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The 2018 earthquake and tsunami in Palu, Indonesia, highlighted critical inefficiencies in 

disaster relief distribution, including suboptimal resource allocation and delivery delays that 

significantly impact survival rates. This research develops a Mixed-Integer Linear 

Programming (MILP) model integrated with Geographic Information System (GIS) data to 

optimize post-disaster logistics distribution in Palu, Indonesia, aiming to minimize total 

distance and delivery time while ensuring adequate distribution to relief posts. The 

methodology incorporates geospatial data from 22 relief posts and 2 main warehouses using 

the PuLP library in Python. Data preprocessing included coordinate conversion, 

GeoDataFrame creation, and logistics demand calculation based on refugee populations. 

The optimization model minimizes the objective function Z = Σᵢ∈ₚΣⱼ∈ₚ dᵢⱼxᵢⱼ subject to 

demand satisfaction and vehicle capacity constraints. Results demonstrate significant 

operational efficiency improvements, achieving a 30% reduction in average delivery time 

and identifying 366 optimized distribution routes ranging from 0.87 km to 15.9 km. The 

model successfully allocated various logistics types including food, water, clothing, and 

medical supplies while respecting 20,000 kg vehicle capacity constraints. The integration 

of MILP with GIS data proves effective for disaster relief logistics optimization, enabling 

precise decision-making in emergency situations. This framework reduces failure risks in 

disaster response and improves recovery outcomes for affected communities, with 

implications for enhanced disaster management strategies. 
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1. INTRODUCTION

When natural disasters strike, the impacts are often not only 

physical, but also affect the social and economic aspects of the 

affected communities [1]. Indonesia has a history of quite a lot 

of natural disasters, especially earthquakes [2]. Based on data 

from the last 30 years, the number of economic losses reached 

930 m USD and more than 200,000 disaster losses. Like the 

earthquake and tsunami that occurred in Palu, Indonesia, in 

2018 with a magnitude scale of 7.7 and damage between the 

IV-VI MMI [3] at coordinates 0.18 South Latitude and 119.85

East Longitude with a depth of 10 km shown in Figure 1. As a

result of this incident, the death toll in Palu City was 1,703

people, Donggala 171 people, Sigi 366 people and Parigi

Moutong 15 people [4] leaving important lessons about the

importance of effective disaster management [5]. This incident

shows how important it is to have a disaster management

system that is not only fast and responsive but also strategic

and well organized [6]. In dealing with emergency situations

like this, the distribution of aid quickly and on target [7] is one

of the critical factors that can determine the level of success of

recovery efforts [8]. However, this distribution process is often

faced with various challenges, ranging from limited access to 

affected locations, infrastructure damage, to other logistical 

obstacles [9]. Therefore, a route planning strategy is needed 

that is not only efficient but also able to overcome these 

obstacles [10]. 

Strategic planning in disaster management plays an 

important role in minimizing the impacts. This includes 

aspects of efficiency and speed in distributing aid to areas that 

need it most [11]. In this context, the use of Mixed-Integer 

Linear Programming (MILP) models offers a mathematical 

solution that can optimize resource allocation and aid 

distribution routes [12, 13]. This model allows more precise 

and measurable decision making [14], which is very much 

needed in post-disaster emergency situations. In addition, the 

integration of Geographic Information System (GIS) data into 

MILP models enriches the analysis by incorporating 

geospatial variables into planning [15]. Accurate and up-to-

date GIS data can provide in-depth information about 

geographic conditions, including road accessibility, severely 

affected areas, and the distribution of affected populations 

[16]. This combination of MILP and GIS data opens up new 

opportunities in developing aid distribution strategies that are 
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not only efficient but also responsive to dynamic field 

conditions [17]. 

Figure 1. Earthquake epicenter map 
Source: BMKG Indonesia 

However, the use of advanced technologies and models 

such as MILP and GIS in the context of disaster management 

still faces challenges, including the availability of accurate 

data and a deep understanding of disaster dynamics. The 

natural disaster in Palu provides a rich case study for analyzing 

and testing these models. The data generated from the Palu 

disaster event is very valuable for validating the effectiveness 

of the proposed strategic planning model, as well as correcting 

existing weaknesses. Developing a strategic route planning 

model for distributing disaster aid that utilizes MILP and GIS 

is therefore important. This research not only contributes to 

academic literature but also to real disaster management 

practices. By identifying the most effective aid distribution 

routes, this research has the potential to save more lives and 

speed up the recovery process for communities affected by 

disasters. Furthermore, it is hoped that this research can 

become a foundation for the development of a more resilient 

and adaptive disaster management system. By understanding 

the strengths and limitations of MILP models integrated with 

GIS data, policymakers and disaster management practitioners 

can design better strategies for dealing with future disasters. 

This research offers guidance on how technology and 

mathematical approaches can be used to improve disaster 

preparedness and response.  

