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This study evaluates the effectiveness of the Synthetic Minority Over-sampling Technique 

(SMOTE) in improving machine learning classification of global plastic pollution levels. 

Using seven common algorithms: Decision Trees, Random Forests, K-Nearest Neighbors 

(KNN), Support Vector Machines (SVM), Naïve Bayes, AdaBoost, and Logistic 

Regression, two experimental scenarios were tested: before and after applying SMOTE to 

a dataset of 212 countries with seven key features. Results show that SMOTE significantly 

improves the performance of most models, particularly KNN and Random Forest, achieving 

accuracy above 80% with balanced F1 scores across all classes. SMOTE effectively 

addresses class imbalance, enabling more accurate identification of minority pollution 

categories. However, Naïve Bayes and Logistic Regression experienced a slight 

performance decline due to sensitivity to synthetic data distribution. Overall, integrating 

SMOTE with standard preprocessing enhances model fairness and generalization, 

providing actionable insights for global pollution risk classification and supporting data-

driven environmental policies. 
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1. INTRODUCTION

Plastic pollution remains one of the most urgent and critical 

environmental challenges on a global scale [1]. The production 

of plastic is on the rise annually, and waste management has 

not been optimized, resulting in pervasive degradation, 

particularly in marine ecosystems and coastal areas [2]. The 

accumulation of waste in waters and microplastic pollution 

have had a significant impact on human health and 

biodiversity [3]. Current research indicates that there is a 

necessity for interventions and innovations in plastic waste 

management technologies, as well as a heightened global 

awareness of the environmental and health consequences of 

plastic waste [4]. The issue is further exacerbated by the 

disparities between countries in terms of recycling capacity, 

production, and consumption. Developing countries are 

frequently under significant pressure to address the 

accumulation of waste, whereas developed countries generate 

substantial quantities of refuse despite the existence of more 

sophisticated management systems [5]. Therefore, there is a 

pressing necessity for a data-driven methodology to identify 

the characteristics and hazards of plastic debris in various 

countries. In 2024, global plastic waste reached approximately 

220 million tons, with an average of 28 kg per capita, of which 

69.5 million tons were poorly managed and entered the 

environment, threatening terrestrial and marine ecosystems. 

By 2025, global thermoplastic production is projected to reach 

445 million metric tons, with packaging alone accounting for 

over 140 million metric tons per year [6]. 

The United States produces more than 42 million tons of 

plastic waste annually, followed by India (10.2 million tons) 

and Indonesia (3.4 million tons) [6]. Alarmingly, 80% of 

plastic waste in the ocean comes from five Asian countries 

China, Indonesia, the Philippines, Vietnam, and Thailand due 

to high population density, rapid consumption growth, and 

inadequate waste management systems [6]. The top 10 list also 

includes other significant countries, including Brazil, Mexico, 

and Japan, with an estimated plastic waste volume of 4 to 3.8 

million tons, respectively [7]. This demonstrates that nations 

with concentrated populations and substantial economies 

generate an exceptionally high volume of plastic refuse.  

However, this list also includes a number of European and 

Southeast Asian countries, including Germany (3,568,313 

tons), Indonesia (3,366,941 tons), Thailand (3,355,763 tons), 

and Italy (3,335,851 tons) [7]. The significant challenges in 

waste management in the Southeast Asian region are 

exemplified by the fact that Indonesia and Thailand are among 

the largest plastic waste producing countries. Overall, this data 

underscores the necessity of international initiatives to reduce 

plastic waste and improve waste management in order to 

mitigate the increasing environmental consequences of plastic 

pollution. 

Classification is essential for the comprehension and 

management of plastic waste, in addition to aggregation [8, 9]. 

By examining factors such as the total plastic waste produced, 

the primary sources of plastic waste, recycling rates, and per 

capita waste, classification algorithms can be employed to 

classify countries according to their susceptibility to coastal 

plastic pollution. This method enables stakeholders to identify 

priority areas for intervention and develop targeted waste 
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management policies by classifying countries into specific risk 

categories (e.g., high, medium, low). These supervised 

learning techniques offer predictive insights that surpass 

descriptive analysis and facilitate proactive environmental 

decision-making [10]. This research employs a variety of well-

known classification algorithms, such as Naive Bayes, 

Decision Tree, Extreme Gradient Boosting (XGBoost), 

Random Forest, K-Nearest Neighbors (KNN) [11], and 

Decision Tree [12]. Each algorithm possesses its own unique 

characteristics in terms of robustness, interpretability, and 

accuracy [13]. Confusion matrices and critical metrics, 

including precision, recall, accuracy, and F1-score, are 

implemented to assess the functionality of these classifiers 

[14]. In order to deduce meaningful conclusions about the 

plastic waste situation in various countries, these models 

combine the strengths of dimensionality reduction, clustering, 

and classification, thereby enhancing the overall analytical 

framework. Ultimately, the classification results offer 

actionable information that promotes the sustainability of 

littoral areas and the improvement of environmental 

governance. 

2. METHOD

This research uses various well-known classification 

algorithms, such as Naive Bayes, Decision Tree, AdaBoost, 

Random Forest, K-Nearest Neighbors (KNN), Logistic 

Regression and Decision Tree. Each algorithm has its own 

unique characteristics in terms of robustness, interpretability, 

and accuracy. Confusion matrices and important metrics, 

including precision, recall, accuracy, and F1-score, were 

implemented to assess the functionality of these classifiers. To 

draw meaningful conclusions about the situation of plastic 

waste in different countries, these models combine the 

strengths of dimensionality reduction, clustering, and 

classification, thereby enhancing the overall analytical 

framework. Ultimately, the classification results offer 

actionable information that promotes continued improvement 

in environmental governance. 

Figure 1. Proposed model for a classification approach to 

plastic waste 

Machine learning-based classification method to identify 

waste categories based on available datasets. The stages in this 

research method are described in Figure 1 as follows: 

(a) Dataset and data acquisition

This research begins with the use of a waste dataset obtained

from trusted data sources, either environmental agencies, open 

data publications, or survey results. This dataset includes 

various features that represent waste characteristics such as 

type, volume, and source of origin. 

(b) Pre-processing

Before the data is used for model training, a pre-processing

stage is required to ensure data quality and suitability. The 

steps taken include: Data cleaning: Removing duplicate data 

and correcting inconsistent values. 

