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Brain-computer interface (BCI) systems, a branch of human-computer interaction (HCI), 

are normally adopted to create a direct communication pathway between the brain and 

external environments. Existing BCI methods struggle to deal with high-dimensional EEG 

features and computational complexity. This paper introduces a new feature optimization 

strategy for this struggle, called Evolutionary Strategy for Feature Selection with 

Dimension Reduction (ES_FSDR), in the EEG classification model. The ES_FSDR 

employs machine learning techniques to select the most related features by a new 

representation of evolutionary strategies in a subset of features and hybridize them by 

reducing the features' dimensions for the least amount of complexity and efficient operation 

for this subset of features, which consequently affects the EEG signal classification 

performance.; this strategy is applied to instantaneous frequency features in signal 

processing. This strategy aims to learn robust and meaningful feature representations for 

the BCI classifiers. ES_FSDR is particularly useful in EEG no stationary signal processing 

situations involving numerous features and high dimensionality. Individually, participants 

completed five different mental activities while 15 EEG channels were chosen to create a 

baseline. Mental tasks include “dynamic imagery," e.g., hand motor imagery (HAND), feet 

motor imagery (FEET), and "non-dynamic imagery," e.g., mental word association 

(condition WORD), mental subtraction (SUB), and spatial navigation (NAV). Both within-

day analysis and between-day offline modeling investigated classification of five distinct 

mental task imagery from nine users with disability central nervous CNS system 

impairment for the available dataset from BNCI Horizon 2020. Findings demonstrate how 

effectively the suggested model increases accuracy obtained using multi-classification in 

the dataset within a day, which is around 98.31%. And between a day dataset, the results 

are around 95%. Moreover, the model that is suggested outperforms the classifying 

accuracy compared with other different performance methods. 
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1. INTRODUCTION

Certain mental activities have an exact and predicted effect 

on spontaneous electroencephalogram (EEG) rhythm 

alterations. This indicates that a person can produce unique 

EEG patterns on their own, regardless of sensory input. Such 

EEG patterns are recognized by brain-computer interfaces 

(BCIs), which then use them to trigger actions. For an 

overview of BCI technology, see the studies [1-3]. 

Nature is our constant source of inspiration for our research. 

Since humans acquire a significant amount of information 

through their eyesight, scientists are interested in learning 

more about the neurological processes in the brain and the 

regions involved. Since imagination is a cognitive tool humans 

possess, it makes sense that BCI technologies would seek to 

leverage any opportunities to improve the brain's ability to 

communicate with the computer it controls. For this reason, 

we continue to investigate the potential applications of visual 

imagination in BCI systems. With positive outcomes, several 

different BCI control techniques investigations have 

effectively concentrated on evoked potentials, including the 

SSVEP control method and P300 [4, 5] or on event-related 

potentials such as the application of motor imagery technique 

[6-8] within the creation of several valuable applications [9, 

10]. And mainly used to modulate EEG patterns for the 

participants to use the EEG signals for exoskeleton control in 

rehabilitation applications [11, 12]. Each of these instances 

demonstrates the rapid advancement of BCI technology about 

motor signals.  

“The manipulation of visual information that comes not 

from perception but from memory” is one definition of visual 

imaging as another control BCI technique [13]. The ability to 

detect and classify mental imagery for visual imagery would 

make it easier for a BCI to be used in more applications like 

classifying shapes [14], classifying 12 different images of 

objects [15, 16], classifying different pictures of words from 

daily life [17, 18], Decoding Visual Images for Controlling 

Drone Swarm Formation [19], which could benefit individuals 
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with mobility issues by enabling them to overcome physical 

limitations and perform artistic works or explore their 

creativity [20-23]. 

In the field of BCI, the main goals are to develop new 

applications for augmentative communication and support 

people with functional limitations who have lost their ability 

to move their body bodies [24-29], Our objective in 

conducting this research experiment is to show how 

compelling mental tasks imagery in the creation of Brain-

Computer Interface (BCI) systems using EEG signals and its 

use in studies classification mental tasks that incorporate both 

"dynamic imagery" for motor imagery tasks and "non-

dynamic imagery" for non-motor (cognitive) imagery tasks. 

This work's remaining sections are arranged as follows: 

Several variations on the theme are discussed in Section 2. 

Section 3 provides an explanation of our methodology for the 

proposed model using a new feature optimization method 

(ES_FSDR). Section 4 presents the results and directions. 

Finally, Section 5 presents the conclusions and future work. 