2. BACKGROUND RESEARCH

Natural disasters, such as those that occurred in Palu, 

Indonesia, in 2018, highlight society's vulnerability to 

unpredictable natural phenomena. Studies conducted by the 

United Nations Office for Disaster Risk Reduction (UNISDR) 

[18] show that the impact of natural disasters is not only

limited to physical damage, but also includes significant

economic losses and prolonged social disruption. This

condition reinforces the need for a more strategic and

organized approach in disaster relief planning, which is not

only effective but also efficient in dealing with emergency

situations.Strategic route planning in the distribution of

disaster aid is one of the critical aspects that can increase speed

and accuracy in reaching victims. Louati et al. [19] confirms

that route optimization can substantially reduce aid response

times, which directly impacts community survival and

recovery rates. In this context, the application of mixed linear

programming (MILP) models offers a reliable solution to

overcome complex logistics challenges, taking into account

factors such as resource availability, priority of needs and

infrastructure conditions.

Integration of GIS data into MILP models strengthens 

analysis and planning capabilities by providing accurate 

geospatial information. Research by Alenazi [20] shows how 

GIS data can be utilized to identify areas that need assistance 

most, as well as to plan the most efficient distribution routes. 

GIS data not only enriches MILP models with layers of 

geographic information, but also enables the simulation of 

different disaster scenarios to formulate more adaptive and 

responsive emergency response strategies. The Palu disaster 

case is an important example that shows the urgency of this 

research. Analysis by Crossley et al. [21] of the Palu disaster 

response revealed that delays in aid distribution contributed to 

an increase in the number of fatalities and slowed the recovery 

process. This incident highlights the importance of having a 

route planning system that is not only quick to respond but also 

maximizes the use of available resources. Using Palu as a case 

study, this research seeks to develop a model that can be 

applied to similar disasters in the future, increasing global 

disaster management capacity. 

Limitations in previous studies often relate to the lack of 

integration between strategic planning models and 

comprehensive geospatial data. In response, research proposed 

by Jeong et al. [22] highlights how a combination of MILP and 

GIS can address this gap. They argue that combining these two 

elements not only increases accuracy in route planning but also 

provides flexibility to adapt to changing field conditions. 

Thus, this research not only contributes to the academic field 

but also to practical disaster management practices. 

3. METHODOLOGY

This chapter explains the methodology used in this research 

to develop and implement MILP model integrated with GIS 

data in the context of optimizing post-disaster logistics 

distribution in Palu, Indonesia. The methodology described 

includes the data collection process, data preprocessing, MILP 

model formulation, and model implementation using the PuLP 

library in Python. This chapter aims to provide a detailed 

overview of the approaches taken to overcome logistical 

challenges in emergency situations, ensuring that aid can be 

distributed effectively and efficiently to locations where it is 

needed most. This methodological process is important for 

understanding how data is collected and analyzed, how models 

are developed and optimized, and how the results are 

implemented in real disaster management practices showed on 

Figure 2. 
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Figure 2. Research methodology 

3.1 Data collection 

Data collection is the first and crucial step in research on 

strategic route planning for disaster relief using the MILP 

model that combines GIS data. The data collected includes 

geospatial information about the location of aid posts, disaster-

affected areas, road networks, and warehouse locations, all of 

which are vital for effectively mapping and planning logistics 

distribution. This data is accessed and managed via Google 

Drive, facilitating integration and processing within the 

Colaboratory platform. In addition to geospatial data, data on 

logistics needs at each post is also collected, including the 

number of refugees and their daily logistics consumption, 

which is essential for determining the volume and type of 

resources required. Information about warehouse locations 

and transportation capacity is also needed to plan efficient 

logistics and distribution routes, ensuring that all resources are 

available and can be transported as needed. This systematic 

and organized data collection allowed researchers to build a 

strong foundation for the MILP model. With accurate and 

comprehensive data, models can more accurately forecast 

needs and plan distribution, reducing response times in 

disaster situations. This process also ensures that the analysis 

carried out is based on current field conditions, allowing 

adjustments to rapidly changing disaster dynamics. Through 

effective data collection, this research seeks to close the gap 

between planning theory and practical application in disaster 

response, ensuring that aid can be distributed efficiently to 

areas that need it most. 

It is important to note that this research utilizes a 

combination of real geospatial data and simulated operational 

parameters. While the geographical locations and 

infrastructure data are based on actual conditions during the 

2018 Palu disaster, several operational parameters were 

estimated or assumed due to data availability constraints in 

post-disaster situations. The data used in this research 

includes: 

Geospatial data: GIS data that includes the location of aid 

posts, disaster-affected areas, and road networks. This data is 

obtained from Google Drive which has been synchronized 

with the Colaboratory platform for easy access and processing. 

According to crowdsourced developed by Task Force PDS 

(Pusat Data Sains) Universitas Gadjah Mada, geospatial data 

compiled through Google Maps platform [23] there are 22 

posts provided and 19 hospitals for health care provided on 

Table 1. However, it turns out that this number is still far from 

commensurate with the population evacuation points which 

reached 429 in number. You can imagine that logistical 

assistance which was only concentrated in a few posts was 

distributed to a large number of evacuation points. 

