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Influence maximization in large-scale social networks faces challenges of scalability and 

community-aware diffusion. As Online social networks (OSNs) are deeply integrated into 

our daily lives, particularly with the continuous expansion of web services and mobile 

technologies. The information shared by individuals through social connections directly 

impacts our beliefs and behaviors. Consequently, identifying influential nodes in complex 

OSN structure has attracted considerable attention in a wide range of applications such as 

viral marketing and managing rumors. However, traditional centrality-based methods often 

fail to achieve optimal influence spread in large-scale, real-world networks due to their high 

computational complexity and limited consideration of community structures. To address 

these limitations, in this paper, we propose a novel hybrid approach that combines 

community detection with influence score calculation. The method evaluates influence 

within communities (intra-community) using centrality measures, and across communities 

(inter-community) by identifying bridging nodes, producing a total influence score for each 

node. We implement the approach using the Louvain algorithm for community detection 

and a hybrid bridging score to capture inter-community influence. The proposed method is 

evaluated using the Susceptible-Infected-Recovered (SIR) and Independent Cascade (IC) 

diffusion models on three real-world datasets. Experimental results demonstrate that our 

method identifies influential nodes capable of propagating influence more rapidly and 

effectively compared to existing techniques, demonstrating its scalability and effectiveness 

for large-scale networks. 
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1. INTRODUCTION

An online social network (OSN) consists of various social 

interactions that occur among users. OSNs are web-based 

platforms that allow users to connect with friends and family, 

meet new people, join communities, chat, share images, 

organize events, and build networks with others who share 

common interests or aspects of daily life [1].  

Users of OSNs and their social relationships naturally form 

a community structure, shaped by shared interests and other 

factors such as user’s activities on the platform. In this 

structure, individuals with similar traits are closely connected 

to one another, while having fewer links with users outside 

their community [2]. Since people naturally belong to and 

participate in multiple communities simultaneously, the 

communities actually overlap most of the time. Overlaped 

nodes (users) who are part of many communities are essential 

to the spread of information between different communities. 

Social network analysis (SNA) leverages graph theory to 

model a network as a graph composed of nodes and edges, 

where nodes represent individual actors and edges represent 

the relationships or interactions between them. One of the 

important tasks in any SNA is to identify influential nodes in 

that network and define them as selecting a set of people in the 

network so that it has the maximum influence over the people 

of the network and causes a wide spread of the diffusion 

process [3]. 

The problem of detecting influential users has attracted 

considerable attention recently due to its applications in 

various domains, such as ensuring efficient information 

dissemination [4], managing the spread and control of rumors 

[5], recommendation system [6], public health [7], and viral 

marketing [8]. Furthermore, some nodes have a higher 

influence on the diffusion process than others, thus influence 

diffusion in OSN displays specific diffusion patterns. To 

maximize the effectiveness of information diffusion, 

influential nodes can serve as the first communicators [9]. 

One of the most prominent applications of influence 

maximization is Viral Marketing (VM), which has attracted 

considerable scholarly attention in recent years. The strong 

motivation for studying influence and information propagation 

models with viral marketing is justified by Wang et al. [10]. 

In other words, when an organization or a company wants 

to launch a new product in the market using the word of mouth 

effects within an OSN, the company must identify the 

influential users on the network and get them to adopt the 

product with the anticipation that these initial adopters will 

trigger a large cascade across the network, leading others to 

Ingénierie des Systèmes d’Information 
Vol. 30, No. 7, July, 2025, pp. 1847-1860 

Journal homepage: http://iieta.org/journals/isi 

1847

https://orcid.org/0009-0003-2188-5872
https://orcid.org/0000-0002-2010-9527
https://orcid.org/0000-0002-0815-6072
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300717&domain=pdf


adopt. Therefore, diffusion can be understood to be an 

information transmission process between individuals [11]. 

Most Existing influence maximization approaches largely 

focus on individual centrality measures or community 

detection techniques without effectively leveraging the 

underlying network structure, particularly the roles of bridging 

and overlapping nodes. Many methods rely on simplistic 

single-criterion scoring, which fails to capture the diverse 

aspects of node influence, and often neglect the importance of 

inter-community bridge nodes that facilitate influence 

dissemination across multiple communities. 

Additionally, these methods face scalability challenges 

when applied to large-scale networks, limiting their practical 

applicability. The limited consideration of overlapping nodes, 

which can serve as vital connectors among communities, 

further restricts influence reach. Moreover, much of the 

existing validation is confined to specific datasets, affecting 

the generalizability of the results.  

Our work bridges these gaps by integrating intra-

community centrality, inter community bridging, and 

overlapping node detection into a unified framework. This 

comprehensive approach effectively incorporates multiple 

centrality metrics, overlapping nodes, and accelerates 

diffusion in large networks. and enhance information diffusion 

in large-scale networks. 

In this paper, we propose a hybrid approach, which 

integrates community detection with influence measurement-

based on centrality measures to enhance accuracy and 

maximize the influence. This approach ensures that influence 

is maximized both within and across communities. The 

proposed method developed from inspiration of previous 

works [12, 13] in influence maximization that demonstrated 

the effectiveness of community structure in addressing some 

problems, such as modeling information spread and marketing 

applications, additionally, enhances performance in influence 

maximization [2]. Community detection facilitates the 

analysis of large-scale OSNs by grouping nodes based on their 

connectivity patterns or other attributes [14]. 

