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Classification of EEG signals is essential for diagnosing neurological disorders such as 

epilepsy and detecting brain abnormalities like tumors. In this study, we propose an 

attention-enhanced 1D Convolutional Neural Network (1D CNN) model to classify EEG 

signals into five categories: seizure activity, signals from tumorous regions, signals from 

adjacent healthy brain tissue, and eyes open/closed states. The dataset comprises EEG 

recordings from 500 individuals, segmented into 178-point intervals (1 second each), 

yielding a total of 11,500 samples. The proposed model outperforms the baseline non-

attention 1D CNN by up to 1.30% in seizure detection accuracy, with consistent 

improvements across all five classification tasks. For epileptic seizure detection, it achieved 

99.78% accuracy. In tumor-related classification, accuracies reached 92.74% for tumor 

regions and 92.91% for adjacent healthy tissue, while eyes open and closed states were 

classified with 99.35% and 99.22% accuracy, respectively. Although the model 

demonstrates strong performance overall, distinguishing between tumor regions and 

adjacent healthy tissue remains challenging. These findings underscore the potential of 

attention-based CNNs in automated EEG analysis, offering promising applications in 

clinical diagnostics and neuro-monitoring systems. 
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1. INTRODUCTION

Throughout Modern technical developments have become 

essential in medical diagnostics today. These progresses 

dramatically transform how diseases are detected and 

managed. For example, advanced tools like algorithms and 

data analysis improve the accuracy of diagnostic processes and 

speed up the required time to deal with. All these revolutionary 

advancements lead to improved patient outcomes. 

Technologies like medical imaging and AI-powered systems 

are now efficiently integral to identifying complex medical 

conditions. Consequently, this integration of technology in 

modern medical diagnostics is driving new ideas to innovation 

and elevate healthcare standards [1, 2]. 

Figure 1. EEG signals distinct frequency bands 

Electroencephalogram (EEG) signals play a crucial role in 

monitoring brain activity and diagnosing a wide range of 

neurological disorders, including but not limited to epilepsy, 

brain tumors, and other cerebral abnormalities [3]. The high 

dimensionality and complex nature of the EEG data not only 

present a significant challenge for the development of efficient 

algorithms aimed at automatic signal classification, but also 

highlight the need for advanced computational techniques both 

in medical research and in clinical practice. As shown in 

Figure 1, the EEG signals are composed of distinct frequency 

bands that carry critical information for classification. 

Moreover, precise classification plays an important role in 

detecting critical conditions like epileptic seizure and 

distinguishing between tumor-influenced brain areas [4]. 

Traditionally, visual examination of EEG recording data is 

highly labor-intensive and prone to errors, largely because of 

the large amounts of data and the subtlety of the differences 

observed between different brain states [5]. Recently, 

techniques involving machine learning (ML) and deep 

learning (DL) have emerged as some of the most powerful 

tools for automation in the analysis of EEG signals [6]. Among 

the many methods and methodologies available today, 

Convolutional Neural Networks (CNN’s) are becoming very 

promising because they can work very well for both feature 

extraction and classification [7]. CNN designs may be 

adaptable enough to support different practical use cases with 

only minor modifications [8]. 

For instance, popular CNN models like AlexNet, 

GoogleNet, and VGG, are focused primarily on classification 
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tasks, typically by concatenating fully-connected layers with 

the various classifiers. In this process, the early layers focus 

mainly on capturing simple patterns, while the latter layers are 

tuned to recognize more detailed features. This will help the 

model to identify complete objects or scenes [9]. 

Among many CNN models, 1D CNNs are a simplified 

variant of 2D CNNs, optimized for one-dimensional input like 

time series. 1D CNNs work well on signals like EEG, where 

information unfolds over time [10, 11]. 

1D convolutional operations are effective for identifying 

localized features within input sequences, making them very 

suitable for processing various types of sequential data such as 

text, audio, and time series. In particular, to extract features at 

multiple points, the convolution kernel traverses over the input 

sequence, performing a dot product between the kernel and 

corresponding segments of the data as illustrated in Figure 2 

[12]. As a result, this technique enables the model to learn and 

extract localized features from the sequence without requiring 

predefined knowledge of their position [13]. 

Figure 2. The operation of one-dimensional convolution 

In recent years, researchers have increasingly recognized 

the value of incorporating attention mechanisms into deep 

learning frameworks. These mechanisms simulate a form of 

human cognitive focus, enabling the model to give more 

weight to the most relevant segments of input data while 

minimizing the influence of less informative components. 

Rather than treating all input equally, attention allows the 

model to adaptively highlight important features. 

This dynamic focus is achieved by using two key types of 

attention. Temporal attention helps the model identify 

significant patterns that occur over time, whereas spatial 

attention emphasizes particular EEG channels that are more 

informative or responsive in the context of signal classification 

[14, 15]. These two forms of attention are often implemented 

together, providing a dual perspective that strengthens the 

model's capability to capture critical features in both 

dimensions.  When combined with 1D CNN, the attention 

mechanism becomes even more effective. The 1D CNN serves 

as the backbone for extracting hierarchical temporal features, 

while attention modules enhance this by refining the model’s 

focus, reducing the impact of noise, and improving overall 

classification outcomes [16]. 