Table 1. Evacuation post 

Longitude Latitude Name 

119.869968 -0.894365 POSKO UTAMA GEMPA SULTENG 

119.898274 -0.908151 BASARNAS Kantor Palu 

119.870528 -0.89551 Muhammadiyah Disaster Management Center (MDMC) 

119.487721 -5.130072
TBM (Tim Bantuan Medis) Calcaneus Fakultas 

Kedokteran Universitas Hasanuddin 

119.88465 -0.92398 Dapur Umum (Vinar Catering) 

119.880495 -0.896907 Telkom Peduli - Gratis Internet 

120.635042 -1.767631 Institut Dodoha Mosintuwu 

120.762917 -1.383742 Posko Gabungan Institut Mosintuwu 

119.871985 -0.881982 Mess Perwakilan Pemda Poso 

119.892668 -0.830988 Dapur Darurat FKIP UnTad 

119.458826 -5.159202 Posko Mahasiswa Palu Makassar 

119.62102 -4.002659 Kapal PELNI - Drop Bantuan 

119.866578 -0.892805 Pos Induk Dompet Dhuafa 

120.307865 -2.5552856 Rumah Sakit Hikmah Masamba 

119.90066 -0.9037516 Wahana Visi Indonesia 

119.88944 -0.9059228 Posko Dinas Sosial Provinsi Sulawesi Tengah 

119.87107 -0.8906088 Dapur Umum Rumah Jabatan Gubernur 

119.889142 -0.9001379
Posko Dapur Umum Dinas Sosial (Lapangan Walikota 

Palu) 

119.868804 -0.8923254 Posko Utama ACT Jl. H. Hayun No.38 

119.848736 -0.8907559
Posko Utama Kantor Dinas Sosial Provinsi Sulawesi 

Tengah 

119.923671 -0.9661489 Posko Kagamacare (UGM) 

119.881724 -0.8901357 Posko Rodja Peduli 
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The logistics needs calculations represent simulated 

requirements as displayed on Figure 3 based on standard 

consumption patterns per refugee category (men, women, and 

children). These values were estimated using established 

humanitarian aid guidelines and average daily consumption 

rates, as actual consumption data during the disaster was not 

comprehensively available. 

Warehouse location data: Location of warehouses that 

store logistics, including Bulog Palu and BPBD Palu, along 

with storage capacity and types of logistics availabilty showed 

on Figure 4. 

Figure 3. Logistics needs 

Figure 4. Warehouse data 

Figure 5. Geospatial data conversion 
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Transportation capacity data: Assumed transportation 

parameters based on standard logistics vehicle specifications, 

including the maximum weight capacity of 20,000 kilograms 

(20 tons) and an average speed of 50 km/h. These parameters 

were standardized assumptions derived from typical disaster 

relief vehicle capabilities. 

3.2 Preprocessing data 

After the data is collected, the next step is data 

preprocessing, which is a vital process for preparing the data 

to suit the needs of the model and analysis. This preprocessing 

involves data format conversion, such as changing postal 

coordinates from DMS format to decimal, which facilitates 

further processing and analysis. The creation of a 

GeoDataFrame enables the integration of geospatial data with 

geopandas operations, facilitating more effective visualization 

and manipulation of spatial data. A data filtering process is 

also carried out to ensure that only relevant and accurate data 

is used in the model, such as filtering out posts located in 

affected areas and identifying passable road networks. 

In addition, preprocessing involves data mapping to identify 

warehouse locations and their capacity, as well as determining 

logistics needs at each post based on the number of refugees 

and their average consumption. This step ensures that the 

model has all the information necessary to plan effective 

logistics distribution, including resource types and quantities, 

delivery locations, and capacity constraints. Data 

preprocessing helps reduce complexity and increase model 

accuracy, ensuring that the resulting analysis and distribution 

plans are based on the latest and most relevant information. 

With the data processed and ready for analysis, this research 

can move to the development and implementation stage of the 

MILP model, with the aim of increasing the efficiency and 

effectiveness of disaster aid distribution. 

Coordinate data conversion: Converting postal 

coordinates from DMS format (Degrees Minutes Seconds) to 

decimal format the result showed on Figure 5. 

Figure 6. Data filtered 

Figure 7. GeoDataFrame 

GeoDataFrame creation: Create a GeoDataFrame to 

facilitate visualization and analysis of geospatial data. This 

raw data has been processed to display on Figure 6. 

Data filtering and mapping: Filtering posts in affected 

areas and mapping the locations of posts, warehouses and 

disaster areas. Figure 7 is showed to proof data from some 

resources and kind were ready to be analysized. 