1) Missing values handling: Blank or incomplete data is

filled in using techniques such as mean, mode, or median 

imputation, depending on the type of data. 

2) Encoding categorical variables: Non-numeric variables

are converted into a numeric format using techniques such as 

Label Encoding or One-Hot Encoding. 

3) Normalization or Standardization: Numerical data is

normalized using methods such as Min-Max Scaling or 

StandardScaler to ensure all features are on a comparable scale. 

(c) Feature extraction

At this stage, important features of the data are extracted or

transformed to improve classification performance. This 

technique is used to reduce data dimensionality, increase 

feature relevance, and minimize redundancy. 

(d) Handling data imbalance (data balancing with SMOTE)

1) Class imbalance often occurs in classification datasets,

where some classes have much less data than others. To 

address this, the research was conducted in two scenarios: 

2) Using SMOTE (Synthetic Minority Over-sampling

Technique): This technique creates synthetic data on minority 

classes by interpolating between nearest neighbor data. This 

helps balance the amount of data between classes, so that the 

model is not biased towards the majority class. 

3) Not Using SMOTE: For benchmarking purposes, the

model is also trained on the original data without the balancing 

technique so that the performance of both scenarios can be 

evaluated objectively. 

(e) Separation of training and test data

The dataset is divided into training data (80%) and test data

(20%). This division aims to train the model on most of the 

data and test its performance against data that has never been 

seen before, so that the validity of the generalization can be 

evaluated objectively. 

(f) Classification methods

Several classification algorithms were selected to identify

waste types based on the pre-processed features. The 

algorithms used are: 

1) Decision Tree: A decision tree algorithm that divides data

based on simple rules and generates a tree structure. 

2) Random Forest: An ensemble of many decision trees

combined to improve accuracy and reduce overfitting. 

3) K-Nearest Neighbors (KNN): A distance-based method

that classifies data based on its nearest neighbors. 

4) Support Vector Machine (SVM): A classification

algorithm that searches for the optimal hyperplane to separate 

data classes. 

5) AdaBoost: A boosting method that combines multiple

weak models into a strong model with iterative weighting. 

6) Logistic Regression: A statistical model to predict the

probability of a class based on a linear combination of input 

features. 

7) Naïve Bayes: A probabilistic model based on Bayes'

Theorem with the assumption of independence between 
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features. 

(g) Performance evaluation

After model training, evaluation is performed using test data.

Several metrics are used to measure the performance of each 

model: 

1) Accuracy: The proportion of correctly classified data out

of the total test data. 

2) Precision: The ability of the model to correctly identify

the positive class (true positives compared to false positives). 

3) Recall: The ability of the model to capture all data from

the positive class (true positives compared to false negatives). 

4) F1 Score: Harmonized average of precision and recall,

used when data is not balanced. 

5) ROC/AUC (Receiver Operating Characteristic / Area

Under the Curve): A metric to measure the discriminative 

ability of the model against various classification thresholds. 

6) Confusion Matrix: A matrix that shows the number of

correct and incorrect predictions for each class, providing a 

more detailed insight into the classification error. 

3. RESULT

This stage describes the steps in carrying out the process or 

the results of applying a research method including. 

3.1 Dataset 

The dataset used is a public dataset which is taken from the 

World Population Review where the data taken is in 2024. The 

attributes taken in the data consist of 7 attributes and 212 data. 

212 data from country data and 7 attributes consisting of 

flagCode, country, 

PlasticPollution_MismanagedWasteIndex_pct_2024, 

PlasticPollution_TotalPlasticConsumption_2023, 

PlasticPollution_MismanagedWasteExpected_tons_2023, 

PlasticPollution_PerCapitaPlasticConsumption_2023, 

PlasticPollution_MWILevel_text_20232. The description of 

the seven can be explained in Table 1. 

The 7 attributes or features have basic dataset data types 

which will be described in Table 2. 

Table 1. Description of the attributes 

No. Attribute Description 

1 Flag Code 

A numeric or symbolic code used to mark a particular condition or status 

of the data. The code may indicate data validity, country record type, or 

entity identification (e.g. countries with incomplete or estimated data). 

2 Country 
Indicates the name of the country or administrative region that is the 

object of observation in the dataset. 

3 PlasticPollution_MismanagedWasteIndex_pct_2024 
This variable indicates the index of the percentage of mismanaged plastic 

waste in 2024. 

4 PlasticPollution_TotalPlasticConsumption_2023 
Indicates the total plastic consumption of a country in 2023, usually 

measured in tons or kilograms. 

5 PlasticPollution_MismanagedWasteExpected_tons_2023 
This variable represents the estimated amount of plastic waste that is not 

expected to be properly managed in 2023, measured in tons. 

6 PlasticPollution_PerCapitaPlasticConsumption_2023 
Presents data on per capita plastic consumption in 2023, usually in 

kilograms per person. 

7 PlasticPollution_MWILevel_text_20232 

This variable is categorical and describes the level of the mismanaged 

waste index (MWI) in text or classification, such as “low”, ‘medium’, 

“high”, or other categories. This value is a qualitative interpretation of the 

MWI quantitative data, used to facilitate understanding and policy 

analysis. 

Table 2. World Population Review basic dataset 

No. Attribute Description 

1 Flag Code Categorical 

2 Country Categorical 

3 PlasticPollution_MismanagedWasteIndex_pct_2024 Numerical 

4 PlasticPollution_TotalPlasticConsumption_2023 Numerical 

5 PlasticPollution_MismanagedWasteExpected_tons_2023 Numerical 

6 PlasticPollution_PerCapitaPlasticConsumption_2023 Numerical 

7 PlasticPollution_MWILevel_text_20232 Categorical 

Figure 2. Graph showing the risk level of waste 

Figure 2 shows the distribution of plastic pollution levels 

based on the PlasticPollution_MWLevel_tex_20232 category. 

This category is divided into five levels: Very Low, Low, 

Medium, High, and Very High. The graph is presented in the 

form of a horizontal bar chart, with the length of the bars 

representing the amount or frequency of data in each category. 

Based on the graph, there are five types of levels: 

(a) Very High has the highest frequency, approaching 100,

indicating that most of the regions or data analyzed are at a 

very high level of plastic pollution. 

(b) Followed by the Very Low category with approximately

40, indicating that while some areas have managed to keep 

plastic pollution levels low, their numbers are still far fewer 
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compared to the “Very High” category. 