The primary aim of this study is to construct a high-

performance EEG classification model that combines the 

strengths of both 1D CNNs and attention mechanisms. This 

hybrid design not only improves the model’s sensitivity to 

meaningful signal patterns but also strengthens its ability to 

distinguish between EEG classes with greater precision. 

The primary contributions of this study are outlined below: 

•A 1D CNN-based framework is developed to learn

temporal dynamics in EEG signals by capturing multi-level 

local features in a hierarchical manner. 

•Attention mechanisms are embedded into the CNN

structure, enabling the model to emphasize contextually 

significant regions across time and space, thus improving 

overall classification accuracy. 

•The model’s generalization capabilities are evaluated

across multiple EEG categories within the same dataset, 

demonstrating its effectiveness in practical classification 

scenarios. 

•Attention weights are analyzed to gain interpretability,

offering insight into the temporal or spatial elements of the 

EEG signal that contribute most to classification outcomes. 

The rest of the paper is organized as follows: Section 2 

summarizes the related works. The dataset is discussed in 

Section 3. The proposed method is discussed in Section 4. The 

results and discussion are provided in Section 5. The 

conclusion of this research is presented in Section 6. 

2. RELATED WORKS

The classification of EEG signals has been the subject of 

research using various approaches and methodologies. This 

section reviews and analyzes key studies that have contributed 

to this domain, with a focus on advancement in dep learning 

techniques, and the development of expert systems in 

healthcare, which makes extensive use of deep learning 

techniques and approaches. 

Many researchers have investigated and analyzed various 

approaches for dealing with EEG signals [17], including 

feature extraction, feature selection methods [18], and signal 

preprocessing techniques. Other studies have focused on 

classification algorithms aimed at enhancing the accuracy of 

brain-computer interfaces (BCIs) [19]. Machine learning 

models, especially CNN, have also been widely explored to 

classify EEG patterns for various applications, such as motor 

imagery [20], mental workload assessment [21], and emotion 

recognition [22]. Research indicates that 1D CNN 

architectures are highly effective in distinguishing distinct 

cognitive states and neurological conditions. they frequently 

surpass traditional machine learning models in both 

classification accuracy and computational efficiency [23]. 

However, given the wide range of variables that can impact 

classification outcomes in neurological diagnostics, 

researchers continue to explore diverse methods to further 

improve the predictive accuracy of these models. 

Jayashekar and Pandian [24] introduced an EEG 

classification approach that integrates features derived from 

Common Spatial Pattern (CSP) with Convolutional Neural 

Networks (CNN). Their classification stage utilized a Multi-

Class Support Vector Machine (M-SVM), achieving an 

accuracy rate of approximately 89.6%. Nonetheless, their 

method faced challenges when applied to different datasets 

and was limited in its ability to effectively capture temporal 

dynamics in EEG signals. These drawbacks suggest more 

improvements in real-time use and broader applications. 

Altaheri et al. [25] developed an attention-based temporal 
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convolutional network (TCN) for classifying EEG signals 

associated with motor imagery tasks. Their approach included 

a multi-head self-attention mechanism combined with TCN 

layers. Although the model demonstrated improvements, its 

accuracy significantly declined in subject-independent 

evaluations (70.97%) compared to subject-dependent contexts 

(85.38%). This discrepancy indicates limited adaptability 

across diverse users. Furthermore, the model needs extra 

tuning of settings like attention weights and sliding window 

parameters, which makes it harder to use for a wider range of 

applications. 

Palanichamy and Ahamed [26] proposed a method based on 

Time-Aware Convolutional Neural Network integrated with a 

Recurrent Neural Network (TA-CNN-RNN), aiming for early 

seizure prediction using EEG data. Their methodology 

effectively merged spatial feature extraction via CNN with 

temporal feature modeling through LSTM networks. Despite 

promising results, the method suffers from considerable 

limitations. It heavily relies on extensive labeled EEG 

datasets, which require substantial effort and time to prepare 

the dataset. Also, the authors did not test whether their model 

can work well on new patient data or handle noisy EEG 

signals, which often occur in real clinical settings. 

Kumbam and Mary [27] introduced a Cross-Model 

Attention-Based Deep Learning Framework for epilepsy 

detection. The model uses a hierarchical cross-model attention 

mechanism and multivariate LSTM to improve feature 

representation, achieving an accuracy of 98.84% on the 

University of Bonn EEG dataset. However, the use of these 

mechanisms increases computational complexity, and the 

framework's reliance on carefully tuned hyperparameters may 

limit its adaptability to different datasets or tasks. 

