. 

 

 
(a) 

 
(b) 

 

Figure 6. (a) Training and validation accuracy behavior VS 

10 epochs of MobileNetV2 trained from scratch; (b) Training 

and validation loss VS 10 epochs of MobileNetV2 trained 

from scratch on Raspberry Pi 5 

 

Figure 6(a) makes it evident that the training and validation 

accuracy rises with the number of epochs. This behavior is 

usually observed when the model starts to learn features and 

patterns from training image samples. It is also possible to see 

that the validation accuracy is marginally higher than the 

training accuracy, which suggests that MobileNetV2 has good 

generalization to built-in regularization techniques like batch 

normalization and depth-wise separable convolutions. It can 

be seen that both the validation and training accuracy reach 

more than 91%. Figure 6(b) shows as the number of epochs 

rose, the training and validation loss reduced as well, reaching 

0.015 approximately. This suggests that the MibileNetv2 is 

learning effectively. 
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Figure 7. Validation precision, Recall and F1 score behavior 

VS 10 epochs of MobileNetV2 trained from scratch on 

Raspberry Pi 5 

 

It is clearly that from Figure 7, the performance parameters 

(precision, Recall, F1 score) increased when number of epochs 

increased and goes more than 91%, this indicate to good 

performance of MobileNetV2 that was trained from scratch, 

the performance confusion matrix of test dataset of 

MobileNetV2 trained from scratch can be shown in Figure 8. 

 

 
 

Figure 8. Confusion matrix of test dataset of MobilenetV2 

trained from scratch 

 

From Figure 8, it can be shown that the parameters values 

of confusion matrix of test dataset are:  

True Positives (TP):150, True Negatives (TN): 146, False 

Positives (FP): 20, False Negatives (FN): 32. This distribution 

sums to 150+146+20+32=348 sample (represent the test data 

set 15% of total samples). So, Accuracy: 

(TP+TN)/Total=(150+146)/348=296/348≈0.8506 or 85.06%. 

Precision: TP/(TP+FP)=150/(150+20)=150/170≈0.8824 or 

88.24%. Recall (Sensitivity): 

TP/(TP+FN)=150/(150+32)=150/182≈0.8242 or 82.42%. F1-

Score=2*(Recall*Precision)/(Recall+Precision)=2*(0.82420*

8824)/(0.8242+0.8824)≈2*0.7272/1.7066≈0.8521 or 85.21%. 

The training and validation behavior of pretrained 

MobileNetV2 can be shown in Figure 9 and Figure 10 

respectively. 

It is obviously from Figure 9(a) that the accuracy of 

validation is slightly higher than training accuracy and this 

indicate to good generalization of pretrained MobileNetV2 on 

Raspberry Pi 5 and belong to regularization effect of this 

model due to technique of depth wise convolutions and batch 

normalization technique, it is clearly that validation accuracy 

reached to more than 95% and it’s higher than the validation 

accuracy of MobileNetV2 trained from scratch, this indicate 

that the model perform better and learn faster because the early 

layers which has been already adapted to general feature 

extraction, while scratch trained MobileNetV2 model start 

with random weights and learns feature extraction directly 

from lung mass dataset, so, the scratch trained model will face 

difficulty to learn complex patterns with this limited dataset, 

also from Figure 9(b), it’s clearly that training and validation 

loss reached to 0.015 approximately and it is the same of 

trained scratch model because both models are optimizing the 

loss function effectively, this confirm to well learning of this 

model in Figure 10, it can be shown the validation precision, 

Recall and F1-score behavior in 10 epochs. 

 

 
 

Figure 9. (a) The accuracy behavior of training and 

validation of pretrained MobileNetV2 for 10 epochs; (b) 

Training and validation loss of pretrained MobileNetV2 for 

10 epochs 

 

 
 

Figure 10. Validation precision, Recall and F1-score 

behavior VS 10 epochs of pretrained MobileNetV2 on 

Raspberry Pi 5 

 

It is clearly that from Figure 10, the performance parameters 

(precision, Recall, F1 score) increased when number of epochs 

increased and goes more than 94% and this is higher than 

performance parameters value of trained scratch model, this is 

also indicate to good performance of MobileNetV2 that was 

trained from scratch, Figure 11 show the confusion matrix of 

test dataset performance of pretrained MobileNetV2. 