This paper incorporates an innovative framework of hybrid 

multi-criteria influence maximization by utilizing community 

detection and multi-criteria influence scoring for the purpose 

of seed selection. The intended identification of seed nodes 

targets both influencers (nodes that have high influence within 

the community) and bridge nodes (nodes with the highest 

potential to bridge communities) to optimize influence 

maximization.  

To summarize, I have developed an approach to improve 

coverage of influence, produce greater speed of active 

diffusion, and lower computation costs. Ultimately, the 

framework has the potential to provide a scalable and holistic 

approach to maximize influence in large, real-world social 

networks. 

The remainder of this paper is structured as follows: Section 

2 provides a literature review, while Section 3 introduces the 

proposed hybrid method in detail, including the community 

detection, calculation of node’s influence measurement and 

the selection of the set of influential nodes. Results and 

discussion are demonstrated in section 4. Finally, this paper is 

concluded in section 5 with key takeaways, practical 

implications, and directions for future work, including 

extensions to dynamic and weighted networks and real-time 

adaptation. 

2. RELATED WORKS

This section presents a focused review of the extensive 

influential nodes’ identification literature from the past five 

years, with particular emphasis on graph-based and 

community-based approaches most relevant to our research. 

Shi et al. [15] proposed a new optimization framework, 

CycRak, to maximize influence based on cycles ranking in 

large undirected networks. Unlike traditional centrality 

measures such as degree, betweenness and closeness centrality 

selection methods, the researchers prioritized basic cycles and 

selected influential nodes from these cycles to maximize 

information spread for CycRak. The study primarily focused 

on undirected and unweighted networks. The authors 

acknowledged this limitation and suggested that extension to 

other network types was necessary. 

In the study [16], authors proposed the Out-degree Effective 

Link (OEL) algorithm by combining out-degree measure with 

Effective Link to address the problem of information diffusion 

maximization in dynamic social networks. By incorporating 

time-sensitive user interactions, this approach enhanced 

traditional information maximization procedures. The 

proposed algorithm extended the Independent Cascade (IC) 

model work based on local topology and effective links, 

ensuring that information maximization diffusion aligned with 

temporal constraints of the real-world. The proposed OEL 

algorithm, which consisted of two stages, first generated a 

candidate set of seeds using out-degree centrality measure and 

metrics of effective links to reduce optimization space and in 

the second stage; it applied a strategy of greedy selection based 

on submodular properties to spread maximum influence 

efficiently. The algorithm primarily considered node degree 

and effective links, but did not take into account other 

important network structural properties like clustering 

coefficient or community structure, which could significantly 

impact influence propagation. 

By integrating information from both the neighboring layers 

of the node and itself, Zhu and Wang [17] proposed a method 

for influential node identification in complex networks. Unlike 

existing approaches like k-shell decomposition and degree 

centrality, which often failed to differentiate nodes effectively, 

the proposed method outperformed degree centrality with 

neighboring layer data to quantify influence more accurately. 

By repeatedly incorporating nearest neighbor information, the 

approach enhanced precision in ranking influential nodes. The 

proposed model was evaluated using the SIR model across 

multiple real-world networks, and results showed that 

proposed model outperform compared to seven other 

centrality measures based methods. The method was primarily 

tested on unweighted and undirected networks with symmetric 

adjacency matrices. This limits its applicability to more 

complex network types, such as weighted or directed networks. 

Another study was introduced by Zhu and Huang [18] for 

influential spreaders identification in complex social networks 

by leveraging spread centrality and path reachability. 

SpreadRank dynamically selected influential nodes unlike 

centrality based tradition methods and it minimized influence 

overlap by optimizing both suppression effectiveness and 

information diffusion. On real-world networks using the SIR 

model, the experimental results demonstrated that SpreadRank 

outperformed the state of the art approaches in both 

immunization impact and spreading efficiency. For large-scale 

networks, the method was computationally efficient but it was 

not applicable to all network topologies because it assumed a 
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limited number of local pivot nodes. 

Both the authors [19, 20] proposed a hybrid model called H-

GSM (Hybrid Global Structure Model) for identifying 

influential nodes in complex networks. In the research [19], 

the authors integrated the GSM (Global Structure Model) 

framework with local and global centrality measures, 

specifically degree and K-shell centrality, to enhance 

influential node identification. They used three real-world 

networks (Karate, Netscience1, and Router) to evaluate the 

performance of the H-GSM model. On the other hand, 

Mukhtar et al. [20] combined the K-shell decomposition 

approach and degree centrality in their H-GSM method to 

incorporate both local and global network information for 

improved identification of influential nodes. They evaluated 

the performance of their model using the SIR model to 

simulate the propagation process on six real-world networks. 

While both studies applied the same core concept of H-GSM, 

Mukhtar et al. [19] focused more on integrating the GSM 

framework with centrality measures, whereas Mukhtar et al. 

[20] emphasized the use of the SIR model for influence

propagation simulation.