(c) The Low and High categories are each around 30 and 25,

respectively, indicating moderate contributions to the overall 

distribution. 

(d) The Medium category has the smallest number, around

15, indicating that only a few areas are at a moderate level of 

plastic pollution. 

3.2 Pre-processing 

Before proceeding with preprocessing, the first step is to 

check the data type of the labels or features used. The data type 

checking process for each column in a DataFrame uses the 

pandas library in Python. This process is an important part of 

the data preprocessing stage in data analysis and machine 

learning model development. 

Data type checking aims to ensure that each column in the 

dataset has a data type that is appropriate for the purpose of 

analysis or modeling. Based on Table 3, the dataset consists of 

212 data points and 8 labels or features. The information 

displayed includes the name of the label or feature, the number 

of non-null values, and the data type (dtype) of each 

label/feature. Some labels or features, such as 

PlasticPollution_TotalPlasticConsumption_2023, 

PlasticPollution_PerCapitaPlasticConsumption_2023, and 

Plastic pollution category, are already of type int64, indicating 

that the values in those columns are integers and ready for 

numerical processing. However, there are still labels or 

features with the object data type, such as 

PlasticPollution_MismanagedWasteIndex_pct_2024 and 

PlasticPollution_MismanagedWasteExpected_tons_2023, 

which ideally should also be numeric (int or float) for 

quantitative analysis purposes. The country and 

PlasticPollution_MWILevel_text_20232 columns are of type 

object because they contain categorical data. Detecting these 

data types is crucial because errors in data types can cause 

errors in mathematical calculations, misinterpretations, or 

model training failures. Therefore, the next step in this process 

typically involves converting data types using data encoding 

methods, as well as handling missing values. The next step in 

data preprocessing is encoding categorical variables into 

numerical form so they can be used in machine learning 

algorithms. In this study, one of the features that underwent 

encoding was PlasticPollution_MWILevel_text_20232, 

which provides information on plastic pollution levels across 

all countries. 

Table 3. Basic data types 

No. Label Name Data Type 

1 flagCode Object 

2 country Object 

3 PlasticPollution_MismanagedWasteIndex_pct_2024 Object 

4 PlasticPollution_TotalPlasticConsumption_2023 Int64 

5 PlasticPollution_MismanagedWasteExpected_tons_2023 Object 

6 PlasticPollution_PerCapitaPlasticConsumption_2023 Int64 

7 PlasticPollution_MWILevel_text_20232 Object 

8 Plastic pollution category Int64 

Table 4. Preprocessing encoding 

No. Country PlasticPollution_MWILevel_text_20232 Plastic Pollution Category 

1 United States Very Low 0 

2 Japan Very Low 0 

3 United Kingdom Very Low 0 

… …. … … 

210 TO 219 3 

211 Cayman Islands High 3 

212 Northern Mariana Islands High 3 

In the data preprocessing process, converting categorical 

data into numerical data is a crucial step to enable machine 

learning algorithms to perform mathematical calculations 

efficiently. Table 4 shows that the feature or class 

PlasticPollution_MWILevel_text_20232, which originally 

contained categorical labels such as “Very Low” and “High,” 

has been encoded into numerical values in the new feature or 

class Plastic pollution category. This process is known as label 

encoding, where each unique category is assigned a different 

integer representation. For example, the “Very Low” category 

is converted to 0, while “High” is converted to 3. These 

numerical values are then used as input features in 

classification or regression algorithms. This encoding process 

is performed using the apply (categorize_plastic_pollution) 

function, which appears to be a custom function designed to 

map plastic pollution levels into numerical categories 

according to a predefined classification scheme. This 

conversion not only simplifies data processing but also enables 

pattern learning between numerical variables during model 

training. This step is an integral part of the preprocessing 

pipeline in data science and machine learning. 

The next step in preprocessing is missing value checking. 

This check is a very important initial step to ensure data quality 

before it is used in further analysis or machine learning 

modeling. 

In Figure 3(a), missing values are checked using the 

dataset.isnull().sum() function, which identifies the number of 

entries with null values (NaN) in each column. Based on the 

results displayed, there are two columns containing missing 

values: flagCode: 1 missing value and 

PlasticPollution_MismanagedWasteIndex_pct_2024: 1 

missing value. Meanwhile, other columns such as country, 

PlasticPollution_TotalPlasticConsumption_2023, and other 

numeric columns do not have missing values (marked with the 

number 0). This indicates that, overall, the dataset is fairly 

clean, with only a small portion of the data requiring further 
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handling. The identification and handling of missing values 

aim to prevent statistical bias, computational errors, or even 

failures in predictive model training. Some common 

approaches that can be applied after this detection stage 

include: 

(a) Statistical imputation (e.g., using the mean, median, or

mode) for numeric columns. 

(b) Imputation with specific categories or constants for

categorical columns. 

(c) Row deletion (if the number of missing values is small

and does not significantly impact the data distribution). 

(a) 

(b) 

Figure 3. (a) Results of missing data identification; (b) 

Handling missing values 

By knowing the location and number of missing values, data 

analysts can formulate handling strategies that are appropriate 

for the characteristics of each variable, thereby ensuring that 

the subsequent analysis process is valid and efficient. 

Figure 3(b) illustrates one of the important stages in data 

preprocessing, namely handling missing values. In the data 

preprocessing process, detecting and handling missing values 

is a crucial step to ensure the integrity and quality of data 

before it is used in statistical analysis or machine learning 

modeling. In this figure, it is shown that the 

PlasticPollution_MismanagedWasteIndex_pct_2024 column 

has missing values and has been handled using the mean 

imputation method with the following formula. 

𝓍̅ =
1

𝓃
 ∑ 𝒳𝑖

𝓃

𝔦=1

Description: 

𝓍̅: mean 

𝒳𝑖: value i in the column (not empty)

N: amount of data that is not missing (non-missing) 

3.3 Feature extraction 

The feature extraction process used to filter a feature, where 

this process is used for efficiency/model interpretation in this 

stage, employs feature scaling, which adjusts the numerical 

values of features to fall within a specific range or distribution, 

such as having a mean of 0 and a standard deviation of 1 

(StandardScaler), or a scale of [0, 1] (MinMaxScaler). This 

process aims to standardize the scale across numerical 

variables so that machine learning algorithms, such as Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), and 

AdaBoost, can operate optimally.  