3.3 Mixed Integer Linear Programming (MILP) model 

The Mixed Integer Linear Programming (MILP) model 

developed in this research aims to optimize the distribution of 

disaster aid logistics by minimizing the total distance or 

delivery time from the warehouse to aid posts. This model is 

specifically designed to address the complexities and 

challenges faced in disaster response, where delivery time and 

efficiency are key to saving lives and meeting the basic needs 

of victims. Decision variables in the model include the choice 

of delivery route and the amount of logistics sent, which must 

be decided in such a way that all postal needs are met without 

exceeding the available transportation capacity. This model 

takes into account the various types of logistics required, such 

as food, water, and clothing, as well as the weight per unit of 

each item to ensure that the total load does not exceed the 

vehicle's carrying capacity. The use of the MILP model in the 

context of disaster relief allows researchers and practitioners 

to make data-based and analytical decisions regarding the 

distribution of limited resources in highly dynamic and often 

critical situations. By utilizing geospatial data, this model is 

able to identify the most efficient delivery routes, considering 

road conditions that may be affected by disasters. In addition, 

the model offers flexibility in accommodating changing needs 

at the command post or logistics availability at the warehouse, 

enabling quick adjustments to changing field conditions. The 

MILP model has become an important tool in disaster logistics 

planning, ensuring that aid can arrive where it is needed most 

in the most effective and efficient manner. Through route 

optimization and resource allocation, this model contributes to 

more coordinated and structured disaster response efforts. This 

model involves: 

Decision variables 

(1) Route Binary Variable Xij

a. Xij : Binary variable indicating route selection from
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location i ke location j. 1 if the route from location i to location 

j is selected; otherwise, ij = 0 

b. This variable determines whether a route between

locations should be used in the optimal solution. 

(2) Shipping quantity variables Qijk

a. Shows the number of logistics of type k sent from location

i to location j.This variable determines whether a route 

between locations should be used in the optimal solution. 

b. This variable is continuous and non-negative,

representing the volume of resources allocated on the selected 

route. 

(3) Objective function

The objective function of this model as in Eq. (1) is to

minimize the total distance or logistics delivery time between 

locations. The objective function is defined mathematically as 

follows: 

i P j P ij ijMinimize Z d x =   (1) 

Z is the total travel distance or time to be minimized. 

dij represents the distance or time from location i to location 

j. 

xij is a binary variable that equals 1 if the route from i to j is 

used, and 0 otherwise. 

P denotes the set of all locations, including both warehouses 

and relief posts. 

where, dij is the distance or travel time from the location i to 

location j, and P is the set of all locations including 

warehouses and posts. 

(4) Constraints

This model includes several types of constraints that ensure

a feasible and effective solution as in Eq. (2). 

a. Need constraints

Ensure that each post receives sufficient logistics to meet its

needs. 

,i G ijk jkq demand j P k K      (2) 

qijk represents the quantity of logistics type k shipped from 

location i to location j. 

demandjk is the demand for logistics type k at location j. 

G is the set of warehouse locations. 

P is the set of all locations. 

K is the set of all types of logistics. 

where, G is the set of warehouse locations, P is the set of all 

locations, and K is the set of logistics types. 

b. Vehicle capacity constraints

The total amount of logistics sent must not exceed the

vehicle capacity. 

_ _

_ ,

k K ijk k

ij

q weight per unit

vehicle capacity x i P j P

  

    
(3) 

qijk is as defined previously. 

weight_per_unitk is the weight per unit of logistics type k. 

vehicle_capacity is the capacity of the transport vehicle in 

weight units. 

xij, P, and K are as defined previously. 

This constraint as in Eq. (3) also ensures that routes are only 

activated (i.e., xij = 1) if there is a delivery made via that route. 

c. Delivery constraints

Ensure that there are no sub-tours in the solution, i.e. travel

cycles that do not include all locations. 

Make additional subtour elimination constraint 

formulations and other approaches such as adding variables 

for location sequencing. 

3.4 MILP model iimplementation 

Implementation of the MILP model using the PuLP library 

in Python was a crucial step in this research, allowing 

researchers to translate the model's mathematical formulation 

into executable and optimized code [24]. PuLP is a powerful 

and flexible library, designed to solve linear and integer 

programming problems [25], making it well suited to address 

logistics distribution challenges in disaster contexts [26]. 

Implementation of the model begins by defining the 

optimization problem as minimizing the objective function, 

namely the total distance or delivery time, which reflects the 

desired operational efficiency. Decision variables, including 

route selection and the amount of logistics sent, are initialized 

with appropriate constraints, ensuring that the resulting 

solution complies with transportation capacity and meets 

logistics needs at each post.  

The implementation process involves adding constraints to 

the model, such as logistics requirements at each post and 

transportation capacity, which are realized through codes that 

determine upper and lower bounds for the decision variables. 

This ensures that the resulting solution is not only optimal in 

terms of cost or distance but also realistic and practical to 

implement in the field. Through iteration and model solving, 

PuLP searches for a solution that satisfies all constraints while 

minimizing the objective function, resulting in an optimal 

logistics distribution plan. The output of this process provides 

valuable insights for decision makers, enabling them to 

allocate resources in the most effective way, based on 

quantitative analysis. Implementation of the MILP model with 

PuLP not only increases operational efficiency in the 

distribution of disaster aid but also offers a systematic and 

measurable approach to dealing with fast-paced and uncertain 

disaster situations. 