Zhao et al. [21] introduced a novel method called KPDN for 

identifying influential nodes in complex networks. The 

proposed approach combines the correlation characteristics of 

both local and global features. For the global perspective, the 

K-shell decomposition was applied to enhance the

discriminative degree of each node. Extensive experiments

conducted on multiple real-world networks confirmed that

KPDN achieved superior performance compared to traditional

algorithms, effectively isolating critical nodes, and rapidly

fragmented networks. Overall, the authors' method offers a

valuable tool for applications where pinpointing influential

nodes was crucial, such as epidemic control, network security,

and infrastructure stability.

On the other hand, Alasadi and Arb [22] proposed a solution 

framework for addressing the influence maximization problem. 

Their framework involved three main phases: Firstly, the 

community structure was discovered using the link density-

based technique clique percolation (CPM), the set of final seed 

nodes was chosen after the candidate seeds were created in the 

second step. The IC diffusion model, which simulates 

influence diffusion in real world network. Experimental 

findings demonstrated improvement compared to baseline 

approaches. The authors highlighted the importance of 

community detection and overlap in improving influence 

maximization strategies. 

Alasadi et al. [23] proposed a graph-based approach was 

employed to identify influential nodes, with particular 

emphasis on overlapping nodes across communities to assess 

their impact on influencer effectiveness. Empirical analyses 

and simulation experiments revealed a strong correlation 

between node centrality score and the properties of 

overlapping nodes, highlighting their critical role in 

determining influencer performance. Their findings highlight 

that leveraging overlapping nodes can significantly enhance 

influence maximization strategies by reducing computational 

efforts and focusing on nodes with inherently high influence 

potential. 

While there are many studies on the influence maximization 

problem in OSN, almost all current approaches have important 

limitations that make them inapplicable in real-world large-

scale networks. The traditional centrality measures and their 

extensions are global and use the entire network without 

considering the modular nature of social graphs. Moreover, 

some methods are based on communities and use a localized 

approach (these can be referred to as community aware 

methods), but usually do not include the communities' bridges 

or ways in which communities interact, which are essential for 

a large information diffusion. 

Additionally, some recent hybrid methods limit themselves 

to using single dimensional or one-dimensional centrality or 

they are not large directed networks, especially for networks 

with overlapping community structures or dynamic 

connectivity. Very few existing works have developed an 

explicit way of combining multi-criteria influence scoring in 

communities with bridge detection between communities, and 

even fewer works have developed a practical and efficient 

method that is applicable for complex networks. 

Our research contributes to the existing literature to fill the 

gaps identified above by proposing a hybrid influence 

maximization method that combines community intra-

centrality-based influence with inter-community bridging. 

The final method represents a comprehensive and powerful 

approach to social network analysis especially directed 

complex networks, as it ensures that selected influencers are 

both locally highly connected and are positioned to contribute 

to the acceleration of information propagation across the entire 

network. The inclusion of intra- and inter-influence expands 

current research and practice in the area of influence 

maximization while increasing the efficacy and efficiency of 

research and practice for communities and the overall 

influence of large networks. 

3. PROPOSED APPROACH

Our paper makes several significant contributions to the 

field of influence maximization in social networks. It 

introduces a novel hybrid approach that combines community 

detection with influence score calculations based on multiple 

centrality measures, thereby enhancing the accuracy and 

efficiency of identifying influential nodes.  

The approach distinctly targets both intra-community 

influential nodes and bridging nodes that connect different 

communities, ensuring a comprehensive influence spread 

across the entire network. Utilizing the Louvain algorithm for 

community detection facilitates effective grouping of densely 

connected nodes, while the hybrid bridging score comprising 

normalized betweenness centrality and community diversity 

accurately identifies critical nodes for inter-community 

information flow.  

The proposed approach is validated on three diverse real-

world datasets (Soc-Epinions1, Cit-HepTh, ia-digg-reply), 

demonstrating its robustness, scalability, and superior 

performance over traditional methods under the most cited 

diffusion models such as IC and SIR [24]. By emphasizing the 

role of overlapping nodes and bridge nodes, the approach 

significantly accelerates influence dissemination and reduces 

computational complexity. Overall, these contributions 

provide a practical and scalable solution for influence 

maximization, applicable to various scenarios like viral 

marketing and rumor control, by strategically selecting seed 

nodes for rapid and widespread influence propagation. In this 

section, we will introduce the detailed process of our proposed 

hybrid approach. 

3.1 Network data preparation 

This initial phase involves acquiring and preparing the 

networks’ data for analysis. The process starts with loading the 
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network data. The three datasets used for validating the experiments are detailed in Table 1. 

Table 1. Statistical overview of the used datasets 

Dataset |V| |E| Davg Com CCavg  Type 

Cit-HepTh 27,770 352,807 25 ≈ 169 0.312 Directed 

Soc-Epinions1 75,879 508,837 13 ≈ 664 0.137 Directed 

Ia-digg-reply 30,400 86,313 5 ≈ 424 0.005 Directed 
|V| and |E| denote the total numbers of nodes and edges, respectively; Davg indicate the average degree, CCavg corresponds to the mean clustering coefficient, and 

Com represents the community count. 

3.1.1 Data preprocessing 

Removing self-loops from a network structure is a common 

practice to ensure a cleaner and more accurate representation 

of the network. Self-loops are edges that connect a node to 

itself, and they can cause complications in various network 

analysis tasks, such as calculating centrality metrics or 

information flow [25].  