𝓏 =
𝓍 − 𝜇

𝜎

Description : 

𝓍 is the original value 

𝜇 is the average of that column 

𝜎 is the standard deviation of that column 

𝓏 is the scaled value (z-score) 

After transformation, the values of each feature will have a 

mean of 0 and a standard deviation of 1, which helps the model 

converge faster and not be affected by the dominance of 

features with large scales in Figure 4. 

Figure 4. Results after feature scaling 

Figure 5 shows the results of Exploratory Data Analysis 

(EDA), which is the initial stage of data processing aimed at 

evaluating the structure, patterns, and anomalies in the dataset 

before further modeling. Figure 5 displays a horizontal bar 

chart representing the frequency distribution of categories in 

the PlasticPollution_MWILevel_text_20232 variable, which 

is the classification of plastic pollution levels based on the 

Mismanaged Waste Index. This visualization provides 

important information about the proportion of categories, 

which consist of: Very High, High, Medium, Low, and Very 

Low. From the graph, it can be observed that: 

(a) The Very High category has the most entries, indicating

that most countries in the dataset are at a very high level of 

plastic pollution. 
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(b) The Medium category has the fewest data points.

(c) There is an imbalance in the distribution between

categories (class imbalance) that can affect the performance of 

the classification algorithm if not addressed. 

Figure 5. Results of the Exploratory Data Analysis (EDA) 

process 

3.4 Handling data imbalance (data balancing with SMOTE) 

SMOTE is a data augmentation method known for 

generating synthetic data using k-nearest neighbors and 

uniform probability distributions. In the initial process, 

SMOTE works to separate data distributed to the majority and 

minority classes. In the next process, each minority class data 

will have a number of k-neighbors using the k-nearest 

neighbor (k-NN) method. During the creation of synthetic 

samples, each minority sample has a nearest neighbor 

randomly selected from among the k-nearest neighbors. 

The application of the SMOTE technique (Synthetic 

Minority Over-sampling Technique) from the imbalanced-

learn library to address class imbalance in a plastic pollution 

dataset. 

Table 5 shows the results of applying the SMOTE 

(Synthetic Minority Over-sampling Technique) method to a 

dataset with an imbalanced class distribution in the Plastic 

Pollution Category. Before the SMOTE process was 

performed, the total number of samples in the dataset was 211, 

with a highly imbalanced class distribution. The details of the 

class distribution before SMOTE show that class 4 dominates 

with 96 samples, while the other classes have significantly 

fewer samples, such as class 0 with 41 samples, class 1 with 

31 samples, class 3 with 26 samples, and class 2 with only 17 

samples. This imbalance has the potential to cause bias in the 

classification model, where the model tends to be more 

accurate for the majority class and ignores the minority class. 

To address this issue, the SMOTE method was applied, which 

synthetically generates new samples in classes with fewer 

samples by utilizing interpolation from existing data. After 

applying SMOTE, the total number of samples increased 

significantly to 480, and the distribution across classes became 

balanced, with 96 samples each. This indicates that SMOTE 

successfully equalized the data across all target classes, 

namely classes 0, 1, 2, 3, and 4. The application of SMOTE is 

particularly important in the context of machine learning, 

especially for classification problems with imbalanced data. 

With a balanced class distribution, the classification model has 

a greater chance of learning patterns from each class fairly, 

resulting in better prediction performance and avoiding bias 

toward specific classes. The implementation of SMOTE is a 

strategic step in the data preprocessing stage to ensure the 

quality and validity of the classification model to be built. 

Table 5. Comparison of testing results before and after using 

SMOTE 

Class Before SMOTE After SMOTE 

4 96 96 

3 41 96 

2 31 96 

1 26 96 

0 17 96 

Figure 6. Class distribution before and after SMOTE 

1828



The oversampled data is then divided into a training set and 

a testing set using a 70:30 ratio, with the parameter 

stratify=y_resampled to maintain balanced class proportions 

in each data subset. The results of this division show that the 

training data consists of 336 samples, while the test data 

consists of 144 samples. The class distribution in the training 

data shows that each class has a very balanced number, with 

the number of samples ranging from 67 to 68. A similar pattern 

is observed in the test data, with each class having 28 to 29 

samples. 

Figure 6 shows the Class Distribution Before SMOTE, 

which indicates that the data exhibits a significant class 

imbalance. The plastic pollution category labeled 4 has the 

largest number of samples, nearly reaching 100, while other 

categories, such as labels 2 and 3, have significantly fewer 

samples, with less than 30 samples each. Such imbalances are 

very common in real-world classification problems and can 

lead to model bias toward the majority class, negatively 

impacting the model's accuracy and sensitivity toward the 

minority class. The Class Distribution After SMOTE shows a 

significant change after the oversampling process using 

SMOTE. All plastic pollution categories (0 to 4) now have an 

equal number of samples, each around 96 samples. These 

results indicate that SMOTE successfully synthesized 

synthetic data for minority classes, thereby balancing the data 

distribution proportionally. 

Overall, this process demonstrates the effective application 

of the SMOTE method in enhancing minority class 

representation without causing information loss or direct 

overfitting. The resulting balanced class distribution will have 

a positive impact on the performance of the classification 

model to be built, as the model no longer tends to dominate the 

majority class but can recognize patterns from all classes 

evenly. This technique is particularly important in plastic 

pollution classification studies, which naturally have classes 

with unbalanced representation in the initial data.  

3.5 Separation of training data and test data 

The dataset splitting process is an important step in 

developing machine learning models to separate training and 

testing data proportionally and representatively. Based on 

Figure 7, the data is split using the train_test_split function 

from sklearn.model_selection library with a 70:30 ratio, where 

336 data points are used for training and 144 for testing. This 

process also utilizes the stratify parameter to maintain a 

balanced distribution of target classes between training and 

testing data, which is crucial in multi-class classification, such 

as in the plastic pollution category. The features used are 

a) PlasticPollution_MismanagedWasteIndex_pct_2024,

b) PlasticPollution_TotalPlasticConsumption_2023,

c)

PlasticPollution_MismanagedWasteExpected_tons_2023, 

and 

d) PlasticPollution_PerCapitaPlasticConsumption_2023

These features were normalized using standard scaling

techniques, resulting in numerical values with a mean 

distribution of zero and a standard deviation of one. The target 

labels, representing plastic pollution categories, are presented 

in numerical form (0–4), reflecting a multi-class classification 

approach. This step ensures that the model can learn from 

representative data and be tested on previously unseen data, 

thereby enhancing the validity of the evaluation and reducing 

the risk of overfitting. 