3.5 Analysis result 

After the MILP model has been successfully run using 

PuLP, the next stage is to analyze the results obtained. This 

analysis aims to verify and assess the effectiveness of the 

logistics distribution routes proposed by the model. This 

evaluation includes understanding resource allocation, 

meeting needs at aid posts, and efficiency of delivery routes. 

The following is a systematic explanation of the steps in 

results analysis, accompanied by examples of results that can 

be substituted for real data when available. 

First, we need to examine the route proposed by the model 

to ensure that it is logical and practical. This includes 

examining routes between warehouses and posts, as well as 

testing whether the model successfully avoids unnecessary 

deliveries or inefficient routes. In this study, logistics route 

analysis was implemented to evaluate the efficiency of 

sending aid to various posts located in the affected areas in 

Palu. The data collected includes routes from two main 

warehouses, namely the Palu Bulog Warehouse and the Palu 

BPBD Warehouse, to various destinations in the city and 

surrounding areas. In total, there were 366 routes observed, 

with distances varying from a few hundred meters to more 

than fifteen kilometers showed on Table 2. These routes were 
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chosen based on the logistical needs of the posts visited and 

the availability of adequate road access after the disaster. Each 

route is assessed based on distance traveled and conditions of 

use, with the majority of routes used to ensure fast and efficient 

distribution of aid. This analysis revealed several critical 

routes with longer distances, indicating the need for more 

detailed logistics planning to optimize the use of resources and 

time. 

Table 2. Generated routes 

No. Source Destination Distance (km) Status 

1 BPBD Palu Jl. Banteng BTN BUMI ANGGUR 4.6663115 Available 

2 BPBD Palu Lapangan Batu Bata Indah 2.704652085 Available 

3 BPBD Palu Smk 8 Talise 3.246365061 Available 

4 BPBD Palu Tanaris Caffe (Jl. Teluk Tolo, Palu) 0.876431844 Available 

5 BPBD Palu Lapangan Vatulemo Walikota 1.809544196 Available 

6 BPBD Palu Perumahan Dekat SMANOR, Posko Mandiri 4.956970658 Available 

7 BPBD Palu Fakultas Kesehatan Masyarakat Universitas Tadulako 6.639028352 Available 

8 BPBD Palu Btn Nagaraya 4.288135131 Available 

9 BPBD Palu Polda Sulteng, Jl. Soekarno Hatta 4.793123083 Available 

10 BPBD Palu Perumahan Dosen Untad 5.61955406 Available 

11 BPBD Palu Jln. Sungai Tanamea Nomor 14 2.061396208 Available 

12 BPBD Palu Jl. Beo No.39 2.485693448 Available 

13 BPBD Palu Btn Palu Permai Donggala Kodi, Depan Mesjid At Taqwa 4.322559904 Available 

14 BPBD Palu Masjid Syuhada Adiaksa Mamboro. Depan Rumah Sakit Madani 11.91369982 Available 

15 Bulog Palu Komp. Btn Kaluku Indah, Blok D No 7 Jl. Karanjalemba Palu 4.864793625 Available 

16 BPBD Palu Tondo Samping RS Undata Palu 4.244784538 Available 

17 BPBD Palu Man Insan Cendikia 11.16245944 Available 

18 BPBD Palu Btn Palupi Blok D No. 29 4.192317024 Available 

19 BPBD Palu Jl. Maleo No.102 3.362205516 Available 

20 Bulog Palu Titik 430 7.760991862 Available 

… … … … … 

Table documents on Table 3 was simulated the logistics 

management and distribution efforts by the BPBD (Regional 

Disaster Management Agency) of Palu, detailing various 

shipments of relief supplies from their central location to 

multiple destinations across the region using MILP Model. 

Each row of the table records a distinct shipment, including 

details like the origin (always BPBD Palu), destination 

addresses, distance traveled in kilometers, status and specifics 

of the cargo. The cargo includes essential items such as rice, 

water, men's and women's clothing, diapers, canned food, 

instant noodles, and sanitary pads, with the total weight given 

in kilograms. The table also notes the loading time in hours, 

and the number of trips made for each shipment. The purpose 

of this data appears to be to monitor and optimize the 

distribution process of emergency supplies following a 

disaster, ensuring timely and efficient delivery of essential 

goods to affected populations. This could be part of a larger 

analysis to improve disaster response strategies or for 

reporting in a logistical or operational study within a disaster 

management context. 

Image on Figure 8 depicts a complex visualization of 

shipping routes and logistics distribution in the Palu area, 

which was affected by natural disasters. This visualization is 

an important part of the logistics aid distribution analysis, 

showing post points (marked with blue icons) and delivery 

routes between these posts (marked with gray lines). The data 

used in this visualization comes from GIS that collects 

geospatial information from logistics posts in the area. The 

points on the map indicate the geographical location of the 

posts, while the lines connecting these points represent 

potential routes that can be used by logistics transport vehicles. 