In a study on betweenness centrality, it was shown that 

removing self-loops can lead to a more accurate measure of a 

node's importance in the large sparse network, the authors 

specifically note that they consider strongly connected 

networks with no self-loops, emphasizing that the presence of 

self-loops is excluded from their analysis and algorithms [26]. 

Additionally, self-loops can also affect the calculation of other 

centrality metrics, such as degree centrality and closeness 

centrality, making it essential to remove them for a more 

accurate analysis. Another reason for removing self-loops is to 

ensure accurate information flow [27]. 

3.1.2 Construct network graph 

In this step, the preprocessed data is represented into a 

formal graph structure to model social relations. Each dataset 

is represented as directed graph G(V,E), where V represent 

nodes (users) in an OSN, and E represent edges (relationships) 

between users [28]. At the end of this step, three graphs are 

generated, one from each dataset. 

3.2 Community detection 

A community or module refers to a group of nodes (users) 

that are strongly connected and loosely connected to the rest 

of the nodes of the network. However, in real-world cases, 

users in OSNs often take part in many communities 

simultaneously rather than completely disconnected groups. 

The community structure is a related concept defined as a 

group of communities within a graph, and is represented as 

CS={c1, c2, c3, …, cn}, where CS stands for the community 

structure and ci (i = 1 to n) corresponds to the communities. 

Community-based influence maximization has been 

identified as crucial for solving influence maximization 

problems, demonstrating its potential in large-scale networks 

[13]. Several studies have emphasized the critical role of 

community detection in optimizing information diffusion, 

highlighting its significance in ensuring the effective spread of 

influence across social networks [29, 30]. 

In this step communities are uncovered for each graph, to 

detect network communities, the Louvain algorithm [31] is 

used because of its demonstrated efficiency, scalability, and 

ability to detect sub-groups of nodes that are densely 

connected within large networks. The Louvain method detects 

community structure using modularity optimization, which is 

a well known quality function that defines a networks division 

into communities, comparing the density of intra-community 

links to what would be expected in a random network. The 

Louvain method operates in 2 phases in an iterative manner 

where in the first phase, each node is assigned to the 

neighbouring community that increases the modularity best, 

and in the second phase nodes in the same community at the 

previous iteration are aggregated into super-nodes to create a 

new smaller graph. The two phases of Louvain are repeated 

until there is no further improvement in modularity. 

3.3 Intra community seed nodes selection 

To identify influential nodes within each community, an 

Intra-community influence selection process is applied, where 

multiple centrality measures are computed and assigned 

weighted influence scores. These scores are then normalized 

to ensure consistency across the network. The selected 

centrality measures include eigenvector centrality, out-degree 

centrality [32], PageRank, K-Shell decomposition [15, 33] and 

Katz centrality [34, 35], as each captures different aspects of 

node influence. Utilizing multiple centrality metrics ensures 

that nodes with diverse influence characteristics are 

considered [12]. The selection steps are as follows:  

3.3.1 Graph subsetting and filtering 

To ensure reliable analysis, each community is extracted as 

a subgraph from the original graph G. If a community has 

fewer than three nodes, it is ignored to avoid unreliable 

calculations. The subgraph for a given community Ci is 

defined as: 

GCi=(VCi, ECi) (1) 

where VCi is the set of nodes in community Ci and ECi is the set 

of edges connecting them. The condition of filtering 

communities: 

I VCi I < 3 (1) 

This filtering is necessary because very small communities 

lack structural complexity, making centrality measures less 

meaningful. Additionally, skipping such small groups 

improves computational efficiency by avoiding unnecessary 

calculations on insignificant clusters. This step ensures that 

only well-defined communities with sufficient structural 

information contribute to the selection of influential nodes. 

3.3.2 Centrality score calculation 

For each community, different centrality measures are 

calculated to capture different dimensions of user’s influence. 

The out-degree centrality measures the number of direct 

connections a node has, serving as a basic indicator of local 

influence [36]. The out-degree centrality of a node refers to the 

number of edges that originate from the node, indicating the 

node's ability to reach and influence other nodes in the network. 
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PageRank centrality assigns influence based on the 

importance of a node’s connections, effectively capturing 

reputation and authority within the community [37]. In order 

to rapidly determine the importance of nodes in the network, 

based on their proximity to the core layers, Xu et al. [38] 

suggested the global index-based centrality technique known 

as K-Shell decomposition. This approach is efficient for large-

scale networks. with low time complexity. Eigenvector 

centrality considers not only the number of connections but 

also the importance of connected nodes, making it useful for 

detecting structurally significant nodes [39]. Katz centrality 

extends this by incorporating both direct and indirect 

connections with a decay factor, allowing for a broader 

assessment of influence [38]. 

3.3.3 Normalization of centralities scores 

Since each centrality measure operates on different scales, 

they are normalized to [0, 1] making them comparable, using 

min-max scaling and is determined by the following equation: 

Cnorm(v) =
C(v)−Cmin

Cmax−Cmin
(3) 

where, Cmin and Cmax refer to the minimum and maximum 

centrality values across all nodes in the community, 

respectively. 