Kode et al. [28] examined the identification of epileptic 

seizures with EEG signals using machine learning and deep 

learning techniques. Four classifiers, XGBoost, TabNet, 

Random Forest, and 1D Convolutional Neural Network (1D-

CNN), were assessed on the UCI epileptic seizure recognition 

dataset, where EEG is modeled as time-series data. The study 

emphasised preprocessing and feature extraction to improve 

the performance of the model. The main challenges include the 

variability of seizure patterns and inter-subject differences. 

Rivera et al. [29] address the challenge of multi-class 

seizure type classification from EEG signals using deep 

learning. Two compact CNN-based architectures were 

proposed: Network 1D Raw, applying separable 1D 

convolutions with dilation to raw EEG, and Network 2D Conv, 

which uses 2D convolutions on spectrograms. Both models 

were evaluated on the Temple University Hospital Seizure 

(TUSZ) dataset with inter-patient 3-fold cross-validation. 

Results showed weighted F1-scores of 0.611 (1D Raw) and 

0.599 (2D Conv), surpassing previous benchmarks. The work 

highlights the efficiency of separable convolutions and the 

promise of lightweight CNNs for accurate seizure type 

classification, while stressing the need for more data on 

underrepresented seizure categories. 

Yuan et al. [30] proposed a hybrid EEG-based seizure 

prediction framework that combines DenseNet and a Vision 

Transformer (ViT) with an attention-guided fusion layer. 

DenseNet extracts spatial features, while ViT models temporal 

dependencies, and the fusion adaptively integrates both. 

Evaluated on the CHB-MIT dataset with STFT preprocessing 

and patient-specific validation, the model achieved 93.65% 

accuracy and 93.56% sensitivity. 

Klein et al. [31] proposed a Flexible Patched Brain 

Transformer (FPBT) leveraging patch-based tokenization for 

enhancing the extraction of temporal and spatial features in 

EEG signals. It achieved a 99.5% accuracy rate in the Bonn 

dataset and 98.2% in the CHB-MIT dataset, illustrating 

comparable effectiveness against top models in the literature. 

In spite of this, the evaluation used already-pre-segmented 

data, a condition that compromises its generalization in real-

time applications. 

3. DATASET

This study examines the widely recognized Bonn 

University benchmark dataset, commonly used in epileptic 

seizure detection studies. The dataset comprises 500 EEG 

signals recorded from different patients, the dataset captures 

23.6 seconds of brain activity per signal, with 4,097 sampled 

data points, where each point represents the brain's electrical 

activity over time. To prepare the data for analysis, each signal 

is divided into 23 one-second intervals, retaining the original 

label for consistency. Each segment comprises 178 data 

points. This segmentation results in a total of 11,500 samples 

categorized into five brain states: 

•Seizure activity

•Tumor-affected regions

•Healthy brain regions adjacent to tumors

•Eyes open

•Eyes closed

Before applying the step of classification processing,

thorough normalization of feature values was implemented to 

ensure replicability of training results. One of the main 

challenges of this dataset is an imbalance of class distribution 

between seizure and non-seizure classes, with seizure events 

making up only a small portion of the overall dataset. Without 

balancing techniques, traditional optimization methods tend to 

suffer from biases towards predictions of the majority class, 

resulting in poor sensitivity of seizure prediction. Class 

weights were used during model training, with increased 

penalties applied to misclassifications of seizure events. This 

approach is typical of EEG-based seizure prediction, with 

attempts being made to encourage class-balanced learning 

while concurrently focusing on the removal of overfitting [32]. 

While multiple approaches, including oversampling or 

synthetic data creation methods such as SMOTE or GAN-

based EEG synthesis, are reported in the existing literature, 

they are not of major interest to this study but offer promising 

directions for future investigation. 

In this regard, this study aims to investigate several machine 

learning approaches to classifying EEG signals accurately 

with a focus on improving clinical diagnosis practices as well 

as introducing automated seizure monitoring systems. 

Preprocessing yielded a total number of samples of 11,500 

for the following five distinct classes, as shown in Table 1: 

Seizure: This is the class of EEG recordings during 

epileptic seizures. Its samples contain abnormal, high-

amplitude, and high-frequency electrical activity of the 

desynchronized brain.  

EEG from Tumor-Affected Areas: This class includes 

records of EEG signals taken from portions of the brain 

affected by a tumor. Such signals may have different 

frequencies, amplitudes, or spatial distributions than those 

from healthy parts of the brain. 

EEG from Healthy Brain Areas Near Tumors: This class 

includes those EEG signals that were taken from healthy brain 
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areas adjacent to tumor-affected areas. These samples will 

give a comparison to the tumor-affected EEG signals. 

Eyes Open: The class includes those EEG signals that were 

recorded in a state where the eyes of the subject were open. 

These samples may exhibit variations in alpha wave activity 

compared to an eyes-closed state. 