 

 

2. RELATED WORK 
 

The proposed method [30] addressed the challenge of high-

dimensional EEG feature spaces by combining feature 

extraction and selection methods to enhance mental imagery 

for the classification of motor imagery (MI) tasks. A high-

dimensional feature vector is then created by combining the 

retrieved features. To reduce dimensionality while preserving 

discriminative features, three feature selection techniques are 

employed: Multi-Subspace Randomization and Collaboration-

Based Unsupervised Feature Selection (SRCFS), Minimum 

Redundancy Maximum Relevance (mRMR), and Correlation-

Based Feature Selection (CFS). 

The selected characteristics are supplied into classifiers, 

such Linear Discriminant Analysis (LDA), Support Vector 

Machines (SVM), and Multi-Layer Perceptron (MLP) for MI 

task classification. Among these, the SRCFS method 

combined with the LDA classifier demonstrates superior 

accuracy on benchmark datasets. 

The use of the study [31] modified binary grey wolf 

optimization (GWO) and wavelet packet decomposition for 

classifying mental imagery for motor imagery signals has been 

studied. Researchers have seen positive outcomes in terms of 

categorization accuracy for two subjects by combining these 

two approaches. Still, the accuracy rate for every subject was 

left out. 

In the study [18], the research explores a hybrid approach 

combining convolutional neural networks (CNNs) and genetic 

algorithms (GAs) for mental imagery for visual imagery EEG 

signal classification. EEG features were extracted using Power 

Spectral Density (PSD) within the alpha frequency range and 

formatted into matrices to emulate image data for CNN input. 

GAs optimized neural network hyperparameters, including 

layer configurations, activation functions, and training 

parameters. The classification performance was compared 

across CNN+GA, SVM, LDA, and RF, with CNN+GA 

achieving the highest accuracy and demonstrating significant 

potential for mental imagery-based BCI systems. 

In the study [19], the research examines the use of mental 

imagery for visual imagery in EEG-based BCI to control 

swarm drone formations. Six subjects performed four visual 

motion imagery tasks—Hovering, Splitting, Dispersing, and 

Aggregating—using a 64-channel EEG system. Data were 

preprocessed using band-pass and notch filters and the 

Common Spatial Pattern (CSP) technique, which focuses on 

the alpha band (8–13 Hz), was used to extract features. 

Classification was performed using various models, including 

LDA, SVM, and ensemble methods, with LDA achieving an 

average classification accuracy. This approach highlights the 

potential of visual imagery for intuitive drone swarm control. 

In the study [16], the research utilizes a public EEG dataset 

to classify mental imagery for visual imagery (VI) and visual 

perception (VP) utilizing Black Hole Algorithm (BHA)-

optimized CNNs. EEG signals were collected using a 

Brainvision actiCHamp amplifier EASYCAP with 64-

channels., following standard preprocessing methods, 

including filtering, normalization, and Independent 

Component Analysis to remove artifacts.  

The CNN architecture, which autonomously extracts 

features from EEG data, was optimized through BHA to 

identify the best structure for classifying EEG signals. The 

framework also explores transfer learning to reduce user 

training fatigue by leveraging VP data to classify VI signals, 

thereby demonstrating its feasibility for brain-computer 

interface applications. 

In the study [32], this research investigated the impact of 

individually adapted mental imagery tasks examines the 

functionality of EEG-based brain-computer interfaces (BCIs) 

for those with severe disorders.  Participants completed five 

mental activities in two different sessions, including non-

motor imagery, word association, mental subtraction, spatial 

navigation, and motor imagery of the hand and feet.  

EEG signals were recorded using a 30-channel setup, with 

preprocessing to remove artifacts and optimize signal quality. 

Common spatial patterns (CSP) and Fisher’s linear 

discriminant analysis (LDA) were employed for feature 

extraction and classification, respectively. The research 

demonstrated that user-specific task combinations 

significantly enhance classification accuracy by evaluating the 

variability of classification performance within and between 

days. The findings support the importance of personalized task 

selection for improving BCI accessibility and reliability for 

end-users with functional disabilities. 

Prior studies have mostly concentrated on using different 

machine learning and deep learning techniques, numerous 

features extracted from the signal, and its many dimensions 

problem was used either by feature selection methods or by 

dimension reduction methods with or without pre-selection of 

EEG signals channels in mental imagery. 