3.3.4 Influence score calculation 

To quantitatively assess intra-community influence, a 

composite influence score is computed for each node using a 

weighted combination of the centrality measures [40]. The 

computational formulation is given by: 

Iintra(v)=aCout(v)+bCpr(v)+cCev(v)+dCks(v)+eCkz(v) (4) 

where, Coutdg(v), Cpr(v), Cev(v), Cks(v) and Ckz(v) represent 

respectively Out-degree centrality, PageRank centrality, 

Eigenvector centrality, K-Shell centrality and Katz centrality. 

The coefficients a, b, c, d and e are weights assigned to each 

centrality measure, ensuring that their sum equals 1.  

Using a weighted combination of multiple centrality 

measures as an approach to capture the influence of nodes is 

consistent with decision-analysis theory and recent research on 

influence maximization. In the multi-criteria decision-making 

(MCDM) literature, the weighted sum model, also called 

weighted linear combination, is a common method of 

replacing multiple criteria with the one aggregated score, using 

normalized weights for comparison and to not allow 

dominance from any criteria to unduly influence the score [41-

47].  

In social influence analysis literature, hybrid or combined 

centrality metrics have been shown to provide a more powerful 

means at identifying influential nodes than any single metric. 

For instance, Singh et al. [48] show a combination of degree, 

closeness, betweenness, and eigenvector centralities as a 

valued “hybrid-centrality” metric that perform well in various 

contexts.  

Similarly, Şimşek and Meyerhenke [39] demonstrated that 

a closed-form combination of centralities significantly 

improves the identification of spreaders under diffusion 

models, outperforming traditional metrics such as PageRank 

or betweenness alone. Depending on these theoretical 

arguments and empirical findings, and supported by our own 

centrality measures experiments on different directed network 

structures, we selected the weights (a-e). Our study adopts a 

weighted combination of out-degree, PageRank, eigenvector, 

k-shell, and Katz centralities to provide a more comprehensive

and balanced assessment of intra-community influence.

3.3.5 Selection of top influencers for each community 

Within each community, the top k nodes with the highest 

Iintra(v) values are selected as the most influential nodes, where 

k is a parameter to be determined depending on the size on the 

network. In our case within each community, the top 1% of 

nodes with the highest Iintra(v) values are selected as the most 

influential nodes (k=1% of the total community size). The 

number of selected nodes for each community is determined 

as:  

k=max(1, [0.01 * ∣Vci∣]) (5) 

where, ∣VCi∣ is the number of nodes in the community. This 

ensures that even small communities contribute at least one 

influencer to the final set. The top k nodes are then stored for 

further analysis. The total number of selected influencers 

across all communities is computed as: 

Total seed nodes = ∑   
Ci Sci (6) 

where, SCi is the set of selected seed nodes in community Ci. 

3.4 Inter community seed nodes selection 

In this step we identify bridging nodes in the network by 

computing a hybrid bridging score, which integrates 

betweenness centrality and community diversity [49]. The 

process involves two main steps: estimating betweenness 

centrality (B) and computing community diversity (D). 

Betweenness centrality is a measure that quantifies the number 

of shortest paths passing through a node, indicating how often 

a node acts as a bridge between two other nodes [50]. In this 

work, betweenness centrality is estimated using a sampling 

approach, which approximates the number of shortest paths 

passing through a node [51]. The estimated betweenness 

centrality is then normalized for consistency. This step helps 

to identify nodes that are crucial for information flow within 

the network. Community diversity is a measure that counts the 

number of distinct communities among a node's neighbors, 

indicating how well a node connects different communities 

[52]. In this work, community diversity is computed by 

counting the number of distinct communities among a node's 

neighbors and then normalizing the value. This step helps to 

identify nodes that are key influencers for influence diffusion 

and epidemic control. After estimating betweenness centrality 

and computing community diversity, a hybrid bridging score 

is formulated by balancing global network influence and inter-

community connectivity. The hybrid bridging score is a 

weighted sum of the normalized betweenness centrality and 

community diversity. This score is used to identify bridging 

nodes in the network. The hybrid bridging score H(v) for node 

v is represented as a weighted linear combination of 

normalized betweenness and community diversity: 

H(v)=α.B(v)+(1-α).D(v) (7) 

where: 

⚫ α=0.6 (importance of betweenness),

⚫ 1-α=0.4 (importance of community diversity)

1851



The value of (α) were chosen based on extensive empirical 

testing across the datasets used in this study. Through iterative 

simulations, it was observed that setting (α) to 0.6 and (1-α) to 

0.4 consistently resulted in the most effective influence 

diffusion, balancing local and global influence propagation. 

Specifically, a higher value of alpha emphasizes intra-

community influence, promoting rapid and dense spread 

within communities. Previous works on influence 

maximization and bridging node identification has also 

emphasized the importance of betweenness in connecting 

communities [53, 54], which supports giving it a slightly 

higher weight than community diversity. Therefore, we fix (α) 

to 0.6 and (1-α) to 0.4 in our experiments, as this setting is both 

empirically validated and theoretically consistent. These 

parameters were selected because they yielded optimal 

influence diffusion in our experiments. 