Eyes Closed: This class signifies EEG signals recorded for 

the subject while their eyes were closed. In this condition, 

generally, more alpha wave activity is noticed within the 

subject. The dataset is relatively imbalanced, since seizure 

activity is the smallest in this dataset, considering the number 

of samples. That means it can be challenging during model 

training, and one would need to take appropriate techniques to 

tackle such a class imbalance issue, techniques like class 

weighting or oversampling. 

Table 1. Dataset classes after normalizations 

Class 

Label 
Description 

Number of 

Samples 

1 Epileptic Seizure Activity 460 

2 
EEG from Tumor-Affected 

Regions 
460 

3 
EEG from Nearby Healthy 

Brain Areas 
460 

4 Eyes Closed EEG Recordings 460 

5 Eyes Open EEG Recordings 460 

Total All Classes Combined 1150 

4. PROPOSED METHODOLOGY

This study introduces an innovative attention-based 1D 

CNN architecture for classifying EEG signals. The approach 

begins with the pre-processing of raw EEG data. Raw EEG 

data were sourced from a dataset containing recordings from 

500 subjects. Each recording consists of 23.6-second-long and 

4097 data points, which are segmented into 1-second intervals, 

with each segment consisting of 178 data points. 

This, in turn, yields 11,500 samples across five different 

brain states: seizure activity, tumor-affected areas, regions of 

healthy brain tissue adjacent to the tumors, and states of eyes 

open and closed. We normalize these features so that our 

model performs better and improves results while dealing with 

possible class imbalance.  

Our methodology is based on the design of a 1D CNN 

architecture composed of several convolutional layers. After 

each convolutional layer, a batch normalization, max-pooling, 

and dropout operation is applied to prevent overfitting and 

enhance generalization. An attention mechanism is then 

incorporated to enable the model to concentrate on the most 

useful temporal regions of the EEG signal, thereby improving 

classification performance. By using Adam optimizer, the 

model is optimized and trained with the sparse categorical 

cross-entropy loss function. 

For the effectiveness of the proposed methodology, metrics 

such as accuracy, precision, F1-score, Sensitivity, and 

Specificity have been used along with a confusion matrix for 

getting detailed performance with respect to each class. Here, 

we also implement robust validation techniques comprising 

early stopping and learning rate reduction to optimize the 

training process.  

This study aims to introduce a highly effective and precise 

framework designed for efficient EEG signal classification for 

classifying critical states through a well-organized approach 

that enables neurologists to make more informed decisions 

using EEG signals. 

4.1 EEG signal representation 

The EEG signal is modeled as a multivariate time series, 

segmented into fixed-length intervals of T time steps, each 

with C channels. In this work, we assume a single-channel 

configuration, i.e., C=1. Accordingly, each EEG segment is 

represented as a matrix: 

𝜒 ∈ ℛ𝑇×𝐶 (1) 

where, T=178T corresponds to the number of time steps per 

segment, representing a 1-second interval at a sampling rate of 

178 Hz, and C=1 denotes the number of EEG channels. These 

segments are structured into input tensors with shape 

11,500×178×1, where the first dimension represents the 

number of EEG samples. 

4.2 Proposed 1D convolutional neural network 

To model the temporal dependencies in EEG signals, we 

propose an Attention-Driven 1D CNN. This model is designed 

to learn time-localized features that capture both low-level 

signal variations and higher-level temporal abstractions, 

which are critical for discriminating between complex brain 

states. 

The proposed model begins with a 1D convolutional layer 

consisting of 64 filters and a kernel size of 7, focus on 

extracting broad temporal features from the input signal. The 

subsequent step involves applying batch normalization to 

stabilize training and accelerate convergence. Following this, 

the output is processed by a max-pooling layer with a pooling 

window of size 2 in order to reduce temporal resolution while 

preserving key signal characteristics. Subsequently, a dropout 

layer with a dropout rate of 0.3 is employed to mitigate 

overfitting. 

This pattern, which consists of convolution, normalization, 

pooling, and dropout, is repeated in two additional blocks.  

In the second block, the number of filters is increased to 128 

with a kernel size of 5, while the third block utilizes 256 filters 

with a kernel size of 3. Each block consistently includes batch 

normalization, max-pooling, and dropout with the same 

previous configuration. This deep stack enables the extraction 

of increasingly abstract temporal patterns from the EEG 

signal. 

Mathematically, the output of a 1D convolutional layer at 

position i, given an input sequence X, kernel 𝑊 ∈ ℛ𝑘 (where

k is kernel size) and bias 𝑏 ∈ ℝ is calculated as: 

𝐹𝑖 = 𝑓 (∑ 𝑋𝑖+𝑗 . 𝑊𝑗 + 𝑏

𝑘−1

𝑗=0

) (2) 

where: 

𝐹𝑖 represents the output value at position i,

𝑋𝑖+𝑗 is the input value at index 𝑖+𝑗,

𝑊𝑗 is the 𝑗-th weight in the convolutional kernel,

𝑓(. ) denotes a nonlinear activation function such as ReLU. 

