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Breast cancer is among the most common and lethal malignancies affecting women 

worldwide, with its rising incidence constituting a major public health concern. Early 

detection remains essential to reducing mortality, as it continues to be the second leading 

cause of cancer-related deaths among women globally. This study explored deep learning–

based computer-aided diagnosis (CAD) systems using convolutional neural networks 

(CNNs), integrating data augmentation, transfer learning, and ensemble learning. 

Experiments were performed on publicly available mammography datasets (MIAS, CBIS-

DDSM, and INbreast). Across evaluation metrics, ensemble learning achieved the best 

performance on the INbreast database, with an accuracy of 0.9976, AUC of 1.0, recall of 

0.9959, precision of 0.9983, and F1-score of 0.9971. These findings highlight the potential 

of deep learning–driven CAD systems to improve early breast cancer detection, enhance 

diagnostic precision, and reduce the overall burden on healthcare systems. 
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1. INTRODUCTION

Abnormal cell division in the mammary gland leads to the 

formation of either malignant or benign tumors, which is the 

cause of breast cancer (BC) [1]. Breast cancer is one of the 

most dangerous cancers worldwide. The World Health 

Organization reported 2.3 million new cases and 666,000 

related deaths in 2022. These figures are projected to reach 3.3 

million cases and 1.2 million deaths by 2050 [2]. Figure 1 

illustrates a normal breast image and a suspicious breast from 

the INbreast database. 

Figure 1. Normal breast image and a suspicious breast 

Early diagnosis is critical for improving survival rates, but 

it remains complex and time-consuming [3]. Emerging 

technologies such as Deep Learning (DL) offer more efficient, 

accurate methods for diagnosing breast cancer, particularly 

when integrated into Computer-Aided Detection (CAD) 

systems, improving diagnostic accuracy and reducing false 

results [4, 5]. However, DL adoption is still limited as 

healthcare professionals require proof of its effectiveness [6, 

7]. Deep learning and Deep Convolutional Neural Networks 

rely on analyzing patient data to identify patterns and make 

predictions, requiring large datasets and accurate parameters 

for better results [8]. The research also explores the potential 

of deep learning algorithms to enhance mammography-based 

breast cancer classification and detection, despite digital 

mammography being the most widely used method [9]. 

Convolutional Neural Networks (CNNs), inspired by the 

human visual cortex, have emerged as powerful tools for 

medical image analysis [10]. Many studies have applied CNNs 

to breast cancer diagnosis in mammography [11]. Ensemble 

strategies remain relatively underexplored, despite their 

potential to deliver more robust and reliable results by 

integrating complementary features from pre-trained 

architectures such as VGG16, ResNet50, and MobileNetV2. 

In this study, ensemble learning is combined with transfer 

learning and data augmentation, and the framework is 

evaluated on three benchmark datasets. This integrated 

approach enables a more comprehensive evaluation of CAD 

systems for mammographic classification, providing valuable 

insights into their clinical applicability. The ultimate objective 

is to develop a breast cancer classification model that can act 

as a reliable “second opinion” for radiologists, thereby 

reducing the risk of diagnostic errors. 

This paper is structured as follows: Section 2 provides an 

overview of recent work in this field. In Section 3, the method 

for classifying breast anomalies into normal and suspicious is 

described. Section 4 presents and discusses the results of the 

experiments carried out. Finally, section 5 concludes and 

highlights directions for future work. 

2. RELATED WORK

The introduction of convolutional neural networks (CNNs) 

for breast cancer diagnosis has led to significant advances in 
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architectures such as VGG16, ResNet50, and MobileNetV2, 

all of which have proven dominant in analyzing difficult 

medical images. VGG16 provides a clean structure for 

effective classification; ResNet50 introduces residual 

connections to help learn in deep networks; and MobileNetV2 

is designated for the edge with low-compute resources. These 

models have collectively advanced breast cancer image 

classification, leading to more accurate detection of malignant 

patterns within medical datasets. But the limitation of sizes of 

the existing datasets and the heavy computational requirement 

of these models pose challenges that urgently need addressing 

through various methods such as data augmentation, kernel 

optimization, and transfer learning. 