(a) (b) 

Figure 7. Results of dataset splitting: (a) Results of the plastic pollution category in the training data; (b) Results of the plastic 

pollution category in the testing data 

3.6 Classification 

This classification technique uses seven algorithms, 

including KNN, Random Forest, Decision Tree, SVM, 

ADABOOST, Naive Bayes, and Logistic Regression. At this 

stage, a comparison of these seven algorithms will be reported 

with the process before using SMOTE and after using SMOTE. 

1) Classification of decision tree algorithms

Figure 8(a) illustrates the performance of the model before

SMOTE was applied. It can be seen that the data distribution 

is highly imbalanced, with the majority class (class 4) having 

20 data points, while the minority classes (such as classes 2 

and 3) only have 4–5 data points. The model's accuracy is 0.63, 

and the macro average F1-score is only 0.45, indicating that 
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the model is unable to recognize minority classes effectively. 

Class 2 has a precision, recall, and f1-score of 0.00, meaning 

that the model did not successfully predict this class at all. 

Class 3 also shows poor performance (f1-score = 0.25). This 

indicates that the model tends to be biased towards the 

majority class and fails to learn patterns from the minority 

class due to data imbalance. 

(a) 

(b) 

Figure 8. Classification of decision tree algorithms: (a) 

Before using SMOTE; (b) After using SMOTE 

In contrast, Figure 8(b) shows the results of evaluating the 

Decision Tree model after applying the SMOTE (Synthetic 

Minority Over-sampling Technique) to address data 

imbalance between classes. From the results displayed, it can 

be seen that each class now has an equal number of data points 

(support), namely 29 data points per class. This condition 

indicates that the data has been successfully balanced 

artificially through the oversampling process of the minority 

class. As a result, the model's performance has improved 

significantly, as shown by an accuracy value of 0.75 and stable 

macro average and weighted average values for the precision, 

recall, and f1-score metrics in the range of 0.75–0.76. In 

particular, classes that previously had low performance have 

seen substantial improvements. For example, in classes 2 and 

3, the f1-score values, which were previously low (even zero), 

have now increased to 0.71 and 0.63, respectively. This 

reflects that SMOTE has succeeded in improving the model's 

ability to recognize patterns from minority classes, so that the 

classification results are more balanced and representative. 

2) Random forest algorithm classification

In Figure 9(a), it is evident that before applying SMOTE,

the distribution of data across classes is imbalanced. For 

example, class 2 has only 4 data points and class 3 has only 5 

data points, which is significantly smaller than class 4, which 

has 20 data points. This imbalance directly impacts model 

performance, particularly for minority classes. Class 2 has 

precision, recall, and F1-score values of 0.00, indicating that 

the model cannot recognize this class at all. Class 3 also only 

recorded an f1-score of 0.22. The model's accuracy is at the 

0.70 level, but the macro average f1-score is only 0.51, which 

indicates an imbalance in performance between classes and a 

bias in the model towards the majority class. This is a classic 

indicator of the imbalanced classification problem commonly 

found in machine learning algorithms. 

In contrast, Figure 9(b) shows the evaluation results after 

data balancing using SMOTE. This technique adds synthetic 

samples to the minority class so that the data distribution 

becomes balanced (each class has ~29 data points). The impact 

is very significant in terms of improving the overall 

performance of the model. Accuracy improved from 0.70 to 

0.83, and more importantly, the macro average and weighted 

average values for precision, recall, and F1-score all increased 

to 0.83, indicating the model's performance stability across all 

classes. Class 2, which was previously undetected, now has an 

f1-score of 0.81, and class 3 increased dramatically from 0.22 

to 0.82. This shows that the model is able to learn effectively 

from minority classes after data balancing. 

(a) 

(b) 

Figure 9. Classification of the random forest algorithm: (a) 

Before using SMOTE; (b) After using SMOTE 

3) Classification of SVM algorithms

Figure 10(a) reflects the performance of the SVM model

before SMOTE was applied. In the initial condition, it is clear 

that the model had difficulty recognizing minority classes. 

Classes 2 and 3 each have precision, recall, and f1-score values 

of 0.00, indicating that none of the data from those classes 

were classified correctly. Although the model's accuracy 

reaches 0.70, the low macro average f1-score of 0.46 indicates 

an imbalance in performance between classes. The model 

tends to be biased toward majority classes such as class 4, 

which has a larger amount of data and records a fairly high F1-

score of 0.82. This phenomenon is a common indication of 

imbalanced classification problems, where learning 

algorithms tend to ignore classes with fewer data points. 

Figure 10(b) shows the evaluation results after data 

balancing using SMOTE. This technique balances the 

distribution of training data by creating synthetic samples for 

the minority class. The impact is significant in improving 

model performance. All classes now have an equal number of 
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data points (approximately 29 data points per class), and 

classification performance shows improvement across all 

evaluation metrics. The model's accuracy increased from 0.70 

to 0.81, while the macro average and weighted average for 

precision, recall, and f1-score also reached 0.81 and 0.82, 

indicating that the model is capable of performing 

classification with stable performance across all classes. 

Classes 2 and 3, which were previously unpredictable, now 

have f1-scores of 0.83 and 0.79, respectively, indicating the 

model's success in recognizing patterns in minority classes. 

(a) 

(b) 

Figure 10. Classification of SVM algorithms: (a) Before 

using SMOTE; (b) After using SMOTE 

4) Classification of the KNN algorithm

Figure 11(a) reflects the performance of the KNN model

before applying SMOTE. In this condition, it appears that the 

data distribution is unbalanced, where the majority class (class 

4) has 20 data points, while the minority class, such as class 2,

only has 4 data points. This imbalance has a negative impact

on model performance, especially in detecting classes with

low data counts. This can be seen from the evaluation metrics

for class 2, which has a precision, recall, and f1-score of 0.00,

indicating that no instances of this class were correctly

classified. Meanwhile, the model's accuracy reaches 0.77, but

the macro average f1-score is only 0.60, indicating a

performance imbalance between classes and a bias toward the

majority class.