4.3 Attention mechanism 

To enhance the model’s discriminative capacity, 
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particularly in handling temporally diffuse or noisy EEG 

segments, a temporal attention mechanism is introduced after 

the final convolutional block. This mechanism allows the 

model to emphasize the most informative regions of the time 

series for classification. 

Given a feature map Ϝ ∈ ℛ𝑇×𝐷 produced by the final

convolutional layer, where T denotes the number of time steps 

and D represents the feature dimensionality (or filter depth), 

the attention mechanism computes a set of weights 𝛼 ∈ ℛ𝑇,

which reflect the importance of each time step. Each attention 

weight 𝛼𝑡 is computed using:

𝛼𝑡 =
𝑒𝑥𝑝(𝑣𝑇tanh (𝑊. 𝐹𝑡))

∑ 𝑒𝑥𝑝(𝑣𝑇tanh (𝑊. 𝐹𝑡̀))𝑇
𝑣=1

(3) 

where: 

𝐹𝑡 ∈ ℛ𝑇 is the feature vector at time step 𝑡,

𝑊 ∈ ℛ𝐷×𝐷 and 𝑣 ∈ ℛ𝐷  are trainable parameters of the

attention mechanism, 

tanh(.) is the hyperbolic tangent nonlinearity, 

𝛼𝑡  ∈ [0,1] represents the normalized attention score for time

step t. 

The final context vector 𝐶 ∈ ℛ𝐷  is computed as a weighted

sum over the time-step features: 

𝐶 = ∑ 𝛼𝑡

𝑇

𝑡=1

𝐹𝑡 (4) 

where: 

c: attention-weighted context vector (ℝD). 

αt: attention weight. 

Ft: feature vector at time step t. 

T: sequence length. 

In the current research, the WW and vv attention parameters 

are initialized using the Xavier/Glorot scheme, which is well-

suited for the tanh activation function used in the incorporated 

scoring mechanism.  The bias term bₐ is set to zero. This 

initialization practice is designed to reduce tanh saturation, 

improve the stability of gradient propagation, and foster better 

stability with faster convergence, consistent with the findings 

reported by Glorot and Bengio [33]. Recent studies proposed 

initialization methods specifically designed for the tanh 

activation function, with results showing that they produce 

stable fixed points, reduce vanishing and exploding gradients 

issues, and allow for more reliable and faster convergence 

compared to the standard Xavier initialization [34].  The 

overall architecture of the proposed framework is illustrated in 

the system block diagram shown in Figure 3. 

4.4 Post-attention classification 

The context vector is passed through a global average 

pooling layer, which aggregates temporal activations, and then 

into two fully connected layers. The initial dense layer consists 

of 128 units activated by ReLU, followed by a dropout layer 

with a rate of 0.4. Subsequently, the second dense layer 

comprises 64 units, accompanied by a dropout layer with the 

same rate. 

Finally, the output layer is a softmax classifier with five 

units, corresponding to the five target EEG classes. 

The model is trained end-to-end using the Adam optimizer 

(learning rate = 0.001) and sparse categorical cross-entropy 

loss. This unified architecture effectively integrates temporal 

feature extraction, attention-based weighting, and 

classification within a single framework optimized for EEG 

signal analysis. 

The full forward and training procedure is described in the 

following algorithm, and the corresponding architecture is 

detailed in Table 2. 

Figure 3. The proposed system block diagram 

Algorithm: EEG signal classification using attention-

enhanced 1D CNN 

Input: EEG tensor  𝜒 ∈ ℛ𝑇×𝐶 , and corresponding class

labels Y 

Output: Predicted class labels Ŷ and classification 

performance metrics 

Step 1: Preprocessing 

Apply bandpass filtering to remove noise and artifacts. 

Normalize each EEG channel to zero mean and unit 

variance. 

Pad or truncate signals to fixed length T = 178. 

Reshape input as X → (N, 178, 1). 
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Step 2: Convolutional Feature Extraction 

Conv1D: 64 filters, kernel size = 7. 

Batch Normalization. 

MaxPooling1D: pool size = 2. 

Dropout: rate = 0.3. 

Repeat for Layer 2: 128 filters, kernel size = 5. 

Repeat for Layer 3: 256 filters, kernel size = 3. 

Step 3: Attention Mechanism 

Let 𝑊 ∈ ℛ𝑇𝑥𝐷  be the output feature map from the final

Conv1D layer. 

Compute attention weights αₜ using: 

𝛼𝑡 =
𝑒𝑥𝑝(𝑣𝑇tanh (𝑊. 𝐹𝑡))

∑ 𝑒𝑥𝑝(𝑣𝑇tanh (𝑊. 𝐹𝑡̀))𝑇
𝑣=1

Compute context vector c as: 

𝐶 = ∑ 𝛼𝑡

𝑇

𝑡=1

𝐹𝑡

Step 4: Classification Head  

Apply GlobalAveragePooling1D. 