A CNN-based approach for segmenting and classifying 

two-dimensional imagery in improved breast cancer detection 

is proposed in study [12]. The proposed method includes 

augmentation techniques and testing on various datasets. In 

study [13], a comparative analysis is presented here regarding 

respective CNN architectures for early diagnosis of breast 

cancer. An additional preprocessing stage has been employed 

here to remove artifacts and improve image quality, while also 

optimizing hyperparameters for the experiments, which 

include the number of epochs and batch size. 

In Sahu et al. [14], an ensemble classifier based on deep 

learning is proposed for breast cancer detection by combining 

three robust transfer learning models: AlexNet, ResNet and 

MobileNetV2: The authors use the modified amplification 

filter based on the Gaussian Laplacian (LoGMHBF) to further 

enhance image quality and increase performance. The 

proposed model can be employed in multimodal datasets 

thanks to its versatility and reliability. 

The investigations carried out in Yasaka et al. [15] 

demonstrate the power of deep learning in breast cancer 

detection and how it provides an automated second opinion to 

radiologists and allied medical personnel. The method found 

to work well in a clinical setting was applied to patients in 

varying stages of the disease with validation data covering 

multiple equipment providers. In the study, Han et al. [16], 

ultrasound and mammogram images are combined with 

clinical and pathological data to predict breast cancer 

recurrence. All patients were observed for more than three 

years. The deep learning models was used to predict which 

patients will experience a recurrence which ones will not. Also, 

Jenefa et al. [17] presents a method that combines 

MobileNetV2 with Long Term Memory (LSTM) to improve 

tumor detection in mammographic images using the Digital 

Database for screening Mammography (DDSM). The finding 

shows that deep learning-based systems demonstrate their 

capacity to enhance cancer diagnosis and to predict the 

recurrence of this illness. In study [18], a CNN-based 

classification system was proposed with extensive 

preprocessing steps, including denoising, image enhancement, 

region of interest (ROI) extraction, data augmentation, and 

resizing. The methodology was validated across multiple 

datasets, emphasizing its adaptability to different imaging 

sources. 

These studies confirm the impact of CNN architectures on 

breast cancer diagnosis, supported by data optimization and 

the integration of various learning techniques for improved 

performance 

 

 

3. METHODS 

 

3.1 Datasets 

 

In this study, we employ three open-access mammography 

datasets that are suitable for developing, training, and testing 

breast cancer models based on deep learning. The 

Mammographic Image Analysis Society (MIAS) dataset [19], 

although dated, remains ideal for small-scale studies and 

foundational research. INbreast [20] is appropriate for 

advanced deep learning techniques due to its high-resolution 

digital images, although it has not been updated since 2017. 

The Curated Breast Imaging Subset of DDSM (CBIS-DDSM) 

[21] excels in large-scale studies, offering a diverse and 

extensive collection of cases. Table 1 provides a detailed 

overview of the specific characteristics of each dataset used in 

this analysis. 

 

Table 1. The specific characteristics of each dataset 

 
Dataset Information 

MIAS UK 1994 
161 cases, 322 images, MLO views, all types of anomalies, normal, benign, and malignant categories, no BI-RADS 

classifications 

Inbreast Portugal 

2010 

115 cases, 410 images, MLO and CC views, all types of anomalies, detailed lesion annotations, benign and 

malignant categories, BI-RADS classifications 

CBIS DDSM USA 

2017 

1644 cases, 3103 images, MLO and CC views, all types of anomalies, normal, benign, and malignant categories, BI-

RADS classifications 

3.2 Data augmentation 

 

Data augmentation techniques generate new samples of the 

training dataset through random transformations on the 

available data. This approach has multiple benefits, including 

accelerating the convergence process and preventing 

overfitting. For small datasets, the simplest approach is to 

perform basic transformations such as translation, zooming, 

flipping, mirroring, and rotation [22].  

 

3.3 Transfer learning 

 

Transfer learning enables the use of small datasets, such as 

medical images, by eliminating the need for costly training of 

deep models from scratch [23].  

 

3.4 Ensemble learning 

 

Ensemble learning is a robust strategy that integrates 

predictions from multiple models to achieve superior 

outcomes. By harnessing the strengths of various models, this 

approach can significantly improve classification accuracy 

compared to individual models [24]. 