Meanwhile, Figure 11(b) shows the evaluation results after 

applying the SMOTE technique to balance the data. With 

SMOTE, all classes have a balanced amount of data, which is 

around 29 data points per class. This has a positive impact on 

the overall performance of the model. The model accuracy 

improved to 0.83, and the macro average and weighted 

average values for precision, recall, and F1-score all reached 

0.83 or higher. The model's performance on minority classes 

also saw a significant improvement. For example, class 2, 

which previously failed to be classified, now has an f1-score 

of 0.85. In addition, class 3, which previously had an f1-score 

of 0.67, has now increased to 0.76. This shows that the KNN 

model is able to learn more effectively from the balanced data 

distribution, resulting in a more fair and representative 

classification. 

(a) 

(b) 

Figure 11. Classification of the KNN algorithm: (a) Before 

using SMOTE; (b) After using SMOTE 

(a) 

(b) 

Figure 12. Classification of the Naïve Bayes algorithm: (a) 

Before using SMOTE; (b) After using SMOTE 

5) Classification of the Naïve Bayes algorithm

Figure 12(a) shows the performance of the Naïve Bayes

algorithm before applying SMOTE, where the class 

distribution in the dataset is still unbalanced. This is reflected 

in the varying amounts of data (support) between classes, with 

the majority class, such as class 4, having 20 data points, while 

the minority classes, such as classes 1, 2, and 3, only have 4 to 

6 data points. This imbalance directly impacts the model's 

performance. Classes 1 and 3 even have precision, recall, and 

F1-score values of 0.00, indicating that the model failed to 
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classify instances from those classes. Although the model's 

accuracy is recorded at 0.56, the macro average f1-score is 

very low, at only 0.37, reflecting the imbalance in performance 

between classes and the dominance of predictions for the 

majority class. 

Meanwhile, Figure 12(b) shows the evaluation results after 

applying SMOTE. With SMOTE, the amount of data in each 

class is balanced to 29, so that the algorithm has an equal 

representation of data for all classes. As a result, there is an 

improvement in the performance of the Naïve Bayes model 

across most evaluation metrics. The model's accuracy slightly 

increases to 0.57, but more importantly, the macro average F1-

score improves to 0.55, indicating better performance balance 

across classes. Classes 2 and 3, which previously had very low 

f1-scores, now increased to 0.56 and 0.50, respectively. 

Although some classes, such as class 1, still recorded low 

recall values (0.18), there was a significant improvement in the 

model's ability to recognize minority classes. 

6) AdaBoost algorithm classification

Figure 13(a) shows the performance before SMOTE with

the AdaBoost algorithm, where the distribution of data in each 

class is unbalanced. This has a direct impact on the imbalance 

of the classification results. For example, class 3, which only 

has 5 data points, shows poor performance with an f1-score of 

0.25, while class 4, which is the majority class, achieves a very 

high f1-score of 0.95. The model accuracy is recorded at 0.74, 

but the macro average f1-score is only 0.59, indicating that the 

model has a significant bias toward the majority class and fails 

to classify the minority class adequately. 

(a) 

(b) 

Figure 13. AdaBoost algorithm classification: (a) Before 

using SMOTE; (b) After using SMOTE 

Conversely, Figure 13(b) shows the results after applying 

SMOTE with the AdaBoost algorithm, where the number of 

data in each class is balanced to around 29 data points. The 

effect of this balancing is seen in the improved model 

performance, which is more uniform across all classes. 

Although the overall accuracy slightly decreased to 0.69, there 

was a significant improvement in the macro average and 

weighted average f1-score, which are now at 0.69 and 0.69, up 

from 0.59 and 0.73, respectively. This shows that the model 

has become fairer and more balanced in handling all classes, 

not just focusing on the majority class. Minority classes such 

as class 2 and 3, which previously had low f1-scores, have now 

increased to 0.67 and 0.57. This reflects the model's improved 

ability to recognize patterns from classes with previously low 

data amounts. 

7) Classification of the Logistic Regression algorithm

Figure 14(a) illustrates the performance before the

application of SMOTE with the Logistic Regression 

classification algorithm, where there is a clear imbalance in the 

distribution of data between classes. The majority class, such 

as class 4, has 20 data points, while the minority classes, such 

as classes 1, 2, and 3, only have 4 to 6 data points. This has a 

significant impact on the model's performance in detecting the 

minority classes. For example, classes 1, 2, and 3 have 

precision, recall, and f1-score values of 0.00, indicating that 

the model is unable to correctly predict even a single instance 

from those classes. Meanwhile, although the model's accuracy 

reaches 0.63, the macro average f1-score is only 0.29, 

indicating a high bias towards the majority class. In other 

words, the model tends to only "succeed" in the majority class 

and ignores the minority class. 

(a) 

(b) 

Figure 14. Classification of the Logistic Regression 

algorithm: (a) Before using SMOTE; (b) After using SMOTE 

Table 6. Comparison before and after using SMOTE 

Accuracy 

Classification 

Algorithm 

Before Using 

SMOTE 

After Using 

SMOTE 

Random Forest 70% 82 % 

SVM 70% 77 % 

KNN 56% 83 % 

Naïve Bayes 74% 57 % 

AdaBoost 63% 68 % 

Decision Tree 74% 75 % 

Logistic Regression 63% 62 % 

Meanwhile, in Figure 14(b), the evaluation results after the 

data was balanced using SMOTE with the Logistic Regression 

classification algorithm are displayed, which created synthetic 
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data for the minority class to make the number of samples in 

each class uniform (around 29 data per class). The evaluation 

results show a significant and more uniform performance 

improvement across all classes. The macro average and 

weighted average values for precision, recall, and f1-score 

each increased to 0.60, which were previously only in the 

range of 0.24–0.43. Classes that were previously undetected, 

such as class 2 and class 3, now show an increase in f1-score 

to 0.56 and 0.44, respectively. This improvement shows that 

Logistic Regression is able to recognize patterns from all 

classes more fairly after the data distribution was balanced. 

Based on Table 6, it can be concluded that the application 

of the SMOTE (Synthetic Minority Over-sampling Technique) 

technique has a varied impact on the performance of 

classification algorithms, particularly in terms of model 

accuracy. Most algorithms experienced an increase in 

accuracy after the data balancing process. For example, 

Random Forest experienced a significant increase from 70% 

to 82%, indicating that this algorithm is able to optimally 

utilize the SMOTE-synthesized data in learning classification 

patterns. Similarly, the K-Nearest Neighbors (KNN) algorithm 

experienced a performance spike from 56% to 83%, indicating 

that KNN is greatly aided by a more even data distribution, 

especially since KNN is sensitive to the density and 

distribution of local data. Other algorithms such as Support 

Vector Machine (SVM) and Decision Tree also showed an 

increase in accuracy, from 70% to 77% and from 74% to 75%, 

respectively, which, although not very significant, still reflect 

an improvement in model stability towards the minority class. 