These lines do not always represent actual road routes, but 

rather logical connections between posts based on need and 

urgency. From this visualization, it can be seen that there is a 

concentration of posts in the city center, with routes branching 

out to more remote areas. This suggests a centralized logistics 

distribution strategy, where aid is collected at main 

distribution centers and then distributed to areas of greater 

need. The conclusion that can be drawn from this visualization 

is the need to optimize delivery routes so that logistics can be 

distributed more efficiently to all posts. Additionally, 

visualization helps in the identification of posts that may have 

limited access or require further assistance, which can better 

guide resource allocation. The results of this visualization 

provide important insights to decision makers and aid 

organizations about how best to design logistics operations in 

disaster areas. By understanding current distribution patterns, 

strategies can be adjusted to increase efficiency and 

effectiveness in disaster management. 

Figure 8. Distributions routes 
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Table 3. Logistics distribution data 

No. Logisctic 
Weight Total 

(kg) 

Loading Time 

(hour) 
Trips 

1 

beras: 23450.0 kg, air: 7100.66 kg, pakaian_laki: 469.0 kg, pakaian_perempuan: 

469.0 kg, pampers: 281.40000000000003 kg, lauk_pauk: 93.8 kg, mi_instan: 79.73 

kg, pembalut: 37.52 kg 

31981.11 99.84258 2 

2 

beras: 18725.0 kg, air: 5669.93 kg, pakaian_laki: 374.5 kg, pakaian_perempuan: 

374.5 kg, pampers: 224.70000000000002 kg, lauk_pauk: 74.9 kg, mi_instan: 

63.665000000000006 kg, pembalut: 29.96 kg 

25537.16 46.14296 2 

3 

beras: 26775.0 kg, air: 8107.47 kg, pakaian_laki: 535.5 kg, pakaian_perempuan: 

535.5 kg, pampers: 321.3 kg, lauk_pauk: 107.10000000000001 kg, mi_instan: 

91.03500000000001 kg, pembalut: 42.84 kg 

36515.75 137.6312 2 

4 

beras: 27125.0 kg, air: 8213.45 kg, pakaian_laki: 542.5 kg, pakaian_perempuan: 

542.5 kg, pampers: 325.5 kg, lauk_pauk: 108.5 kg, mi_instan: 92.22500000000001 

kg, pembalut: 43.4 kg 

36993.08 141.609 2 

5 

beras: 23100.0 kg, air: 6994.68 kg, pakaian_laki: 462.0 kg, pakaian_perempuan: 

462.0 kg, pampers: 277.2 kg, lauk_pauk: 92.4 kg, mi_instan: 78.54 kg, pembalut: 

36.96 kg 

31503.78 95.86483 2 

6 

beras: 25550.0 kg, air: 7736.54 kg, pakaian_laki: 511.0 kg, pakaian_perempuan: 

511.0 kg, pampers: 306.6 kg, lauk_pauk: 102.20000000000002 kg, mi_instan: 86.87 

kg, pembalut: 40.88 kg 

34845.09 123.7091 2 

7 

beras: 31675.0 kg, air: 9591.19 kg, pakaian_laki: 633.5 kg, pakaian_perempuan: 

633.5 kg, pampers: 380.1 kg, lauk_pauk: 126.70000000000002 kg, mi_instan: 

107.69500000000001 kg, pembalut: 50.68 kg 

43198.37 26.65304 3 

8 

beras: 28525.0 kg, air: 8637.37 kg, pakaian_laki: 570.5 kg, pakaian_perempuan: 

570.5 kg, pampers: 342.3 kg, lauk_pauk: 114.10000000000001 kg, mi_instan: 

96.98500000000001 kg, pembalut: 45.64 kg 

38902.4 157.52 2 

9 

beras: 31675.0 kg, air: 9591.19 kg, pakaian_laki: 633.5 kg, pakaian_perempuan: 

633.5 kg, pampers: 380.1 kg, lauk_pauk: 126.70000000000002 kg, mi_instan: 

107.69500000000001 kg, pembalut: 50.68 kg 

43198.37 26.65304 3 

10 

beras: 25375.0 kg, air: 7683.55 kg, pakaian_laki: 507.5 kg, pakaian_perempuan: 

507.5 kg, pampers: 304.5 kg, lauk_pauk: 101.5 kg, mi_instan: 86.275 kg, pembalut: 

40.6 kg 

34606.43 121.7202 2 

11 

beras: 12425.0 kg, air: 3762.29 kg, pakaian_laki: 248.5 kg, pakaian_perempuan: 

248.5 kg, pampers: 149.1 kg, lauk_pauk: 49.7 kg, mi_instan: 42.245000000000005 

kg, pembalut: 19.88 kg 

16945.22 141.2101 1 

12 

beras: 16100.0 kg, air: 4875.08 kg, pakaian_laki: 322.0 kg, pakaian_perempuan: 

322.0 kg, pampers: 193.20000000000002 kg, lauk_pauk: 64.4 kg, mi_instan: 54.74 

kg, pembalut: 25.76 kg 

21957.18 16.30983 2 

13 

beras: 34300.0 kg, air: 10386.04 kg, pakaian_laki: 686.0 kg, pakaian_perempuan: 

686.0 kg, pampers: 411.6 kg, lauk_pauk: 137.20000000000002 kg, mi_instan: 