 

3.5 CNN architecture 

 

VGGNet [25] overcomes dataset limitations, allowing deep 

model training with flexible input sizes. As an extension of 
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AlexNet. VGG16 include 13 convolutional layers and 5 

pooling layers within five convolutional blocks. Each block 

employs 3 × 3 filters, followed by max-pooling to halve input 

size and double filters, optimizing with fewer parameters. 

Batch normalization accelerates convergence and minimizes 

error, preventing overfitting, while dropout reduces error rates 

further. The final block has three fully connected layers (4096, 

4096, and 1000 units). For this study’s two-class output, the 

last layer (FC8) is modified to two units. Despite demanding 

significant computational resources, managing around 140 

million parameters, this architecture has been quickly adopted 

and applied in healthcare for developing simple and effective 

predictive models [13, 26, 27]. Figure 2 illustrates the VGG16 

architecture. 

ResNet50, also known as a deep residual network, is a pre-

trained model built on ImageNet, designed to address 

vanishing gradient issues by allowing the network to skip one 

or more layers. This structure comprises 50 layers arranged in 

residual blocks with shortcut connections, enabling layer 

skipping by adding the convolutional output to the block’s 

input tensor, thereby reducing computational complexity 

while supporting complex feature learning. The architecture 

begins with an initial convolutional layer, followed by batch 

normalization and two pooling layers, and includes 16 residual 

modules. These modules alternate between blocks with 4 

convolutional layers and those with 3, each followed by batch 

normalization and ReLU activation for efficient connectivity. 

ResNet50 achieves a top-5 error rate of 7.8 on ImageNet [28]. 

This architecture is further validated by researchers and has 

demonstrated effectiveness in various predictive models. The 

results obtained reinforce its strong reputation in breast cancer 

classification tasks [13, 26, 27]. 

 

 
 

Figure 2. VGG16 architecture 

MobileNetV2, an evolution of MobileNetV1 by Howard et 

al. [29], is designed for embedded systems, mobile devices, 

and resource-limited environments, minimizing 

computational and memory demands with minimal loss in 

accuracy. Its core innovation, the inverted residual with a 

linear bottleneck, processes low-dimensional inputs using 

depthwise convolution before compressing them, enhancing 

efficiency. This replaces standard convolution with depthwise 

convolution for lightweight filtering and pointwise (1 × 1) 

convolution for output merging, allowing MobileNetV2 to 

operate on individual channels, reducing complexity while 

preserving feature extraction. 

MobileNetV2 contains 53 layers, fewer parameters, and an 

input size of 224 × 224. It leverages depthwise separable 

convolutions with two residual block types: stride 1 for regular 

processing and stride 2 for downsampling, striking a balance 

between performance and efficiency [30]. MobileNetV2 is 

widely applied in medical image analysis [14, 26]. Figure 3 

illustrates the MobileNetV2 building blocks [30]. 

 

 
 

Figure 3. Structure of the building blocks of lightweight 

MobileNetV2 CNN model 

 

 
 

Figure 4. Flowchart of the proposed ensemble pipeline 

 

Our pipeline begins with preprocessing and data 

augmentation to increase dataset variability and reduce 

overfitting. Using transfer learning, we employed three 

convolutional neural networks (CNNs): VGG16, ResNet50 

and MobileNetV2, each independently estimating the 

probability of an image belonging to the benign or malignant 

class. The choice of these networks was motivated by their 

complementary strengths. VGG16 provides a widely used 

baseline with a straightforward convolutional design; 

ResNet50 incorporates residual connections, enabling deeper 

and more generalizable feature extraction; and MobileNetV2 

offers a lightweight architecture well suited for resource-

constrained environments. To combine their outputs, a 

stacking strategy was applied in which the predictions from 

the three CNNs were used as input features for a meta-

classifier. A Random Forest was chosen as the meta-learner 

due to its robustness and ability to capture nonlinear 
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relationships. Its hyperparameters (number of estimators and 

tree depth) were optimized using RandomizedSearchCV with 

cross-validation, while the area under the ROC curve (AUC) 

served as the evaluation metric. Figure 4 presents an overview 

of the complete workflow. 

 

3.6 Key metrics 

 

Key metrics for model evaluation and comparison include 

accuracy, which measures the proportion of correct 

predictions (Eq. (1)). Precision, or positive predictive value, 

represents the percentage of predicted malignant cases that are 

correct (Eq. (2)). Sensitivity (Recall), or true positive rate, 

indicates the proportion of malignant cases detected (Eq. (3)). 