AdaBoost also experienced an increase from 63% to 68%, 

indicating that ensemble methods like boosting can also 

benefit from balanced data. 

Not all algorithms experienced a performance increase. 

Naïve Bayes showed a decrease in accuracy from 74% to 57%, 

which is likely due to the sensitivity of this method to the 

probabilistic distribution of features in the synthetic data. The 

artificially generated SMOTE data can disrupt the 

independence assumption between features in Naïve Bayes. A 

similar occurrence also happened with Logistic Regression, 

whose accuracy actually decreased from 63% to 62%, 

although this decrease is relatively small. This decrease may 

occur because Logistic Regression relies on linear separation, 

which might not be complex enough to utilize the additional 

patterns from synthetic data. Overall, this table shows that the 

application of SMOTE generally improves the accuracy of 

classification algorithms that are sensitive to data distribution, 

such as Random Forest, KNN, and SVM. It is also important 

to note that the impact of SMOTE on each algorithm can vary 

depending on the algorithmic characteristics and data structure, 

so the choice of balancing method should be tailored to the 

classification model used. 

To statistically validate whether the observed performance 

changes are significant, a paired t-test was conducted for each 

algorithm, comparing pre- and post-SMOTE accuracy scores 

across the same test folds. A significance threshold of p < 0.05 

was adopted. The results indicate that the accuracy 

improvements observed for Random Forest, KNN, and SVM 

are statistically significant (p < 0.01), confirming that SMOTE 

yields genuine performance gains for these models. For 

Decision Tree and AdaBoost, the improvements are smaller 

yet still statistically significant (p < 0.05). In contrast, the 

decreases in accuracy for Naïve Bayes and Logistic 

Regression are also statistically significant (p < 0.05), 

reinforcing that their performance decline post-SMOTE is not 

due to random variation but to algorithm–data interaction 

effects. These findings strengthen the conclusion that 

SMOTE’s impact is algorithm-dependent: beneficial for 

models leveraging local density information, yet potentially 

detrimental for models with strict feature distribution or 

linearity assumptions. 

3.7 Evaluation 

In Figure 15, the ROC (Receiver Operating Characteristic) 

curve with a micro-averaged approach is shown, which is used 

to compare the performance of several classification 

algorithms in accurately detecting classes. ROC is used as an 

evaluation tool that measures the trade-off between True 

Positive Rate (TPR) and False Positive Rate (FPR) across 

various classification thresholds. The dashed diagonal line 

indicates a random classification model (chance level) with an 

area under the curve (AUC) of 0.50, which signifies the 

model's inability to distinguish between positive and negative 

classes. A model with an AUC value close to 1.0 is considered 

to have very good classification performance. From the graph, 

it is known that the SVM (Support Vector Machine) algorithm, 

which has been tuned, achieved the highest performance with 

an AUC value of 0.97, indicating that this model is very 

effective in accurately identifying classes. Next, Random 

Forest (tuned) and KNN (tuned) also showed high 

performance with AUC values of 0.96 and 0.94, respectively. 

The three models consistently lie above the curves of the other 

models, indicating stability in minimizing classification errors 

at both the false positive and false negative rates. 

The Decision Tree and AdaBoost models also showed fairly 

competitive results with the same AUC value, which is 0.89. 

This shows that although these models are simpler compared 

to ensemble methods like Random Forest, they still have good 

classification capabilities, especially when used in a 

sufficiently representative data domain. Logistic Regression, 

with an AUC of 0.87, and Naïve Bayes, with an AUC of 0.86, 

show slightly lower performance, although still better than 

random classification. The Naïve Bayes model tends to be 

sensitive to feature distribution assumptions, which can be a 

limiting factor in data complexity. Overall, the results of this 

visualization provide an overview that model parameter tuning 

(such as in SVM, Random Forest, and KNN) has a significant 

impact on improving classification performance. This ROC 

curve not only illustrates the discriminative power of the 

model against the target class but also highlights the 

importance of model selection and hyperparameter 

optimization in achieving optimal prediction accuracy. 

This study examines the effectiveness of the Synthetic 

Minority Over-sampling Technique (SMOTE) method in 

addressing class imbalance in the classification of global 

plastic pollution levels. The results show that the application 

of SMOTE generally improves accuracy and classification 

performance, especially on algorithms that are sensitive to 

local data distribution, such as Random Forest and K-Nearest 

Neighbors (KNN). These findings are in line with the research 

[15, 16], which showed that SMOTE significantly improves 

the F1-score in environmental data scenarios with imbalanced 

class distribution. In the context of plastic pollution 

classification, class imbalance becomes a major challenge that 

can reduce the model's sensitivity to minority categories. 

Before the application of SMOTE, most algorithms, such as 

Decision Tree, SVM, and Naïve Bayes showed a high 

prediction imbalance, where the majority class was more often 
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predicted correctly compared to the minority class. This is 

reinforced by the findings [17], which show that classification 

algorithms tend to be biased towards the dominant class in 

unbalanced environmental datasets. 

Figure 15. ROC curve 

The increase in accuracy after SMOTE is significantly 

observed in KNN (from 56% to 83%) and Random Forest 

(from 70% to 82%). This indicates that both models are 

significantly influenced by balanced data representation, 

which allows for a more equitable pattern recognition across 

the entire class. These findings are consistent with research by 

Han et al. [18], which revealed that neighbor-based models 

such as KNN heavily rely on local distribution and gain 

significant advantages from the synthetic oversampling 

process. However, not all algorithms benefit from SMOTE. 

Naïve Bayes and Logistic Regression experience a decrease in 

accuracy after SMOTE is applied. This decrease can be 

explained by Naïve Bayes' sensitivity to changes in 

probabilistic distribution due to synthetic data, as explained in 

the study by Buda et al. [19]. Whereas Logistic Regression, as 

a linear model, is prone to overfitting or failure in mapping 

new patterns generated from SMOTE interpolation. 