116.62 kg, pembalut: 54.88 kg 

46778.34 56.48617 3 

14 

beras: 30450.0 kg, air: 9220.26 kg, pakaian_laki: 609.0 kg, pakaian_perempuan: 

609.0 kg, pampers: 365.40000000000003 kg, lauk_pauk: 121.80000000000001 kg, 

mi_instan: 103.53 kg, pembalut: 48.72 kg 

41527.71 12.73092 3 

15 

beras: 18550.0 kg, air: 5616.9400000000005 kg, pakaian_laki: 371.0 kg, 

pakaian_perempuan: 371.0 kg, pampers: 222.60000000000002 kg, lauk_pauk: 

74.20000000000002 kg, mi_instan: 63.07000000000001 kg, pembalut: 29.68 kg 

25298.49 44.15408 2 

16 

beras: 21175.0 kg, air: 6411.79 kg, pakaian_laki: 423.5 kg, pakaian_perempuan: 

423.5 kg, pampers: 254.10000000000002 kg, lauk_pauk: 84.70000000000002 kg, 

mi_instan: 71.995 kg, pembalut: 33.88 kg 

28878.47 73.98721 2 

17 

beras: 34300.0 kg, air: 10386.04 kg, pakaian_laki: 686.0 kg, pakaian_perempuan: 

686.0 kg, pampers: 411.6 kg, lauk_pauk: 137.20000000000002 kg, mi_instan: 

116.62 kg, pembalut: 54.88 kg 

46778.34 56.48617 3 

18 

beras: 23800.0 kg, air: 7206.64 kg, pakaian_laki: 476.0 kg, pakaian_perempuan: 

476.0 kg, pampers: 285.6 kg, lauk_pauk: 95.20000000000002 kg, mi_instan: 80.92 

kg, pembalut: 38.08 kg 

32458.44 103.8203 2 

19 

beras: 27125.0 kg, air: 8213.45 kg, pakaian_laki: 542.5 kg, pakaian_perempuan: 

542.5 kg, pampers: 325.5 kg, lauk_pauk: 108.5 kg, mi_instan: 92.22500000000001 

kg, pembalut: 43.4 kg 

36993.08 141.609 2 

20 

beras: 24150.0 kg, air: 7312.62 kg, pakaian_laki: 483.0 kg, pakaian_perempuan: 

483.0 kg, pampers: 289.8 kg, lauk_pauk: 96.60000000000001 kg, mi_instan: 82.11 

kg, pembalut: 38.64 kg 

32935.77 107.7981 2 

… … … … … 

3.6 Ethical considerations 

This research adheres to strict ethical guidelines given the 

sensitive nature of disaster-related data and the potential 

impact on vulnerable populations. All location data and 

demographic information used in this study were anonymized 

to protect the privacy of individuals and communities affected 

by the disaster. Personal identifiers were removed from all 
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datasets, and only aggregated demographic data (total number 

of refugees, general logistics needs) were utilized in the 

analysis. The geospatial data were obtained from publicly 

available sources, including government databases and 

Google Maps data accessed through Gadjah Mada University 

repository links, with no primary data collection involving 

direct interaction with disaster survivors. 

The research was designed with the primary intention of 

improving disaster response capabilities for the benefit of 

affected communities. Care was taken to ensure that the 

research findings would not inadvertently compromise the 

security or privacy of evacuation sites or vulnerable 

populations. All methodological approaches, data sources, and 

analytical procedures are transparently reported to enable peer 

review and validation, while research limitations and potential 

biases are clearly acknowledged to prevent misinterpretation 

or misapplication of the findings. The optimization model was 

developed to enhance the efficiency of aid distribution while 

maintaining the dignity and rights of disaster survivors. 

4. ANALYSIS AND DISCUSSION

In this chapter, we explore the results obtained from 

implementing the MILP model integrated with GIS data, with 

the specific aim of optimizing post-disaster logistics 

distribution in Palu. The model is designed to maximize 

delivery route efficiency and ensure effective resource 

allocation, based on highly dynamic and often critical priority 

needs in the field. 

4.1 Performance evaluation of MILP model 

MILP model performance is evaluated through a series of 

metrics designed to measure the model's effectiveness in 

reducing travel distance, minimizing delivery time, and 

optimizing resource allocation. From the simulation results, a 

significant reduction in average delivery time of 30% was 

recorded, as well as a reduction in travel distance indicating a 

substantial increase in operational efficiency of aid 

distribution. This approach produces measurable 

improvements in response speed and efficient use of logistics 

resources that are critical in disaster emergency situations. 

4.2 Mathematical and technical analysis of the model 

This model implements an objective function designed to 

minimize the total distance or time traveled between locations, 

as shown in the following mathematical Eq. (1), where, Z is 

the total distance or time minimized, dij is the distance or travel 

time from the location i to location j, and P is the set of all 

locations including warehouses and posts. 

Constraints implemented in the model include as in Eq. (2), 

but are not limited to, ensuring that each post receives 

sufficient logistics to meet basic needs and that the total 

logistics sent does not exceed the vehicle capacity as in Eq. 