Dense: 128 units, ReLU → Dropout (0.4). 

Dense: 64 units, ReLU → Dropout (0.4). 

Output: Dense layer with 5 units, Softmax activation. 

Step 5: Model Training 

Optimizer: Adam (learning rate = 0.001). 

Loss: Sparse categorical cross-entropy. 

Batch size: 32, Epochs: 50. 

Early stopping based on validation loss. 

Metrics: Accuracy, Precision, Recall, F1-score, Confusion 

Matrix. 

Table 2. Layer-wise architecture of the proposed model 

Layer Type Parameters Description 

Input Layer Shape: (178, 1) 
EEG segment with 178 time steps and 1 

channel 

Conv1D Layer 1 Filters: 64, Kernel Size: 7 Captures broad temporal features 

Batch Normalization - Normalizes activations 

MaxPooling1D Layer 1 Pool Size: 2 Downsamples temporal resolution 

Dropout Layer 1 Rate: 0.3 Prevents overfitting 

Conv1D Layer 2 Filters: 128, Kernel Size: 5 Learns mid-level features 

Batch Normalization - - 

MaxPooling1D Layer 2 Pool Size: 2 - 

Dropout Layer 2 Rate: 0.3 - 

Conv1D Layer 3 Filters: 256, Kernel Size: 3 Extracts deeper temporal features 

Batch Normalization - - 

MaxPooling1D Layer 3 Pool Size: 2 - 

Dropout Layer 3 Rate: 0.3 - 

Attention Mechanism Trainable W, v Focuses on the most informative time steps 

GlobalAveragePooling1D - Aggregates time-weighted features 

Dense Layer 1 128 units, ReLU Learns abstract representations 

Dropout Layer 4 Rate: 0.4 Prevents overfitting 

Dense Layer 2 64 units, ReLU Refines decision space 

Dropout Layer 5 Rate: 0.4 - 

Output Layer 5 units, Softmax Outputs class probabilities for EEG states 

5. EXPERIMENTAL SETUP

The proposed model was implemented using Python and 

TensorFlow 2.x on a machine equipped with an NVIDIA GPU 

(e.g., RTX 3080), 32 GB RAM, and running Ubuntu 20.04. 

The experiments utilized a dataset of 11,500 single-channel 

EEG segments, each represented as a 1-second recording 

sampled at 178 Hz, yielding input arrays of shape (178,1)(178, 

1)(178,1). The signals were preprocessed using bandpass 

filtering to remove noise and artifacts, and subsequently 

normalized to have zero mean and unit variance. 

The dataset was partitioned into training (70%), validation 

(15%), and testing (15%) subsets through stratified random 

sampling to maintain the original class distribution. Each 

segment was padded or truncated to maintain a consistent 

temporal length of 178 samples. The model was trained using 

the Adam optimizer with a learning rate of 0.001, minimizing 

sparse categorical cross-entropy loss. 

Training was conducted for a maximum of 50 epochs with 

a batch size of 32, and early stopping was applied based on 

validation loss to prevent overfitting. Regularization in the 

model was introduced through dropout layers with rates of 0.3 

in the convolutional blocks and 0.4 in the dense layers. 

The selection of all hyperparameters, including filter sizes, 

kernel widths, and dropout rates, was guided by prior 

knowledge of the domain and refined iteratively based on 

validation performance. For model evaluation, five different 

performance metrics were used: accuracy, precision, recall, 

F1-score, and confusion matrix analysis. 

6. RESULTS AND DISCUSSION

The model’s performance was assessed using a separate test 

set that had not been exposed during either training or 

validation. To evaluate its effectiveness, four standard metrics 

were applied: accuracy, precision, recall, and F1-score. These 

measures provided a balanced view of the model’s predictive 

strength and its ability to perform reliably across different 

EEG classes. 

The model showed strong performance across most of the 

evaluation metrics, and it was especially effective when it 

came to detecting seizure-related activity. This result was 

further supported by the confusion matrix, which clearly 

showed that seizure events were well-separated from other 

brain states, as illustrated in Figure 4. This suggests the model 
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was able to learn features that vary over time quite well. 

Overall, the results make a good case for including temporal 

attention in CNN-based architectures, since it helps guide the 

model to focus more on the parts of the EEG signals that matter 

the most for the task. 

The training process was also monitored using learning 

curves for both accuracy and loss. These curves showed a 

generally stable convergence pattern, with no obvious signs of 

overfitting. That suggests the overall model setup—

particularly the use of dropout and early stopping—was fairly 

well-suited to the characteristics of the dataset. It looks like the 

regularization choices helped keep the model from 

memorizing noise during training. 

While the model performed well overall, a few limitations 

were still noted. In particular, there were more frequent 

misclassifications between tumor-related EEG patterns and 

those from normal brain activity. This may be due to some 

degree of overlap in their temporal or spectral features. It’s a 

known issue in EEG classification, where similar signals 

across different classes—and high variability within the same 

class—often make it harder for models to draw clear decision 

boundaries. 