3.5 Integration of inter-nodes and intra-nodes 

The process involves selecting influential nodes within each 

community and combining them with nodes that act as bridges 

between communities. Influential nodes are gathered from 

different groups, and merged with the set of bridge nodes [55, 

56]. This union ensures that all selected nodes are unique, 

capturing both locally central individuals and those that 

facilitate connections across the network. The resulting set 

provides a strategic selection of nodes optimized for influence 

and connectivity across the entire network. 

4. RESULT AND DISCUSSION

The proposed hybrid seed selection method was tested on 

three different real-world networks of existing social networks 

(Soc-Epinions1, Cit-HepTh, and ia-digg-reply); we chose 

these datasets for their differences in size, community 

structures, and structural complexity. This way we had a good 

performance testing ground for determining how well and how 

fast the hybrid influence maximization works in propagating 

influence and the results validated the method as superior to 

baseline methods. 

Our experiments across three distinct network datasets 

showed that the proposed hybrid seed selection model 

consistently outperformed traditional centrality-based 

approaches, achieving improvements in influence propagation. 

The simulation results of the diffusion process under IC and 

SIR models are presented in Figures 1 and 2, and Tables 2 and 

3. We carefully selected parameter values for each model that

accurately simulated the flow of information. For the SIR

model, we set infection probability (β) to 0.5, and the recovery

rate (γ) to 0.01, simulating an epidemic-like diffusion process

where nodes stop transmitting influence once they recover

[18].

For the IC model, infection probability is determined 

dynamically based on structural characteristics of the graph 

[49]. To maintain consistency, we completed 50 iterations for 

each simulation. Results consistently showed superior 

performance in networks with overlapping communities due 

to the integration of intra- and inter-community influence 

metrics. 

In the Soc-Epinions1 network (75,879 nodes, 508,837 

edges), which consisted of complex community structure , the 

hybrid model achieved approximately 65.62% activated nodes 

after no more than 10 diffusion steps under the IC model much 

higher than traditional centrality based methods that achieved 

62.7% coverage. This represents a clear gain of almost 3 

percentage points (≈2,000 additional activated nodes) 

compared to the strongest baseline, demonstrating its superior 

ability to penetrate across communities and trigger larger 

cascades. More significantly, over 70% of the nodes were 

activated within 6 steps, meaning that not only did the hybrid 

model account for greater reach, but also greater speed of 

diffusion. Under the SIR model, the hybrid method once again 

performed well and induced around 40 to 41% infected nodes, 

while standard methods achieved 38 to 39% (around 700 

additional infected nodes). In addition, our proposed approach 

consistently outperform baseline methods in terms of 

inactivated and susceptible nodes under IC and SIR models 

respectively. Specifically, it achieves the lowest proportion of 

inactivated or susceptible nodes, indicating that the influence 

diffusion not only reaches more users but also leaves fewer 

nodes unaffected. For instance, on this dataset, our approach 

leaves only 34% and 36% under IC and SIR respectively, 

compared to mora than 38 to 39% for the baseline centralities. 

These results demonstrate that our proposed method can 

identify influential nodes that are highly influential within-

communities, and bridge nodes that allow the diffusion to 

occur across community structures, allowing for the broad 

influence to be attained rapidly. 

Similarly, in the Cit-HepTh network (27,770 nodes, 

352,807 edges), which is a highly hierarchical and dense 

linking citation network, the hybrid approach achieved over 

74.34% activated nodes in 12 iterations under IC model, for 

the baseline it was 59 to 67% (around 4000 additional infected 

nodes). This was also the case for the SIR model, which, 

collectively, covered 44% of infected nodes, for the baselines 

method it was 39 to 41% (around 1600 infected node), all 

significantly ahead of other examined methods. The hybrid 

approach also achieved 80% in only six steps, compared to 

most of the other traditional approaches, which required 10 or 

more steps. For instance, on this dataset, our approach leaves 

only 26.2% and 31.3% under IC and SIR respectively, 

compared to more than 34 to 41% for the baseline centralities. 

Further justifying the advantage of bridging capacity in seed 

selection. These outcomes also imply that global bridging is 

critical for maximizing influence spread in hierarchical 

structures. 

In the ia-digg-reply dataset (30,400 nodes, 86,313 edges) 

which contains dense and overlapping community structures, 

the hybrid method continued to perform well, despite being the 

only overlapping community structure, covering 

approximately 99.85% activated nodes under the IC model and 

62.3% under SIR after 8 iterations, much higher than 

traditional centrality based methods that achieved 97.5% and 

60.5% under IC and SIR respectively, (around 2,600 

additional activated nodes under IC and 700 nodes under SIR 

model). Moreover, our proposed approach consistently 

outperform baseline methods in terms of inactivated and 

susceptible nodes under IC and SIR models respectively. 

Specifically, it achieves the lowest proportion of inactivated 

nodes. For instance, on this dataset, our approach leaves only 

0.17% and 0.6% under IC and SIR respectively, compared to 

around 3% for the baseline centralities. Because of the large 

amount of clustering and overlapping in this network, it was 

considerably more difficult for traditional methods to find 

influential nodes.  