From Figure 11, it’s clearly that the parameter’s values of 

confusion matrix of test dataset of pretrained MobileNetV2 
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are: True Positives (TP): 160, True Negatives (TN): 153, False 

Positives (FP): 15, False Negatives (FN): 20. This distribution 

sums to 160+153+15+20=348 samples (represent the test data 

set 15% of total samples), so, Accuracy: 

(TP+TN)/Total=(160+153)/348=313/348≈ 0.8994 or 89.94%, 

Precision: TP/(TP+FP)=160/(160 +15)=160/175≈0.9143 or 

91.43%, Recall or (Sensitivity): TP/(TP+FN)=160/(160+20) 

=160/180≈0.8889 or 88.89%, F1-Score: 

2*(Recall*Precision)/(Recall+Precision)= 2*(0.9143 * 

0.8889)/(0.9143+0.8889)≈2*0.8127/1.8032≈ 0.9014 or 

90.14%. 

 

 
 

Figure 11. Confusion matrix of test dataset of pretrained 

MobileNetV2 
 

It’s clearly that the pretrained MobileNetV2 performed 

better on test data than the scratch trained model, the 

pretrained model not only generalized better but also achieved 

a clinically more acceptable balance between false positives 

and false negatives, the reduction in false negatives from 32 in 

scratch model to 20 in the pretrained model is particularly 

significant, as missed detection of lung masses could lead to 

late diagnosis and treatment.  

Pretrained models make use of transfer learning, in which 

weights from extensive datasets (like ImageNet) are used to 

initiate convolutional layers. Rich and generalized low- and 

mid-level features, like edges, textures, and forms, are already 

captured by these pretrained layers and can be applied to 

medical images. Compared to training from scratch, when the 

network must learn all features from random initialization, this 

background information enables the model to converge more 

quickly, use less data, and achieve higher accuracy. 

 

4.1 Computation and energy load analysis 

 

4.1.1 MAC operations 

• MobileNetV2 performs approximately 300 million 

inference multiply-accumulate operations (MACs) per 

224×224×3 image. 

• For each epoch, training step handles approximately 13.17 

trillion MACs. This is calculated by (multiplying 300 

million by 3 (for training MACS that included forward and 

backward pass which equal to 3 times of inference MACs) 

and then multiply the result by 14634 images (which 

represent 70% of training dataset 1626 images multiplied 

by 9), when 9 represents the 8 operations of augmentation 

(twice rotation and one flipping and one converted 

operation) plus the original training dataset. 
 

4.1.2 Power and energy estimation 

• Raspberry Pi 5 consumed up to 6.4 Watt under full CPU 

load, so, the measured value of current during full CPU 

load was around 1.28 Amp. 

• Energy usage per epoch was estimated by multiplying the 

power drawn from device (6.4 Watt) by the training time 

per epoch (in hours) as shown in Table 3 that summarizes 

the estimated MACs and power consumption across 10 

training epochs. 
 

Table 3. Power and energy consumption of pretrained 

MobileNetV2 across 10 epochs 

 

Epoch 

Max Power for 

CPU Load in 

Watt 

Time 

(h) 

Energy (Watt 

Hour) 

MACs/Epoch 

(Trillions) 

1 6.4 4.770 30.53 13.17 

2 6.4 2.555 16.35 13.17 

3 6.4 2.555 16.35 13.17 

4 6.4 2.545 16.29 13.17 

5 6.4 2.500 16.00 13.17 

6 6.4 2.505 16.03 13.17 

7 6.4 2.495 15.97 13.17 

8 6.4 2.495 15.97 13.17 

9 6.4 2.550 16.32 13.17 

10 6.4 2.495 15.97 13.17 

 

It’s clearly that from Table 3, the total number of MACs of 

10 epochs was 131.7 trillion MAC, also, the total energy that 

consumed in 10 epochs was approximately 175.78 Watt hour 

(Wh), each Watt hour equivalent to 3600 Joule, so, the total 

energy in Joule=632808 Joule, then the energy consumed per 

MAC can be obtained from division of 632808 Joule by 131.7 

trillion MACS, so the energy consumed per MAC will be 

4.803 nano Joule/MAC. 

Furthermore, the computational cost of Raspberry Pi 5 is 

still lower, so, over ten epochs, the Raspberry Pi 5 consumed 

only 6.4 Watt and 175.78 Watt hour (about 0.176 kilo Watt h 

(kWh)) to train model. Contrast this with: super computers 

(that consume kilo Watts and megawatts power), or large 

model training on the NVIDIA V100 or A100 that can quickly 

consume more power (about 350-500 Watt), and also 

consumed more or the same energy in (Watt hours) for the 

same small task in our work (when a small dataset and small 

model were used) that makes these traditional hardware to be 

overkill for small tasks, this clearly support power and energy 

efficient and low computational cost deep learning in 

embedded systems. 