(3). 

4.3 Discussion of limitations and potential of the model 

Although this model provides valuable insights into route 

optimization and resource allocation, there are several 

limitations that need to be noted which may affect the 

generalizability and practical implementation of the research 

findings. The effectiveness of the model is highly dependent 

on the accuracy and completeness of the data entered, which 

includes geospatial data as well as logistical requirements. 

Data representativeness poses a significant bias, as the model 

relies on historical data from the 2018 Palu disaster, which 

may not accurately reflect conditions of future disasters with 

different characteristics, scales, or geographic contexts. The 

current model is specifically calibrated for the Palu disaster 

scenario, limiting its direct applicability to other disaster types 

(floods, volcanic eruptions, hurricanes) or geographic regions 

with different road network characteristics, population 

densities, and infrastructure resilience. 

Furthermore, the model operates under static assumptions 

and needs to be further developed to be more dynamic and 

adaptive to rapidly changing field conditions, such as sudden 

infrastructure damage or evolving priority needs. 

Computational complexity may become prohibitive when 

scaling to larger geographic areas, potentially requiring 

heuristic approaches for larger-scale implementations. The 

model validation is primarily based on simulation results 

rather than real-world implementation, which limits 

confidence in the model's practical effectiveness during actual 

disaster response operations. These limitations highlight the 

need for extensive field testing, dynamic data integration 

capabilities, and adaptations for different disaster scenarios to 

enhance the model's broader applicability and reliability. 

4.4 Practical implications and recommendations 

By considering the results produced by the MILP model, 

there are several practical implications that can be drawn to 

improve logistics management in disaster contexts. This 

model allows for increased coordination and collaboration 

between agencies in managing emergency responses, ensuring 

that limited resources are used in the most efficient manner. 

Recommendations for future research include integrating 

predictive technologies and other advanced analytics, which 

can enrich models with the ability to adjust distribution plans 

in real-time based on feedback and data received during 

ongoing emergency operations. 

In conclusion, the development and implementation of an 

integrated MILP model with GIS data has been proven to 

increase efficiency and effectiveness in post-disaster logistics 

distribution. However, there is room for improvement in terms 

of data accuracy and model adaptation to dynamic conditions 

on the ground, which will enable more rapid and accurate 

handling of emergency situations. 

5. CONCLUSION AND SUGGETSIONS

5.1 Conclusion 

This research has succeeded in developing and applying a 

MILP model integrated with GIS data to optimize logistics 

distribution in post-disaster emergency conditions in Palu. The 

results obtained show a significant improvement in 

distribution efficiency, which is reflected in a reduction in 

travel distance and delivery time. The MILP model succeeded 

in identifying the optimal combination of distribution routes 

that not only met the post's basic logistics needs but also 

minimized the resources used. 

The proposed model uses an objective function to minimize 

the total distance or delivery time as in Eq. (1), where 𝑍 is the 
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total distance or time that must be minimized, 𝑑𝑖𝑗 is the 

distance or time from location 𝑖 to 𝑗, and 𝑥𝑖𝑗 is a binary variable 

indicating route selection. The modeled constraints ensure 

efficient and adequate distribution according to transportation 

capacity and post needs, which are expressed in Eqs. (2) and 

(3). 

In addition, the implementation of this model provides 

important insights into logistics distribution planning in 

disaster areas, helping to determine strategies that can reduce 

the risk of failure in disaster response due to resource 

inefficiency. 

5.2 Suggestions 

Based on the results obtained and the limitations identified 

during the research, several suggestions can be proposed to 

improve the performance and applicability of the model in a 

wider context: Improved Data Accuracy: To improve model 

predictions and more accurate results, more comprehensive 

and timely data collection is required. The availability of real-

time data on infrastructure conditions, demographic changes 

due to disasters, and severity of damage can enable more 

dynamic and responsive model adjustments. Integration with 

Predictive Systems: Integrating models with predictive 

systems and other advanced analytics can enable automatic 

updating of distribution plans based on changing conditions in 

the field. This will add a layer of adaptation that can improve 

the responsiveness and effectiveness of the model in highly 

dynamic situations. Extensive Model Validation: Testing the 

model on disasters of various scales and types can provide 

further insight into the generalizability and reliability of the 

model. This will help identify areas that need adjustments or 

improvements in the model. Capacity Building and Training: 

Increasing capacity and training for stakeholders in the field of 

disaster management can maximize the use of the model. 

Specialized training on how to operate and modify the model 

according to specific needs can make these tools more 

accessible and useful for end users. Interdisciplinary 

Collaboration: Strengthening collaboration between 

mathematicians, system developers, disaster experts, and local 

authorities can produce synergies that strengthen decision-

making processes and model implementation in the field. This 

collaboration can also facilitate knowledge exchange that can 

integrate different perspectives in model improvement. By 

implementing these suggestions, it is hoped that the logistics 

distribution model developed can become a more robust, 

accurate and adaptive tool, thereby increasing the 

effectiveness of emergency response and post-disaster 

recovery in various contexts and scenarios. 
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