1852



(a) 

1853



(b) 

1854



(c) 

Figure 1. (a) Propagation influence using SIR model, Soc-Epinions1 dataset; (b) Propagation influence using SIR model, Cit-

HepTh1 dataset; (c) Propagation influence using SIR model, a-digg-reply dataset 

(a) 
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Figure 2. (a) Propagation influence using IC model, Soc-Epinions1 dataset; (b) Propagation influence using IC model, Cit-

HepTh1 dataset; (c) Propagation influence using IC model, ia-digg-reply dataset 
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Table 2. Quantitative comparison of influence diffusion between baseline centrality methods and the proposed approach under IC 

model 

Dataset Method Activated Nodes Inactivated Nodes 

Cit-HepTh 

In-degree 16538 11232 

Out-degree 18614 9156 

PageRank 16498 11272 

Eigenvector 16498 11272 

Betweenness 16546 11224 

Katz 16498 11272 

Proposed approach 20645 7125 

Soc-Epinions1 

In-degree 47676 28203 

Out-degree 47676 28203 

PageRank 47677 28202 

Eigenvector 47676 28203 

Betweenness 47679 28200 

Katz 47728 28145 

Proposed approach 49799 26080 

Ia-digg-reply 

In-degree 29644 756 

Out-degree 29647 753 

PageRank 29640 760 

Eigenvector 29637 763 

Betweenness 29644 756 

Katz 29643 757 

Proposed approach 30357 43 

Table 3. Quantitative comparison of influence diffusion between baseline centrality methods and the proposed approach under 

SIR model 

Dataset Method Infected Nodes (I) Susceptible Nodes (S) Recovered Nodes (R) 

Cit-HepTh 

In-degree 10498 11266 6006 

Out-degree 11645 9208 6917 

PageRank 10686 11360 5724 

Eigenvector 11552 11319 4899 

Betweenness 10430 11271 6669 

Katz 10544 11336 5890 

Proposed approach 12088 8522 7160 

Soc-Epinions1 

In-degree 29650 28476 17706 

Out-degree 29702 28482 17790 

PageRank 29767 28476 17526 

Eigenvector 29842 28452 17701 

Betweenness 295601 28492 17859 

Katz 29703 28412 17748 

Proposed approach 30542 27013 18324 

Ia-digg-reply 

In-degree 18404 870 11026 

Out-degree 18472 896 11032 

PageRank 18448 858 11067 

Eigenvector 18503 865 11032 

Betweenness 18527 858 11015 

Katz 18407 882 11111 

Proposed approach 19000 141 12257 

For the recovered (R) state our approach outperform all 

baseline methods across the three datasets, with higher values 

on the number of recovered nodes, confirming its effectiveness 

in maximizing long-term influence coverage. 

To support these empirical findings, we further examined 

the computational time complexity of our proposed approach 

by analyzing its core components.  

First, the community detection step, implemented using the 

Louvain algorithm, operates with a typical time complexity of 

O (n log n), where n is the number of nodes, making it efficient 

for large-scale networks  [57]. Next, once communities are 

detected, influence scores within each community are 

computed using local metrics such as in and out degree, 

PageRank, k‐shell and Katz centrality, the original 

computations for all the nodes has a time complexity of 

O(m)per iteration and an overall space complexity of O(n+m), 

where m is the number of edges. The most expensive 

component is the bridging score, is a combination of 

betweenness centrality (which can be computed in O(nm) time 

using Brandes’ algorithm) along with a community diversity 

metric, but since it only considers community representatives 

(one per community), the overall cost is still acceptable. 

Finally, selecting seed nodes involves sorting the top nodes, 

according to their scores, which can usually be done in O(n log 

n) time. Our hybrid approach has a time complexity of

approximately O(n log n) for large, sparse networks, primarily

due to sorting and influence scoring,, and space complexity

O(n+m), for the storage of network structures and node

metrics. These complexities show the scalability of our

method, as well as its practicality for analyzing large social

networks.
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In this case, the consideration of overlapping community 

membership and the diversity of nodes influenced greater 

coverage, the proposed approach outperformed all baseline 

centrality measures in every experiment in terms of 

maximizing activations and minimizing uninfluenced nodes. 

with the hybrid approach achieved a improvements of 2% to 

+21% percentage point coverage improvement over the

baselines. Overall, having community overlap and bridging

across communities is important for providing maximal

coverage in highly interconnected real-world networks.

Beyond raw coverage, the speeds of influence propagation 

also showed consistent improvement. For instance, in Cit-

HepTh, the hybrid method was at 80% coverage in just six 

steps, while traditional methods took significantly longer (12 

steps). This efficiency is largely due to the hybrid strategy’s 

capacity to prioritize nodes that are either influential within 

their local clusters or strategically positioned between 

communities. These nodes accelerate the spread by enabling 

influence to rapidly disseminate across the network, thereby 

avoiding the delays seen in locality constrained diffusion. 

 These differences are not only practically significant but 

also practically important in environments that have time or 

urgency concerns such as viral marketing or emergency 

information sharing. The consistent outperformance of our 

hybrid approach across diverse network topologies 

demonstrates that integrating local (intra-community) and 

global (inter-community) influence factors provides a more 

comprehensive strategy for influence maximization than 

methods focusing on isolated centrality measures. 