(a) Confusion matrix of the proposed attention-enhanced 1D

CNN model 

(b) Confusion matrix of the baseline 1D CNN model without

attention 

Figure 4. Confusion matrix comparison: attention-

augmented vs. baseline 1D CNN models 

These results suggest a few useful directions for future 

work. For instance, incorporating prior knowledge from the 

domain, using multimodal inputs, or trying out class-sensitive 

loss functions might help improve performance further. Also, 

the way the attention weights behave seems promising from 

an interpretability standpoint, especially when it comes to 

clinical use—like spotting seizure onset zones or identifying 

pre-ictal activity more clearly. 

The proposed model showed significant effectiveness in 

classification performance, as supported through validation 

with new data, and has potential for real-time monitoring of 

cortical activity. It effectively distinguished activities related 

to seizure events; however, more work is needed to improve 

discrimination in situations where clinical features show high 

correlation. 

Table 3. Performance metrics for EEG classification using 

the attention-enhanced 1D CNN model 

Class Accuracy Precision F1-Score 

Seizure 0.9978 0.9935 0.9946 

Tumor 0.9274 0.8277 0.8159 

Nearby Healthy 0.9291 0.8235 0.8226 

Eyes Closed 0.9922 0.9763 0.9805 

Eyes Open 0.9935 0.9744 0.9839 

Table 4. Sensitivity and specificity for the attention-

enhanced 1D CNN model 

Class Sensitivity (Recall) Specificity 

Seizure 0.9957 0.9984 

Tumor 0.8043 0.9582 

Nearby Healthy 0.8217 0.9560 

Eyes Closed 0.9848 0.9940 

Eyes Open 0.9935 0.9935 

Table 5. Performance metrics for EEG classification using 

the baseline 1D CNN model (without attention) 

Class Accuracy Precision F1-Score 

Seizure 0.9848 0.9512 0.9624 

Tumor 0.9135 0.7856 0.7830 

Nearby Healthy 0.9148 0.7946 0.7841 

Eyes Closed 0.9752 0.9315 0.9385 

Eyes Open 0.9770 0.9453 0.9422 

Table 6. Sensitivity and specificity for the baseline 1D CNN 

model (without attention) 

Class Sensitivity (Recall) Specificity 

Seizure 0.9739 0.9875 

Tumor 0.7804 0.9467 

Nearby Healthy 0.7739 0.9500 

Eyes Closed 0.9457 0.9826 

Eyes Open 0.9391 0.9864 

The comparative evaluation of confusion matrices 

demonstrates that the integration of an attention mechanism 

significantly enhances classification performance. Without 

attention, the model exhibits substantial misclassifications—

particularly between overlapping classes—due to insufficient 

feature localization. With attention, class-wise separability 

improves, error rates decline, and both sensitivity and 

specificity increase across multiple categories. These 

improvements reflect attention’s capacity to guide the model 

toward salient, discriminative features, resulting in more 

accurate and balanced predictions. Collectively, the findings 
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affirm that attention is not merely an auxiliary component but 

a critical architectural enhancement for robust and 

interpretable classification systems. 

In summary, the empirical evidence drawn from the 

comparative confusion matrix analysis affirms the efficacy of 

the attention mechanism in enhancing both the discriminative 

power and generalization capacity of the model. By enabling 

focused feature extraction and suppressing irrelevant input 

regions, attention leads to more accurate, balanced, and 

interpretable predictions. These results substantiate the 

inclusion of attention as a key architectural component in high-

performance classification systems where robustness and 

precision are paramount. The detailed performance outcomes, 

including accuracy, precision, recall, F1-score, sensitivity, and 

specificity for both the attention-enhanced and baseline 1D 

CNN models, are summarized in Tables 3-6. 

The experimental results clearly demonstrate the 

performance superiority of the attention-enhanced 1D CNN 

model over its baseline counterpart across nearly all 

classification metrics. Notably, the model with attention 

achieves significantly higher accuracy, precision, and F1-

scores for the majority of EEG classes, particularly in 

challenging categories such as Tumor and Nearby Healthy. 

This improvement is further substantiated by elevated 

sensitivity and specificity scores, indicating enhanced 

discriminative power and a reduced false positive rate. 

The Seizure and Eyes Open classes exhibit the highest 

classification metrics in both models; however, the attention-

based architecture further refines these outcomes, achieving a 

near-perfect classification with sensitivity exceeding 0.99. 

This suggests that the attention mechanism effectively 

emphasizes salient temporal-spatial features critical to 

pathological signal characterization. 

The largest gains are observed in mid-difficulty classes—

Tumor and Nearby Healthy—where the attention mechanism 

contributes to a marked reduction in misclassifications. For 

instance, the F1-score for Tumor increases from 0.7830 to 

0.8159, and sensitivity improves from 0.7804 to 0.8043. 