The F1 score, defined as the harmonic mean of Precision and 

Sensitivity, provides a balanced assessment (Eq. (4)). AUC, 

which represents the area under the ROC curve, serves as a 

global performance measure. Formal definitions are given 

below [31]. 

 

Accuracy      Acc =
TP+TN

TP+TN+ FP+FN
  (1) 

 

Recall      Sv =
TP 

TP + FN
  (2) 

 

Specificity      Sp =
TN 

TN + FP
 (3) 

 

Precision      P =
TP 

TP + FP
  (4) 

 

F1 score      F1 = 2 ×
P×Sv

P+Sv
  (5) 

 

• TN: True negatives (correctly identified negatives) 

• TP: True positives (correctly identified positives) 

• FN: False negatives (positives incorrectly identified as 

negatives) 

• FP: False positives (negatives incorrectly identified as 

positives) 

 

 

4. EXPERIMENTAL RESULTS 

 

Three open access datasets are utilized in this study: MIAS, 

INBREAST and CBIS-DDSM, each providing craniocaudal 

(CC) and mediolateral oblique (MLO) views for both breasts, 

with cases categorized as benign or malignant. The MIAS, 

INBREAST and CBIS-DDSM datasets contain 161, 115 and 

1,597 cases respectively, corresponding to 330, 410 and 

10,237 images. 

To enhance the training process, each image was augmented 

four times with rotations of 0°, 90°, 180°, and 270°. Additional 

random transformations included horizontal and vertical shifts, 

rotations ranging from 0° to 30°, slight shearing, zooming 

between -0.2 and +0.2, and horizontal flipping. Newly 

generated pixels from these transformations were managed 

using a fill strategy, while test images remained unaltered. 

These augmentations were performed in real time using the 

Keras ImageDataGenerator, ensuring unique training images. 

Figure 5 illustrates examples of images produced through data 

augmentation. 

To ensure balanced training, each dataset was adjusted to 

maintain an equal number of images per category, reducing 

potential bias during model training. The MIAS and CBIS-

DDSM datasets were used independently for training the 

models, employing a 70/20/10 split for training, validation, 

and testing, respectively. An ensemble learning approach was 

then applied, and the final model was evaluated on the 

INbreast database. Table 2 provides details on the number of 

images allocated for training, validation, and testing across all 

datasets, along with the data augmentation techniques used 

and the total images generated. 

 

 
 

Figure 5. Example of data augmentation 

 

Table 2. Number of images allocated for training, validation, 

and testing across all datasets 

 

DATABASES 
Total Images 

Before Augmentation After Augmentation 

MIAS 330 4554 

CBIS-DDSM 10237 14316 

INbreast 410 410 

 

Table 3. Classification results without data augmentation for 

different models 
 

Model Acc AUC Rel P F1 T (s) 

MIAS 

VGG 16 0.59 0.57 0.54 0.54 0.54 62 

ResNet50 0.55 0.45 0.42 0.31 0.34 55 

MobileNetV2 0.66 0.43 0.50 0.33 0.40 70 

CBIS DDSM 

VGG 16 0.75 0.84 0.75 0.75 0.75 287 

ResNet50 0.63 0.70 0.61 0.61 0.61 294 

MobileNetV2 0.66 0.71 0.63 0.65 0.64 225 

 

Table 4. Classification results with data augmentation for 

different models 

 
Model Acc AUC Rel P F1 T (s) 

MIAS 

VGG 16 0.90 0.97 0.90 0.91 0.90 430 

ResNet50 0.73 0.80 0.73 0.74 0.72 423 

MobileNetV2 0.95 0.99 0.95 0.95 0.95 317 

CBIS DDSM 

VGG 16 0.99 0.99 0.99 0.99 0.99 1160 

ResNet50 0.96 0.98 0.96 0.96 0.96 1147 

MobileNetV2 0.95 0.99 0.95 0.95 0.95 863 

 

To identify the optimal parameters for the model, we 

investigated a variety of hyperparameters, including the 

number of epochs (ranging from 80 to 200), learning rates 

0.0001 to 0.0000001, and the implementation of techniques 

such as data augmentation, dropout, regularization, and 

callbacks. The open-source OPTUNA library played a crucial 

role in testing and optimizing multiple hyperparameters 
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concurrently, enabling the efficient discovery of the best-

performing configuration. Table 3 presents the classification 

results without data augmentation, while Table 4 shows the 

classification results with data augmentation. Then, an 

ensemble learning approach was implemented with the models 

that achieved the best scores on the MIAS and CBIS-DDSM 

datasets. The INbreast dataset later served as the test set. Table 

5 presents the classification results achieved using the 

ensemble learning strategy. 