Our working idea is to enable the EEG signals to classify 

mental task solutions by addressing this problem by proposing 

a new feature evolutionary computational optimization 

method: Evolutionary Strategy includes Hybrid (camping) 

Feature Selection with Dimension Reduction (ES_FSDR) 

methods. This proposed strategy has the potential to impact the 

EEG classification model performance significantly, which is 

especially true when the dimensionality reduction is within a 

pre-selected feature set -at the individual level - of signals by 

evolutionary methods for representing individuals and 

development operations initially based on instantaneous 

frequency features by processing the signal for pre-selected 

channels. This improves the fitness of the selected individual 

for EEG signal classification. 
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3. METHODOLOGY

The operational framework by offline modelling of our 

model for classifying signals generated by various mental 

tasks is shown in Figure 1. It provides a thorough explanation 

of the main procedures followed in the present research; the 

steps are as follows: 

Step 1, the pre-processing procedure for multichannel EEG 

recordings, involves choosing the specific channels, bandpass 

filter was utilized to determine the 8–35 Hz frequency band of 

the EEG signal, segment the EEG data into trials based on 

event trials for participants, and normalize each segment. 

Step 2, the EEG signal trials are decomposed into subsets 

using a filter bank, which dissects the signal into its frequency 

components through Gabor filter banks. Instantaneous 

frequency features are extracted from each subset using the 

Hilbert transform (HT) approach. 

The remaining steps are for the proposed Evolutionary 

Strategy (ES_FSDR) to optimize the features of the EEG 

signal.  Because the main contribution of it considers many 

sides in the same strategy by integrating the feature selection 

with dimensionality reduction at the chromosome (solution) 

level with machine learning techniques, thus, the solution 

becomes stronger. As different to what is typically occurring 

at the population level, these methods consider one-sided of 

feature selection or dimension reduction (e.g., genetic 

algorithms).  

Step 3: Select potential features using the individually 

evolutionary selected subset to derive an optimal feature 

vector for each participant's trials. 

Step 4, the final reduced feature vector, obtained by using 

the reducing dimensions technique, plays a crucial role in the 

subsequent classification process. 

In Step 5, the classification process, such as LDA, SVM, 

and MLP classifiers, values this selected feature subset's 

fitness. 

Figure 1. Framework of our model for the classification of 

mental tasks EEG signals 

3.1 Dataset description (participants and recordings) 

EEG data from nine disabled users (Seven women, aged 

between 20 and 57, median age 38, SD=10) were collected 

over two days for five mental tasks. The tasks comprised 

mental word association (condition WORD), subtraction 

(SUB), spatial navigation (NAV), right-hand motor imagery 

(HAND), and foot motor imagery (FEET). Experimental 

details are provided in Figure 2. Each session had eight runs 

with 40 trials per class per day. A run had 25 cues, with 5 for 

each task, presented randomly. 

EEG was captured using 30 scalp electrode channels 

following the international 10-20 system. Electrodes were 

positioned at channels AFz, F7, F3, Fz, F4, F8, FC3, FCz, FC4, 

T3, C3, Cz, C4, T4, CP3, CPz, CP4, P7, P5, P3, P1, Pz, P2, P4, 

P6, P8, PO3, PO4, O1, and O2. 

The g.tec GAMMAsys system is incorporating 

g.LADYbird active electrodes were employed to acquire data,

uses 256 Hz as the sample frequency.

Figure 2. The experimental technique involves motor and 

non-motor imagery tasks 

The experimental paradigm involves imagery trials lasting 

10 seconds with a cross at t = 0 sec. Participants focus on the 

cross without moving their eyes. A beep at t = 3 sec grabs 

attention, followed by a graphical cue at t = 3-4.25 sec. The 

second beep at t = 10 sec ends the trial. Inter-trial intervals of 

2.5-3.5 sec occurred. The subjects were told to move during 

ITI and avoid moving during imaging. A 4-second blank 

screen was displayed at the start and finish of runs [33]. 

3.2 Pre-process the EEG signals 

The EEG data were somewhat pre-processed by filtering 

from 0.5 to 100 Hz using a notch filter at 50 Hz when we 

collected them [34].  

The first stage in this process in our research was channel 

selection, which aimed to reduce the time and computational 

complexity [35-53], reduce setup time in specific applications, 

and develop a channel selection mechanism for activities of 

mental tasks imagery, hence decreasing the amount of over 

fitting that will result from the use of unrelated channels. By 

the employment of 15 channels, we choose P7, P5, P3, P1, Pz, 

P2, P4, P6, P8, PO3, PO4, O1, O2 F3, and F4. Most of these 

electrodes on the occipital region of the skull are driven by the 

observation that this specific area is intricately linked to the 

process of human visual perception [18, 47]. Additionally, 

some electrodes from the sensorimotor region, which are 

strongly connected to the brain for movement imagery-based 

BCI [31, 33]. 