Moreover, the Raspberry Pi 5 offers low cost and requires 

minimal infrastructure, with its price around $100, whereas the 

price of an NVIDIA A100 server is about $15,000, not 

including additional costs such as cooling systems and data 

center power. 

So, the Raspberry Pi 5 is appropriate for low-resource, 

edge-based, and sustainable deployments because it provides 

competitive AI performance for medical imaging workloads 

utilizing a fraction of the overall energy and hardware cost. 

When compared to conventional deep learning systems that 

depend on GPUs or supercomputers, the training done on a 

Raspberry Pi 5 demonstrates a noticeable decrease in energy 

and operating costs. The Raspberry Pi offers a very energy-

efficient substitute for training or optimizing lightweight 

models in limited settings, even though it cannot match the 

sheer speed or capacity of such systems. This finding bolsters 

the expanding sustainable AI movement and highlights how 

low-power edge devices might increase deep learning's 

affordability, accessibility, and environmental friendliness-

particularly for medical applications in distant or 

underdeveloped locations. To further contextualize the 

measured energy efficiency of our proposed Raspberry Pi 5-
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based MobileNetV2 system, we compared its energy per MAC 

and MACs/Watt with a selection of edge AI platforms and 

model deployments reported in the literature Table 4. Our 

pretrained MobileNetV2 achieves 4.803 nJ/MAC, equivalent 

to ~2.08×10⁸ MACs/Watt, during on-device training and 

inference. This performance is competitive with many 

embedded AI accelerators while maintaining the advantages 

of general-purpose programmability. For example, Jetson 

Nano running ResNet-18 achieves ~93 nJ/MAC (~1.07×10⁹ 

MACs/Watt) [28] and Google Edge TPU running 

MobileNetV2 achieves ~73 nJ/MAC (~1.36×10⁹ 

MACs/Watt), but these accelerators are limited to inference-

only workloads. Raspberry Pi 4 running MobileNetV1 

demonstrates lower efficiency (~150 nJ/MAC; ~6.67×10⁸ 

MACs/Watt) [29]. 

These results show that although certain specialized 

accelerators can achieve higher absolute MACs/Watt, the 

proposed Raspberry Pi 5 system offers a favorable trade-off 

between energy efficiency, hardware accessibility, and full 

training capability—qualities critical for real-world 

deployment in rural or resource-constrained medical 

environments. This balance supports sustainable AI solutions 

while avoiding the infrastructure requirements of GPU servers 

or FPGA tool chains. 

 

Table 4. The comparison with other studies 

 

Study Model Used Dataset 
Deployment 

Platform 
Accuracy Performance Metrics Study Finding 

This study 

MobileNetV2 

(pretrained & 

scratch) 

NIH Chest X-ray 

dataset (2322 images, 

binary: mass vs. 

normal) 

Raspberry Pi 5 

(64-bit quad-core 

Cortex-A76, 8 GB 

RAM) 

89.94% 

(pretrained) 

85.06% 

(scratch) 

Precision: 91.43% 

F1-Score: 90.14% 

Recall: 88.89%  

4.803 nJ/MAC 

(~2.08Ã—108 

MACs/Watt) 

(pretrained) 

On-device training & 

inference; 

sustainable edge 

deployment. 

Hadidi et al. 

[28] 

ResNet-18, 

MobileNetV2 
ImageNet 

Jetson Nano, 

Google Edge TPU 
69.8%, 71.8%  93 nJ/MAC, 73 nJ/MAC 

Edge inference 

baseline; moderate 

efficiency. 

Dunkel et al. 

[30] 
ResNet-50 ImageNet 

Jetson Nano 

(GPU) 
76.2%  

Est. 120 nJ/MAC 

(~8.33Ã—108 

MACs/Watt) 

Better than CPU-only 

inference, but less 

efficient than 

TPU/FPGA. 

Mohammed 

[19]  

MobileNet + CNN 

+ Energy Valley 

Optimization 

NIH Chest X-ray 

dataset 

Standard PC with 

TensorFlow 

backend 

85.91% 

Precision: Not available 

Recall: Not available, 

No energy/power metric 

specified 

Introduced 

metaheuristic 

optimization; no 

actual deployment or 

edge feasibility tested. 

Souid et al. 