 

Table 5. The classification results using an ensemble 

learning strategy 

 
Model Accuracy AUC Recall Precision F1 Score 

1 0.9976 1 0.9959 0.9983 0.9971 

2 0.9927 1 0.9878 0.9948 0.9912 

 

Table 3 demonstrates that limited data negatively affects 

each model's performance, indicating that training with small, 

unbalanced datasets and limited resources is suboptimal. Data 

augmentation, however, enables training on larger datasets, 

facilitating better parameter tuning and enhancing 

generalization to real-world cases. This approach is validated 

in Table 4, where data augmentation leads to results 

comparable to or even surpassing those of current state-of-the-

art models. 

The ensemble learning strategy further improved 

performance in two cases: Model 1, which combines models 

trained on the MIAS dataset, and Model 2, which integrates 

models trained on the CBIS-DDSM dataset. In both scenarios, 

the INbreast dataset was used as the test set, showcasing 

enhanced classification accuracy and greater robustness across 

diverse training data sources. Both ensemble model 1 (trained 

on MIAS) and ensemble model 2 (trained on CBIS-DDSM) 

accurately classified all 287 normal images as normal. Among 

123 suspicious images, model 1 misclassified 1 case, while 

model 2 misclassified 4 cases. Figure 6 illustrates the 

combined confusion matrices for Models 1 (left) and 2 (right) 

for the INbreast dataset. 

The proposed classification system was compared with 

recent CAD systems. This comparison highlights the 

superiority of our approach regarding accuracy, AUC, 

precision, and F1 score, as shown in Table 6. 

 

 
 

Figure 6. Combined confusion matrices for the INbreast dataset 

 

Table 6. Comparison of our approach results with state-of-the-art approaches 

 
Ref. Dataset Acc AUC Rel P F1 

our work 
MIAS 0.9976 1 0.9959 0.9983 0.9971 

CBIS DDSAM 0.9902 1 0.9837 0.9931 0.9883 

[26] DDSM 0.9887 0.988 0.9898 0.9879 0.9799 

[27] DDSM 0.9798 0.9846 0.9763 0.9651 0.9597 

[13] CBIS DDSM 0,9758 - - - - 

[18] INBREAST 0.9652 0.98 0.9655 - - 

[32] INBREAST 0.9550 0.97 - - - 

 

 

5. CONCLUSION 

 

This study investigated the potential of deep learning–based 

CAD systems for breast cancer diagnosis through an ensemble 

of VGG16, ResNet50, and MobileNetV2. The proposed 

approach achieved strong performance across multiple 

benchmark datasets, offering valuable support as a “second 

opinion” to radiologists. However, these results must be 

interpreted with caution. In particular, the small size and 

limited diversity of datasets such as INbreast restrict the ability 

to generalize findings to larger and more heterogeneous 

clinical populations. Moreover, while many studies, including 

ours, report improved results compared to the state of the art 

in controlled testing setups, this does not guarantee robustness 

in real-world clinical deployment. AI models remain highly 

sensitive to variations in patient cohorts, imaging protocols, 

and annotation quality, which often limit their applicability 

outside the training environment. 

Future work should therefore prioritize validation on larger, 

multi-center, and demographically diverse datasets, along with 

systematic analyses of model robustness under varying 

acquisition and labeling conditions. Beyond reporting 

incremental performance gains, it is equally important to 

highlight scenarios where AI systems underperform, as such 
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insights are crucial to building clinically reliable tools. 

Shifting the notion of “novel contribution” from ever-

increasing model complexity toward a deeper understanding 

of AI limitations and failure modes will ultimately help bridge 

the gap between promising experimental results and safe, 

trustworthy deployment in medical practice. 
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