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The integration of Internet of Things (IoT) and Artificial Intelligence (AI) offers significant 

opportunities for proactive cardiac healthcare. However, existing solutions often struggle 

with noisy ECG data, lack real-time IoT adaptability, and provide limited deployment 

strategies. This study introduces a novel IoT-enabled hybrid framework that combines 

Empirical Mode Decomposition (EMD)-based signal denoising with a CNN-LSTM deep 

learning model for robust and real-time ECG analysis. Unlike prior works, the proposed 

approach emphasizes adaptive preprocessing, cloud-based deployment with EHR 

interoperability, and strong security protocols for clinical integration. Experimental results 

on the MIT-BIH dataset demonstrate 96.5% accuracy, 95.2% precision, and an F1-score of 

94.9%, outperforming conventional CNN and LSTM models. Statistical tests confirm 

significance (p < 0.05). This research bridges the gap between algorithmic accuracy and 

practical IoT deployment, paving the way for intelligent, secure, and real-time cardiac 

monitoring systems. 
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1. INTRODUCTION

Cardiovascular diseases (CVDs) remain one of the leading 

causes of mortality worldwide, posing a critical challenge to 

healthcare systems. Traditional cardiac monitoring methods, 

which rely on periodic clinical evaluations, often fail to detect 

early signs of cardiac abnormalities, resulting in delayed 

diagnosis and treatment. Recent advancements in the Internet 

of Things (IoT) and Artificial Intelligence (AI), particularly 

Deep Learning techniques, offer a promising solution for 

continuous and intelligent cardiac monitoring. 

IoT-enabled wearable and implantable devices allow real-

time acquisition of physiological signals such as ECG, heart 

rate, and oxygen saturation in patients’ daily environments. 

This continuous stream of high-resolution data provides an 

opportunity for proactive and remote monitoring. However, 

the large volume and complexity of ECG signals require 

advanced AI models capable of extracting clinically relevant 

features and predicting potential abnormalities accurately. 

Existing research primarily focuses on either Convolutional 

Neural Networks (CNNs) for spatial feature extraction or 

Long Short-Term Memory (LSTM) networks for temporal 

pattern analysis. While these models perform well individually, 

limited work has explored an optimized combination of both 

approaches in a real-time IoT framework. Moreover, issues 

such as interoperability with Electronic Health Records (EHR), 

data security, and deployment scalability are often overlooked 

in current studies. 

To address these gaps, this paper proposes an IoT-enabled 

hybrid deep learning framework that integrates CNN and 

LSTM to leverage their complementary strengths. The CNN 

component effectively captures morphological features of 

ECG signals, such as QRS complex and ST-segment 

variations, while the LSTM component models temporal 

dependencies for accurate prediction of rhythm irregularities. 

This end-to-end architecture supports real-time data 

acquisition, cloud-based analytics, secure communication 

protocols, and integration with EHR systems. The proposed 

solution aims to enable early detection of cardiac anomalies, 

timely alerts, and improved patient outcomes, particularly for 

individuals with chronic cardiovascular conditions or those in 

remote locations. 

2. LITERATURE REVIEW

This work [1] proposes an AIoT-based crowd counting 

system using deep learning and edge-cloud integration for 

accurate, real-time estimation, validated on benchmark 

datasets. As urbanization grows, cities struggle to ensure 

secure, sustainable living. IoT and AI together enable smarter, 

more efficient cities by connecting devices and analyzing data. 

This review [2] covers smart city concepts, IoT architecture, 

communication technologies, AI algorithms, and their 

integration with 5G, highlighting their role in improving urban 

sustainability and quality of life. This study [3] analyzes the 

rise of AI, IoT, and Big Data in enabling environmentally 

sustainable smart cities, highlighting rapid growth, evolving 

challenges, and implications for policy and practice. This 

paper [4] presents a data fusion and dynamic load balancing 

approach to reduce redundancy and optimize edge server use 

in dense IoT networks, improving QoS and energy efficiency. 

This paper [5] reviews the edge–fog–cloud computing 

paradigm, highlighting its role in enhancing IoT by addressing 
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latency, bandwidth, and scalability challenges through 

distributed AI and analytics. 