A bandpass filter was utilized to eliminate noise from the 

original EEG signal. Because the raw EEG commonly 

contains various types of artifacts such as eye blinking, sudden 

sound, muscle and body movements, and environmental 

noises. Moreover, specific narrowband components of the 

EEG signal are particularly responsive to certain tasks. Hence, 

it is not unexpected to observe the utilization of certain sub-

bands instead of the entire EEG bandwidth. Thus, this study 

concludes that the wider 8-35 Hz EEG signal frequency range 

is appropriate for the job. Related research indicates that 7 Hz 

to 36 Hz is when most of the brain activity related to 

movement imagining activities takes place [30, 35]. This 
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frequency range is the region in which noticeable effects occur 

during visual tasks [18, 36].  

Our experimental approach for the broader 8-35 Hz 

frequency band involved primarily four corresponding 

narrowband signals notably the low-beta (13-22 Hz), high-

beta (22-35 Hz), and Mu-band (8-13 Hz). Then, we divide the 

signal into fixed-size segments, creating and averaging 

periodograms for each segment. Segments are normalized to 

zero mean and maximum absolute value to remove bias and 

scale differences and then saved as frames. 

3.3 Feature extraction 

Feature extraction is a key part of any BCI system. In actual 

production and life, most of the signals are not stationary and 

nonlinear. For no stationary processes, instantaneous 

frequency is a feature that cannot be ignored [37]. A filter bank 

of bandpass filters is used to produce a single-valued 

frequency signal by dissecting it into its frequency 

components [38]. Gabor filter banks are utilized for their 

smoothness and optimal compactness in both temporal and 

frequency domains. 

The real signal is transformed into the complex domain to 

create the analytic signal, which is then built for each band 

pass output waveform. This method is used because it allows 

the real input to be described in terms of its instantaneous 

frequency [39]. Given a real input signal s[n], mathematically 

speaking, it’s the formula for computing an analytical signal 

is: 

s[n] = s[n] + jH [s[n]] = s[n] + js[n] (1) 

where, s[n] is the quadrature signal, and s (t) is the linear 

operator Hilbert transform (HT). We used this transform 

because it is helpful in the analysis of non-stationary signals. 

It may describe frequency as a rate of phase change, allowing 

it to fluctuate with time. We used the instantaneous 

frequency of the EEG signal. Phase f (t) can be computed 

using the EEG and analytical signals as direct computation of 

the signal's instantaneous frequency (IF) from phase yields the 

following results [38]: 

f [n] = 
𝟏

𝟐𝝅
.

𝒅ф[𝒏]

𝒅𝒕
(2) 

3.4 Feature optimization 

EEG signals frequently contain useless information due to 

their complexity and the use of several electrodes in their 

collection. One of the most important tasks in BCI is 

discarding such information. The performance of a BCI 

system is directly affected by its features, and recent research 

has concentrated on developing new or better methods. 

Due to their enormous dimensions and low feature 

effectiveness, there are many extracted features from the 

multiband that are not advantageous for classification and add 

to the computational complexity, which lowers performance. 

In actuality, certain trials usually degrade the efficiency of 

machine learning algorithms. 

To address this problem, the proposed evolutionary strategy 

(ES_FSDR) is applied to feature optimization. Evolutionary 

Computation (EC) is an efficient and intelligent optimization 

methodology inspired by the behaviors of some organisms and 

the mechanisms of biological evolution [48]. 

3.4.1 Evolutionary computing (EC) 

Evolutionary computation (EC) is one computational 

intelligence model used to mimic the phenomenon of 

biological evolution. Genetic algorithms (GA), evolutionary 

programming (EP), evolution strategies (ES), and genetic 

programming (GP) are the four algorithms that make up EC at 

the moment. In research on self-adapting control, American 

researcher Holland proposed GA in the 1950s. In the 1950s, 

the American researcher Holland proposed GA. In the 1960s, 

American researcher Fogel developed EP to study the finite-

state machine of artificial intelligence. ES was developed by 

German researchers Rechenberg and Schwefel to handle 

numerical optimization problems simultaneously. In order to 

study the automatic design of computer programs based on the 

GA, the American researcher Koza proposed GP in the 1990s. 