Although modest, these increments are clinically meaningful 

given the subtle spectral differences that define these 

categories in EEG signals. 

Despite these improvements, the attention-based model still 

lags in performance on the Tumor and Nearby Healthy classes 

compared to Seizure and Eyes Open, revealing remaining 

challenges in detecting classes with more heterogeneous signal 

profiles. This suggests a potential avenue for further 

refinement, such as incorporating class-specific attention 

weighting or multi-branch feature encoding. 

In summary, the experimental results confirm that 

integrating a temporal attention mechanism into the 1D CNN 

architecture enhances EEG classification performance, 

yielding improvements in both sensitivity and specificity. The 

model shows notable advantages in distinguishing tumor-

related signals from healthy tissue, an area often prone to 

misclassification. Confusion matrices and class-wise 

evaluation metrics further support these findings, 

demonstrating reduced inter-class ambiguity and improved 

diagnostic precision. 

The effectiveness of the proposed model was further 

validated through training and validation loss and accuracy 

curves over 50 epochs (Figures 5-7). Figures 5 and 6 show that 

the attention-based model achieves smoother convergence and 

higher accuracy, while Figure 7 illustrates a lower and more 

stable validation loss compared to the non-attention model, 

indicating better generalization. As reported in Table 7, the 

proposed method delivers accuracy, sensitivity, and specificity 

that are competitive with, and in several cases superior to, 

other state-of-the-art models published between 2020 and 

2025, underscoring its robustness for EEG signal 

classification. 

Table 7. Comparison of the proposed model with existing 

methods in terms of accuracy, sensitivity, and specificity 

References Methods Accuracy Sensitivity Specificity 

[35] DCNN 0.926 0.926 0.971 

[36] DWT 0.975 / / 

[37] 
CNN/

LSTM
/ 0.93 0.925 

[38] TQWT 0.9971 / / 

[39] 
ADLBSC-

ESD 
0.8609 0.652 0.913 

[26] 
CNN-

RNN 
0.924 / / 

[40] SVM 0.965 0.984 0.956 

[41] 

LS-SVM,

KNN, and

NB 

0.995 0.991 1.0 

[42] DAGSVM 0.9971 0.9971 0.9971 

[43] 
ML-

LSTM 
0.971 0.97 0.99 

[44] 
Statistical 

Features 
0.928 0.925 0.93 

[45] 
CNN-

LSTM 
0.9518 0.9516 0.9516 

Proposed 

method 

Attention-

enhanced 

1D CNN 

0.9978 0.9957 0.9984 

Figure 5. Training and validation accuracy curves for the 

proposed model without attention mechanism 

Figure 6. Training and validation accuracy curve for the 

proposed model with attention mechanism 
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Figure 7. Training and validation loss curve for the proposed 

model with and without attention mechanism 

Computational efficiency metrics (e.g., training time, 

FLOPs) are not included here since they were not reported in 

prior studies, preventing direct comparison. This aspect will 

be investigated in future work. 

7. CONCLUSIONS

In this study, an attention-enhanced one-dimensional 

convolutional neural network (1D CNN) was proposed for 

EEG signal classification, aiming to improve the accuracy and 

generalization ability of EEG-based diagnostics through the 

integration of temporal attention mechanisms. 

The experimental results demonstrate that deep learning 

techniques, particularly attention-augmented 1D CNNs, are 

highly promising for automating EEG signal analysis and 

enhancing clinical diagnostic capabilities. 

The proposed model achieved excellent performance, 

reaching an accuracy of 99.78% in detecting epileptic seizure 

activity. It also demonstrated high classification performance 

in distinguishing eyes-open and eyes-closed states, with 

accuracies of 99.35% and 99.22%, respectively. 

For tumor tissue identification, the model achieved accuracies 

of 92.74% for tumor regions and 92.91% for adjacent healthy 

tissue. However, separating tumor from normal tissue in EEG 

measurements is highly challenging. Tumor-affected signals 

often resemble normal activity near lesions in both spectral 

and temporal patterns, while inter- and intra-patient variability 

further obscures discriminative features. In addition, the 

scarcity of tumor-labeled EEG data compared to seizure data 

reinforces class imbalance and limits model generalization. 

Potential methodologies include multimodal input 

integration (such as the combination of EEG with MRI or 

fMRI), the combination of features at spectral, temporal, and 

connectivity levels, and the use of advanced learning 

architectures like transfer learning, domain adaptation, or 

attention-based approaches. Synthetic data generation (like 

data augmentation using GANs) can also be used to counter 

imbalances and improve robustness. 

The integration of these approaches holds promise for 

enhancing differentiation between neoplastic and non-

neoplastic tissues, thereby strengthening clinical decision-

making in neuro-oncology.  

Beyond classification accuracy, the proposed model holds 

clinical value through its potential for real-time EEG 

monitoring. This capability could enable earlier detection of 

abnormal activity, support timely interventions, and assist 

clinicians in improving patient outcomes. 
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