While previous studies such as H-GSM [19, 20] and KPDN 

[21] incorporated both local and global community

information into seed selection, our work extends these

approaches by explicitly addressing overlapping community

structures and introducing a quantifiable hybrid bridging score

that integrates betweenness centrality with community

diversity. Similarly, while methods like SpreadRank [18]

focus on minimizing redundancy in influence using distance

metrics, they overlook the presence and utility of community

structures and bridging nodes, limiting their seed selection to

local features. OEL [16], although effective in incorporating

temporal dynamics, relies solely on local topological features

and fails to consider overlapping communities or multi-criteria

influence scoring. Our approach improves upon these

limitations by combining five normalized centrality measures

for intra-community influence and a bridging score for inter-

community diffusion, offering a more comprehensive and

scalable solution.

In contrast to works like [22, 23], which highlight the 

importance of overlapping nodes but do not provide strategic 

integration or quantification of their role, our method not only 

identifies these nodes but also ensures they actively function 

as bridges between loosely connected communities. Our 

findings support the broader understanding that bridge nodes 

are essential for accelerating information diffusion in complex 

networks, while challenging the simplifying assumption found 

in prior work that community boundaries are static or clearly 

defined.  

These results demonstrate that our hybrid method addresses 

both local and global influence propagation and is adaptable 

to various network topologies, making it a robust advancement 

in influence maximization research for time-sensitive and 

large-scale applications such as viral marketing and 

emergency communication. 

These findings are statistically significant, but they also 

have practical relevance. It is important when using this type 

of influential users detection technique in applications such as 

viral marketing, or public awareness campaigns to influence 

people rapidly and to as many groups of people as possible. 

By systematically locating both intra-community influential 

nodes and cross community connectors, our approach is 

proven to be a more useful method than those using single 

topological characteristics. Moreover, the method we 

presented is inherently flexible and transferable to a range of 

network topologies, providing similarly strong performance in 

different network types. 

That said, the hybrid model’s reliance solely on the network 

structure presents limitations. The hybrid influence 

maximization approach effectively identifies influential nodes 

by analyzing community formations and bridge nodes, which 

are critical for optimal influence spread. However, the 

practical issue is that it ignores behavioral factors such as user 

activity levels, individual user influence style, or content 

preferences by basing predictions solely on structural 

properties.  

Because of this ineffective influence propagation on 

relevant behavioral factors (characteristics), the activity may 

not be reflective of reality, potentially constraining the 

practical application of study for a wide-range of influences 

where users behavior plays a major role in diffusion success. I 

would encourage future research to look at dynamic influence 

modeling to introduce more realism and applicability to 

interactions that take place in real-time.  

Furthermore, this study focused on snapshots of unweighted 

and static social networks, when in reality social networks are 

highly dynamic networks with evolving communities, and 

users interact with different frequencies. Assuming a 

simplistic diffusion model will limit the realism of the 

diffusion simulations because user interaction frequency and 

edges weights are critical to influence propagation, and the use 

of structural features in the absence of behavioral factors will 

pre-dispose to bias of seed selection as we cannot consider the 

activity or content preference of users. Weighted links or 

dynamic edges could change which nodes bridge a community, 

and change the timing and scope of the diffusion of influence. 

Addressing these limitations will be a key focus for future 

work; including strong data extraction procedures to extract 

the temporal evolution and dynamics of the community, 

weighted edges and activity-aware influence measurements, 

including a wider variety of user features and behaviours [58] 

instead of using only the network structure would effectively 

allow for the real-time operationalization of the approach and 

capture more nuanced diffusion patterns, and enhance the 

applicability of our approach to real-world contexts like 

emergency information sharing, viral marketing, and rumor 

control. 

In conclusion, the hybrid community-driven influence 

maximization method represents a significant advancement in 

the field of influence maximization. By integrating both local 

(intra-community) and global (inter-community) influence 

factors into seed selection, and addressing overlapping 

communities through a multi-criteria strategy, the approach 

consistently achieves faster and broader diffusion than existing 

methods. Its ability to adapt across diverse network structures 

while maintaining superior performance confirms its value for 

real-world scenarios requiring efficient and scalable influence 

propagation. 
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5. CONCLUSIONS

In summary, this work presents a novel hybrid approach for 

influence maximization in large-scale social networks, 

integrating community detection with multi-criteria influence 

scoring. By effectively identifying influential nodes within 

communities and bridging nodes that connect different 

communities, the proposed approach ensures a comprehensive 

and efficient influence diffusion, using of the Louvain 

algorithm for community detection, with a hybrid bridging 

score combining betweenness centrality and community 

diversity, enhances the accuracy and scalability of influence 

maximization strategies. Empirical validation on three real-

world datasets demonstrates that our approach outperforms 

traditional techniques in speed, influence diffusion, and 

computational efficiency under multiple diffusion models 

(SIR and IC). The significance of this work lies in its practical 

applicability to real-world scenarios such as viral marketing, 

rumor control, and information dissemination, where rapid 

and widespread influence is crucial. Overall, this research 

advances the state-of-the-art by offering a robust, scalable, and 

effective framework that leverages network structure to 

optimize influence diffusion, highlighting its importance for 

both theoretical studies and real-world applications in social 

network analysis. While our hybrid influence maximization 

approach offers substantial improvements, it is important to 

acknowledge certain limitations related to its reliance on 

structural unweighted networks  and exclusion of behavioral 

factors. Future research will focus on extending the approach 

to dynamic and weighted networks to further enhance the 

model's applicability and robustness in real-world scenario. 
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