[21] 

Modified 

MobileNetV2 

NIH Chest X-rays 

(multi-label) 

Google Colab 

GPU (Tesla K80) 
90% 

AUC: 0.811F1-score: 

not available, No 

energy/power metric 

specified 

Improved 

performance on NIH 

data; no hardware 

constraint, no power 

profiling. 

Baller et al. 

[29] 
MobileNetV1 ImageNet Raspberry Pi 4 70.6%  

Est. 150 nJ/MAC 

(~6.67Ã—108 

MACs/Watt) 

General-purpose 

board; less efficient 

than AI accelerators. 

Sandler et al. 

[31] 
MobileNetV2 ImageNet 

Smartphone (Pixel 

4) 
71.8%  

Est. 90 nJ/MAC 

(~1.11Ã—109 

MACs/Watt) 

Mobile deployment 

feasible; efficiency 

depends on SoC NPU. 

Kumar et al. 

[24] 

MobiHisNet 

(custom 

lightweight CNN) 

Histopathological 

images (breast cancer) 

Raspberry Pi 2 

(ARM Cortex-A7) 

Reported "Good 

accuracy" (value 

not specified) 

Low memory & cost-

efficient histopathology 

deployment, No 

energy/power metric 

specified 

Validated DL on Pi2, 

but older device & 

unrelated to lung 

imaging. 

Tan and Le 

[10] 
EfficientNet-B0 ImageNet 

NVIDIA Jetson 

Nano 
77.1%  

Est. 110 nJ/MAC 

(~9.09Ã—108 

MACs/Watt) 

Better accuracy but 

slightly lower 

efficiency than 

MobileNet. 

Hou and 

Navarro-Cia 

[32] 

EfficientNetB0 

CT images from 

COVID19-CT dataset 

to detect COVID19 

Intel(R) Core i7-

10875H 

, NVIDIA GeForce 

RTX 2060 6G 

91.15%-95.5% 

AUC of 96.4%-98.5% 

No energy/power metric 

specified 

Improved 

classification 

performance, no 

limited hardware 

resource, 

Wang et al. 

[33] 
SequeezeNet 

Mammography images 

from MIAS dataset for 

breast cancer 

Workstation with 

GPU 
94.1% 

Sensitivity of 94.3%,no 

energy metric specified 

Hybrid model for 

effectively 

diagnostic,no 

constraint device 

validation 
 
 

 

Generalizability may be limited by the very small dataset 

(2323 photos) used in this study, which came from a single 

public source. Inference speed and robustness in real-world 

scenarios are yet unknown because real-time testing and 

clinical integration were not assessed. Future research will 

include clinical validation in partnership with healthcare 
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organizations, real-time deployment on Raspberry Pi 5, and 

bigger, more varied datasets. 

 

 

5. CONCLUSIONS 

 

The Raspberry Pi 5's capacity to support lightweight CNN 

models for medical image processing was demonstrated by the 

successful training and testing of both models on the device. 

This supports its application in actual offline or low-resource 

healthcare settings, particularly those with restricted access to 

cloud computing, It can be concluded that the achievement of 

pretrained MobileNetV2 model is better than MobileNetv2 

trained from scratch, this is demonstrating the advantage of 

transfer learning of the pretrained MobileNetV2 ,the prior 

knowledge of pretrained MobileNetV2 help the model to 

generalize better even with relatively limited dataset and 

allows the model to extract more meaningful features with 

limited resource, so, the pretrained MobileNetV2 is more 

comfortable for Raspberry Pi 5 platform to make efficient 

portable tiny deep learning system to predict lung mass disease 

and enable low expert doctors who working in the rural 

medical centers for lung tumors diagnosis using low 

computational cost hardware and low cost chest X-ray exam 

with a competitive obtained accuracy value if it was compared 

with other Artificial intelligent models that require a high level 

hardware and high computational cost. Furthermore, the 

training pipeline's successful implementation on the Raspberry 

Pi 5 shows that low-cost, portable AI systems for medical 

diagnostics are feasible. These findings support the larger 

objective of democratizing medical AI and advance the 

expanding field of AI-powered point-of-care imaging. 

For future research attempting to integrate deep learning, 

transfer learning, and embedded systems for practical 

healthcare applications, the study thus offers a useful resource. 

In future work, accuracy may be enhanced when pretrained 

MobileNetv2 is fine-tuned and performance of both models 

can be enhanced by increasing the size of training dataset and 

by deploying other light weight CNN models.  
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