Although different scholars proposed the four algorithms 

for various purposes, their computing processes are similar 

and can be described in steps as follows. 

a) One group of initial feasible solutions are created;

b) The properties of the initial solutions are evaluated;

c) The initial solutions are selected according to their

evaluation results; 

d) The next generation of workable solutions can be

obtained by conducting evolutionary operations on the chosen 

solutions; 

e) The computation will end if the workable solutions

found in the previous phase are able to satisfy the requirements. 

If not, the computation process goes back to step b and the 

workable solutions found in the previous step are used as the 

beginning solutions. 

Generally speaking, EC is a global optimization method that 

possesses the following features:  

(i) The process starts from a group rather than a single

point;

(ii) The search process only uses the objective

function;

(iii) The search process uses the random method.

As a result, this approach offers the following benefits: It is 

(i) incredibly flexible and applicable to a wide range of

problems; (ii) capable of solving highly nonlinear and

nonconvex problems; and (iii) has a high degree of plasticity

and ease of deserialization.

In essence, A typical complex optimization is figuring out a 

geometrical constitutive model. One well-liked global 

optimization method for figuring out the geomaterial 

constitutive model is EC [51]. 

The general pseudo code for Proposed Strategy, as in Figure 

3. 

Proposed evolutionary strategy (ES_FSDR) for 

optimizing EEG signal features 

Input: Feature matrix 

Return: The optimized feature set with the highest accuracy 

rate of classification 

1. Initialization:

• Set parameters for the (ES_FSDR) Strategy,

including population size, chromosome length, mutation rate, 

and maximum generation numbers. 

2. Generate Initial Population:

• Randomly generate the initial population of

chromosomes; Integers representing the locations indicates. 

3. Evaluate Population Function:

• Initial the chromosome for evaluation, based on the

chromosome's genes, select a subset of features corresponding 
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to the values of locations indicated in the original set of all 

features of trials. 

• Dimensionality Reduction, as part of the evaluation

method, Reduces the feature space to a lower-dimensional 

representation to improve classification performance by 

applying the (LDA) algorithm on the selected feature's subset, 

• Splitting the data into Training and Testing sets, in

our research as follows: 

- Within one day-Divide the reduced dataset into a 50%

training set and a 50% testing set within the dataset from one 

day 

- Within two days- Divide the reduced dataset into a 50%

training set all from the first day and a 50% testing set all from 

the second day. 

• Training on the classifier, training the model by using

(SVM) or (LDA) or (MLD) classifier on the training set. 

• Calculate the fitness of each chromosome: the

accuracy rate of classification on the testing set of EEG signal 

is the fitness value of the chromosome based on the 

Misclassification Rate    

Accuracy Rate=1−Misclassification Rate  

(The correctly classified instances out of the total instances), 

Fitness = 1 / (1 + Accuracy rate). 

• Store the return fitness value for all chromosomes.

4. Selection Function:

• Calculate cumulative probabilities based on fitness

values. 

• Use a roulette-wheel selection mechanism to select

chromosomes for the next generation. 

• Return the selected population.

5. Mutation Function:

• Introduce random mutations to the selected

chromosomes based on the mutation rate. 

• Perform mutation on the current population and

predicted mutated population. 

6. New Population:

• Replace the old population with the new mutated

population. 

7. Strategy (ES_FSDR) Loop:

• Run the Strategy (ES_FSDR) for steps 3, 4, 5, and 6

until you reach the maximum of generation numbers. 

In each generation: 

• Evaluate the population.

• Calculate selection probabilities.

• Perform selection to create the selected population.

• Perform mutation on the selected population.

• Replace the old population with the new mutated

population. 

• Find the fitness values and the maximum fitness

value for each generation. 

The proposed Evolutionary Strategies (ES_FSDR) for 

Optimizing can be considered contributions to Hybridization 

feature selection with dimensionality reduction in machine 

learning techniques. Let's break down your contributions in 

more detail: 

- Focused exploration: Mutation-only Evolutionary

Strategies can facilitate a more focused and detailed search of 

the solution space by generating variations to solutions using 

only mutation operations, which is advantageous in scenarios 

where small incremental changes are more effective than 

large-scale recombination, especially when simply adjusting 

representing chromosomes as means of choosing the optimal 

features for EEG brain signals in our method with integer 

numbers and maintaining the strategic balance by excluding 

the crossover process, hence simplifying the traditional 

evolutionary strategies and reducing computational 

complexity, particularly in situations where crossover does not 

significantly contribute to exploring the solution space or 

when recombination is not beneficial in the problem domain. 