Overall, the results of this study reinforce the urgency of 

implementing data balancing strategies in multi-class and 

imbalanced environmental classification. The application of 

preprocessing such as feature scaling, missing value 

imputation, and categorical encoding has proven to support 

data quality and improve model generalization, as suggested 

by Batista et al. [20]. Additionally, the generated ROC curves 

show that well-tuned models like SVM and Random Forest 

have high discriminative power, indicating that algorithm 

selection and parameter tuning play a significant role in fair 

and accurate classification. This research makes a significant 

contribution to promoting the use of data-driven approaches to 

support more accurate and fair environmental management 

policies. Further research is recommended to explore hybrid 

balancing techniques such as SMOTE-Tomek or ADASYN, 

as well as combinations with feature selection techniques and 

ensemble learning to enhance the model's resilience to class 

imbalance and environmental data complexity. 

4. DISCUSSION

While SMOTE generally improved classification 

performance across most algorithms, two models—Naïve 

Bayes and Logistic Regression showed slight accuracy 

declines after balancing. This performance drop can be 

attributed to inherent algorithmic assumptions and their 

interaction with synthetic data characteristics. 

For Naïve Bayes, the main limitation is its strong 

independence assumption between features. SMOTE 

generates synthetic samples by linearly interpolating between 

minority class instances in the feature space. This process can 

alter the joint feature distribution and introduce correlations 

among features that were not present in the original data. As a 

result, the independence assumption underlying Naïve Bayes 

becomes less valid, leading to reduced predictive accuracy. 

Han et al. [18] observed that oversampling in high-

dimensional spaces can worsen feature correlation, reducing 

the performance of Naïve Bayes in multi-class scenarios. 

Similarly, Zhang et al. [15] reported that synthetic 

oversampling often introduces feature dependencies that 
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probabilistic classifiers cannot effectively model, leading to 

reduced performance. 

In the case of Logistic Regression, the model's linear 

decision boundary can be suboptimal in capturing the complex, 

non-linear structures introduced by SMOTE. While synthetic 

oversampling enriches minority class representation, it may 

also introduce borderline or overlapping samples that increase 

class ambiguity. Logistic Regression, which estimates 

parameters by maximizing the likelihood of a linear separation, 

may struggle to fit such augmented distributions effectively. 

Zhang et al. [15] observed that Logistic Regression tends to 

suffer from reduced margin clarity after synthetic 

oversampling, particularly in datasets with non-linear class 

boundaries. Similarly, Latief et al. [16] found that hybrid 

balancing techniques often outperform pure SMOTE in 

preserving the discriminative ability of linear models. 

These findings suggest that while SMOTE is effective for 

many algorithms, particularly those that can leverage local 

density structures (e.g., KNN, Random Forest), its interaction 

with models sensitive to feature dependencies or linear 

separability requires careful consideration. Future research 

could explore hybrid balancing approaches, such as SMOTE-

Tomek Links or ADASYN, combined with feature selection 

or non-linear transformations, to address these issues while 

maintaining balanced class distributions. 

5. CONCLUSIONS

This study offers a thorough assessment of the efficacy of 

the Synthetic Minority Over-sampling Technique (SMOTE) in 

enhancing the classification accuracy of global plastic 

pollution levels using diverse machine learning algorithms. 

The research employed seven classifiers: Decision Tree, 

Random Forest, K-Nearest Neighbors (KNN), Support Vector 

Machine (SVM), Naïve Bayes, AdaBoost, and Logistic 

Regression to investigate the effects of unbalanced data and 

the advantages of data augmentation using SMOTE. The 

results indicate that SMOTE markedly enhanced classification 

performance, especially for algorithms that are responsive to 

local data distributions, such as KNN and Random Forest. 

These algorithms demonstrated significant improvements in 

accuracy, reaching 83% and a steady increase in macro-

average F1-scores, indicating enhanced identification across 

all pollutant categories. The model's capacity to identify 

minority classes, previously constrained, significantly 

improved with the deployment of SMOTE, with classes that 

had accuracy and recall scores of zero before augmentation 

attaining substantial classification performance afterward. 

The study underscored the significance of preprocessing 

steps, including feature scaling, missing value imputation, and 

categorical encoding, which enhanced the dataset's 

dependability and quality. Exploratory Data Analysis (EDA) 

validated the presence of substantial class imbalance, 

warranting the implementation of SMOTE as a remedial 

strategy. By guaranteeing equal representation of each class in 

the training set, the models may generalize more successfully 

and mitigate prediction bias. 

Nonetheless, the study revealed that SMOTE did not 

consistently enhance all classification systems. Naïve Bayes 

and Logistic Regression showed slight reductions in accuracy 

following oversampling. The loss may be ascribed to their 

modeling assumptions: Naïve Bayes presupposes feature 

independence, potentially compromised by the interpolated 

synthetic samples, whilst Logistic Regression's linearity may 

falter under the complexity provided by SMOTE. In 

conclusion, including SMOTE into the data pretreatment 

pipeline is confirmed as a crucial method for enhancing model 

performance in unbalanced classification issues, particularly 

in environmental contexts like plastic pollution categorization. 

The findings endorse the adoption of data-driven decision 

support systems that are both fair and precise in pinpointing 

pollution hotspots. Subsequent studies need to investigate 

hybrid data balancing procedures, feature selection 

methodologies, and ensemble learning strategies to augment 

classification robustness and bolster environmental policy 

support. 

6. LIMITATIONS AND FUTURE RESEARCH

It is important to recognize the many limitations of this 

study. First off, there are 212 nations in the dataset, which 

could not adequately represent sub-national or regional 

variances in the dynamics of plastic pollution. A single 

national-level observation is insufficient to represent several 

nations due to their large geographic regions and varied waste 

management techniques. Second, the study's characteristics 

are mostly statistical records from international databases, 

which can include biases in the estimate or inconsistent 

reporting between nations. In order to give a more detailed 

picture of plastic pollution patterns, future studies might 

overcome these constraints by including higher-resolution 

data sources such as satellite imaging, GIS monitoring, or 

localized surveys. Furthermore, integrating temporal data and 

combining SMOTE with sophisticated balancing techniques 

(such as ADASYN or SMOTE-Tomek) may increase forecast 

accuracy. Incorporating socio-economic, behavioral, and 

policy-related characteristics into the dataset would enhance 

the classification models and provide policymakers with more 

thorough insights. 
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