- Integration dimension redaction methodology: This

adds a new pretreatment stage in the traditional evolutionary 

strategy by hybridizing it as a dimensionality reduction 

technique before assessing classification accuracy for the 

chromosome that generates. The most discriminative 

information of features for EEG brain signals is preserved 

along the dimensionality of the feature set is reduced with the 

aid of the dimension reduction technique and tuning its 

parameters, which can enhance the effectiveness and 

performance of the classification model. 

- Improved fitness evaluation: Improved fitness

evaluation occurs when LDA diminishes the feature set before 

the fitness function-based classification accuracy is computed. 

The fitness function becomes stronger because LDA focuses 

on maximizing the separation between different classes, which 

can lead to better generalization and higher classification 

accuracy. 

- Evaluate the classifiers of the distinguished dataset: -

which consisted of five mental task scenarios mixed with 

dynamic and non-dynamic imagery tasks. This strategy was 

applied to data that had not been used frequently by previous 

studies. The dataset was divided into two distinct sets, on a 

single day to what extent is the classification stable in a day? 

And in two days How well does a model trained on the first 

day do on the second day's unseen data? This testing set's 

objective is to evaluate the performance of the using LDA, 

SVM, and MLP classifiers created by using the suggested 

evolutionary strategy in the process of finding the best features. 

Utilizing the best classifier on the testing dataset is the result. 

All the above contributions passed significantly with the 

initial contribution, which was described in session 3-1 during 

the pre-processing stage for selecting the suitable channels for 

our activity shared all of these above contributions. 

3.4.2 Linear Discriminant Analysis (LDA) for Dimension 

Reduction 

It is crucial to realize that not every variable that may be 

collected through suitable measurements in a high-

dimensional data set is used to analyze the underlying region 

of interest [40]. 

Reduced data dimensions can be achieved by distinguishing 

a collection of significant characteristics that are closely 

related to specific significant criteria. The influence of the 

lowered dimensions is essential in the classification process. 

The overall volume of trials is around 200(714810×30) 

samples for each patient in one day. Which becomes 200 trials 

* (30 pandas of frequencies * 30 EEG channels) each day for

each participant a features matrix of instantaneous frequencies.

For the EEG signals to be processed smoothly, it is therefore

imperative that the data's dimensions be reduced.

For one day, each participant's trial matrix feature vectors 

with 200*900 features were reduced to 200*2 by using our 

(ES_FSDR) strategy to choose the features and reduce their 

dimensions. 

One popular technique for lowering dimensionality is 

Linear Discriminant Analysis (LDA) [41]. It is discovered that 

there is an orientation P that condenses feature vectors from 

several or higher classes into a low-dimensional space. Thus, 
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if the decrease in dimensionality is from a b-dimensional (Rb) 

space to a c-dimensional (Rc) space (where c < b), then 

supporting, then by maximizing the Fischer's criterion 

function Z (P), the orientation P's magnitude may be easily 

determined. Three crucial parameters are involved in 

determining the criteria function: the orientation P, the within-

class scatter matrix (SP), and the between-class scatter matrix 

(SB).  

It is essential to take into account a multiclass pattern 

recognition and classification problem with e-classes to 

determine the LDA specifically. The collection of "e" class 

labels is represented by Ω= {Pi: 1, 2… e}, where Pi stands for 

the i th class label. Fischer's criterion as a function of "P" in 

these circumstances can be expressed as follows [40]. 

 

Z(P)= 
ǀ𝑃𝑇𝑆𝐵 𝑃ǀ

ǀ𝑃𝑇𝑆𝑃 𝑃ǀ
 (3) 

 

 
 

Figure 3. (ES_FSDR) strategy 

 

3.5 Classification Employing SVM, MLP, and LDA 

 

In this research, we classified and identified five distinct 

imagined objects that a person might conceive using, well-

known and advanced machine learning-based classification 

methods. There are three prominent and sophisticated machine 

learning-based classification algorithms: LDA, SVM, and 

MLP. The objective is to determine and assess which can yield 

the best results. 

Fisher's LDA classifier uses a linear hyper-plane classifier. 

LDA uses a line to represent high-dimensional data and 

thresholds the data to classify the projected one-dimensional 

space. The projection minimizes variance within each class 

while maximizing the distance between the means of the two 

classes. For further information about LDA, see the study [42]. 

Vapnik created the SVM, a relatively new classification 

technique. It has a strong mathematical basis in statistical 

learning theory and has demonstrated efficacy in a number of 

real-world scenarios. Especially those using BCI. It employs a 

nonlinear map to convert a higher-dimensional row of training 

data. It looks for the best linear division hyper plane, which is 

also referred to as a "choice border" that divides the tuples of 

one class from another inside this new dimension. Data from 

two classes can always be divided into an appropriately big 

dimension using a hyperplane and good nonlinear mapping.  

With the help of support vectors, the SVM locates this 

hyperplane (the "essential" training tuples) and margins. These 

two approaches are described in detail in studies [43, 44, 49]. 

A well-liked machine learning algorithm, MLP is an 

effective tool for categorizing brain activity. Usually, 

characteristics taken from EEG or other neuroimaging data are 

fed into the MLP. After that, these features are sent through 

several tiers of networked nodes, each of which processes the 

input data using a mathematical process. The MLP's output 

layer represents the anticipated class label for the input data. 

Using methods like backpropagation, the MLP's weights are 

adjusted during training to reduce the discrepancy between the 

actual and anticipated results. But given the MLP 

architecture's size and complexity, as well as the relevance and 

quality of the input data, have a significant impact on their 

performance [45, 46]. The experiment's hidden layers have a 

size of twenty. 

 

 

4. RESULTS AND DISCUSSION  

 

Brain-computer interfaces (BCIs) based on EEG signals can 

utilize imaginations for different mental tasks. These devices 

facilitate direct communication between the brain and external 

devices without needing peripheral nerves and muscles. BCIs 

interpret brain activity patterns to translate user intentions into 

commands for device control, whether mental imagery focuses 

on motor activities like hand or foot movements or others on 

non-motor, like imagining objects or scenes for tasks such as 

menu selection or virtual environment control. 

In this research, we examined how mental task pictures 

affected the multiclass classification performance of rarely 

utilized datasets combining dynamic (pictures refer to motor 

movements) and non-dynamic tasks in individuals using 

brain-brain interfaces who had CNS tissue damage, such as 

those who had suffered stroke or spinal cord injury (SCI).  

Healthy persons typically attain a binary classification 

performance of about 75% when using a brain-brain interface. 

Generally speaking, users with CNS tissue injury do worse, 

and researchers in this field have previously performed binary 

classification on this dataset [32], seeking how mental tasks 

affected the binary classification performance of brain-brain 

interface users who achieved a binary classification score (65 

to less than 85), concentrating on the traditional MI task pair 

(hand–feed) mental motor imagery effect from. As mentioned 

in Table 1, other methods in references were used for 

comparison with our Strategies (ES_FSDR). 

Our proposed method for a performance with many 

classifications focused from the beginning on carefully 

selecting the most effective channels for mental tasks 

imagination , as well as focusing on effective degradation 

ranges for motor imagination channels, continuing to reduce 

dimensions when selecting good features by (ES_FSDR) 

strategy, since research that uses dimension reduction at the 
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beginning and directly may lose good features that we need to 

enhance the classification and thus strengthen the model, as 

we noticed, this stage is necessary for our strategy, as shown 

in Figure 4. On the one hand, this was. However, by the 

strategy's chromosome representation to an integer 

representation and ensuring that it is compatible with 

hybridization through the use of the dimension reduction 

technique, the strategy's balance was maintained by being 

content with the mutation process without requiring the 

crossover process. 

Table 1. A Proposed strategy (ES_FSDR) comparison with other methods 

Ref. Method 
Sub. 

No. 
Mental Tasks Imagery Mean of Subject Accuracy 

[30] 

CSP+ 

SRCFS+ 

LDA 

5 
Mental tasks imagery includes “dynamic imagery,” 2 

classes (left and right motor imagery) 

Binary classifications 

90.05% ± NR 

[31] 

WPD+ 

GWO+ 

KNN 

2 
Mental tasks imagery includes “dynamic imagery,” 3 

classes (right hand, left hand, both feet) 

92.86% for first Subject (a) and 

91.5% for second Subject (b) 

92.18% ± 0.96% 

[18] 
CNN+ 

GA 
5 

Mental tasks imagery includes “Non_dynamic 

imagery,” 3 classes (house, airplane, dog) 
60.5% ± NR 

[19] 
CSP+ 

LDA 
6 

Mental tasks imagery includes “Non_dynamic 

imagery,” 4 classes (Hovering, Splitting, Dispersing, 

and Aggregating) 

83% ± NR 

[32] 
CSP+ 

LDA 
9 

Mental tasks imagery (bnci-horizon) includes “dynamic 

imagery” and “non-dynamic imagery,” 5 classes (hand, 

feet, word, subtraction, and navigation) 

Binary classification for 9 Subjects 

between 65% to 85% 

≈75.0% ± 6.7% 

Our 

proposed 

model 

includes a 

new 

strategy 

ES_FSDR 

IF+ 

ES_FSDR+ 

LDA 

9 

Mental tasks imagery (bnci-horizon) includes "dynamic 

imagery" and "non-dynamic imagery," 5 classes (hand, 

feet, word, subtraction, and navigation) 

Multi-classification for 9 Subjects: 

Within a day [98.8, 98.3, 99.0, 98.5, 

97.5, 97.2, 98.4, 98.8, 98.3]. 

98.31% ± 0.60%; Between two days 

[90, 98, 91, 96, 95, 93, 94, 97, 97]. 

94.56% ± 2.79%  

Note: Values are reported as mean ± standard deviation (SD) across subjects; a smaller SD indicates greater consistency/robustness. 

NR = not reported; (*) estimated from the reported range - e.g., our within-day SD = 0.60%, indicating excellent stability 

Figure 4. A proposed strategy with and without dimension 

reduction D.R 

Figure 5. Accuracy rate in the day and between days 

Figure 5 shows high results, reaching 98.31% within one 

day and about 95% within two days for categorization 

performance on five mental tasks using EEG data captured on 

nine individuals, each of whom completed 400 trials over two 

days.  

Due to this, choosing the technique for reducing dimensions 

plays a crucial role in analyzing data with high dimensionality 

in our hybrid strategy, particularly in improving classification 

accuracy rates in mental imagery in brain signal data, where 

the challenge lies in handling multiple dimensions effectively. 

I can't deny LDA analysis's superiority in classification and 

dimensionality reduction. The accuracy rates for all 

participants in the three classification methods, LDA, SVM, 

and MLD, were 98.31 and about 97.5 for both SVM and MLD. 

Figure 6 illustrates how the classification results were divided 

by distinct results in LDA despite the excellent results we 

obtained from all classifications, with a slight difference 

between the three types of classification and the nine people 

who participated in obtaining the data. In addition to the 

coordinated formulation we have suggested, a plausible 

explanation might be that the EEG pattern's categorization 

becomes more dependable when a suitable blend of dynamic 

and non-dynamic mental tasks is included [32]; we were able 

to classify and identify five different imagined things that a 

person imagines, integrating imagination for dynamic and 

non-dynamic (sensory and cognitive not sensory) tasks, tasks, 

our results demonstrate the efficacy of the hybrid approach 

feature selection and dimension reduction in (ES_FSDR) 

strategy. This method offers a new communication conduit 

between the brain and the external environment. 

And ultimately, recognizing that a limitation encountered 

pertained to the adjustment of parameters during the 

dimensionality reduction process within a chromosome, it 

necessitates that we align or correspond the length of the 

chromosome with the quantity of experiments conducted. 

Consequently, the dimensionality reduction process is 

rendered efficient and yields favorable outcomes in classifying 

brain signals. 
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Figure 6. After proper processing in pre-processing and IF 

for feature extraction of the EEG signal from all 

classifications 

5. CONCLUSIONS AND FUTURE WORK

To sum up, this research looked at how choosing a 

combined dynamic and non-dynamic mental activity affected 

the functionality of BCIs based on images in patients with 

impairment to their central nervous system. Previous studies 

did not frequently use this dataset.  

According to the research's findings, the new  strategy that 

made use of evolutionary computing was successful in both 

reducing dimensions at the chromosome level (as opposed to 

what is typically reported as occurring at the population level) 

within the features selection and in also strengthened the 

validity function of the final solution which was represented 

of elevated categorization efficacy across five cognitive tasks 

utilizing EEG data collected from nine subjects over two days, 

the stability of classification within a single day as well as the 

performance When applied to unknown data from another day, 

the results of a model learned on one day are crucial factors to 

consider.  

Furthermore, end users with functional impairments are 

classified using various classification methods, such as LDA, 

SVM, and MLP, demonstrating the dominance of LDA in 

brain signal classification, its high-performance level, and its 

role in dimensionality reduction. 

It is advisable to first model in real time by segmenting the 

incoming EEG stream into a specific time window, e.g., 2 s, 

then normalizing and applying a band-pass filter bank (8–32 

Hz) and extracting the instantaneous frequency (IF) per 

channel–band to form a feature vector. The ES_FSDR-

selected feature indices are then applied, followed by LDA 

projection and classification (SVM/MLP/LDA).  Second, 

employ this strategy with a different dimension reduction 

technique and try tuning its parameters.  And last try to apply 

this strategy to something other than brain signal classification. 
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