Deep learning mimics brain functions to analyze medical 

data for disease diagnosis and management. This paper [6] 

reviews DL applications in healthcare, compares key studies, 

and highlights challenges and future research. 5G-IoT is vital 

for e-health applications, where securing patient data is crucial. 

This paper [7] proposes CNN-DMA, a deep learning model 

using CNN layers to detect malware attacks in cloud-stored 

health data. Tested on the Malimg dataset, CNN-DMA 

achieved 99% accuracy, outperforming existing methods. 

Accurate brain tumor classification is vital for brain cancer 

diagnosis in IoT healthcare. This study [8] proposes an 

improved CNN model using MRI data, enhanced by data 

augmentation and transfer learning, achieving higher accuracy 

than existing methods, making it suitable for IoT-based 

diagnosis. This study [9] presents a lightweight CNN for 

cardiovascular disease classification from ECG images that 

runs efficiently on a single CPU and improves traditional 

machine learning performance through feature extraction. 

This study [10] presents a 1D CNN model for early heart 

disease detection using balanced data and clinical parameters, 

overcoming limitations of traditional machine learning and 

improving diagnostic accuracy. 

This paper [11] analyzes LSTM-based deep learning 

models for ECG heartbeat classification using the MIT-BIH 

dataset. The bi-directional LSTM variant performs best, 

showing strong accuracy and reliability, confirming LSTM’s 

suitability for heart disease diagnosis. This study [12] presents 

a hybrid method combining PCA and LSTM for classifying 16 

types of cardiac arrhythmias from ECG data. It improves 

accuracy by reducing noise and handling ECG signal 

variability more effectively than traditional approaches. This 

study [13] proposes a smart healthcare system for heart disease 

diagnosis using ECG signals by combining CNN and LSTM 

to extract signal features. It addresses data imbalance with 

SMOTE and uses gated pooling for feature reduction, showing 

strong performance on standard ECG datasets. This study [14] 

enhances remote cardiac care by combining IoT data and 

clinical records, using XGBoost and Bi-LSTM for accurate 

heart disease prediction, outperforming traditional models. 

IoT combined [15] with cloud computing enables proactive 

healthcare through deep learning. Using Bi-LSTM on IoT and 

health record data, the system predicts heart disease risk with 

high accuracy, outperforming existing methods. 

The literature reveals three main gaps: 

(1) limited critique of hybrid approaches in real-world IoT

deployments, 

(2) inadequate focus on preprocessing strategies tailored for

ECG noise reduction, and 

(3) absence of an end-to-end architecture addressing data

acquisition, AI-driven analytics, and secure integration with 

healthcare systems.  

The proposed CNN-LSTM-based IoT framework aims to 

fill these gaps by combining morphological and temporal 

feature learning, implementing robust preprocessing pipelines 

and ensuring cloud-based scalability with secure EHR 

integration for continuous cardiac health monitoring. 

Table 1 presents a comparative analysis of various deep 

learning architectures applied to cardiac signal processing, 

while Table 2 summarizes key research studies focusing on 

CNN-LSTM and hybrid deep learning frameworks in 

healthcare applications. 

Table 1. Comparison of deep learning models for cardiac signal analysis 

Model Strengths Suitable Tasks 

CNN Spatial feature extraction Beat classification, waveform analysis 

LSTM Temporal sequence modeling Rhythm prediction, temporal pattern recognition 

CNN + LSTM Combined spatial and temporal learning Complex heartbeat classification, predictive modeling 

Transformer Long-range dependency and attention Long sequence analysis, multi-modal data 

Autoencoder Unsupervised anomaly detection Detecting unknown or rare anomalies 

Table 2. Key studies on CNN-LSTM and hybrid deep learning models in healthcare 

No. Authors Application Domain Dataset/Platform Key Contributions/Findings 

1 Rayan et al. [16] 
Medical systems 

enhancement 
Not specified 

Improved medical system performance using CNN-

LSTM hybrid 

2 
Rai and Chatterjee 

[17] 

Myocardial infarction 

detection 
Large ECG datasets 

Automated MI detection with high accuracy using 

ensemble approach 

3 
Elbagoury et al. 

[18] 
Stroke prediction 

Mobile AI smart hospital 

platform 

Novel hybrid deep learning model for stroke 

prediction on mobile platform 

4 Begum et al. [19] Breast cancer diagnosis Not specified 
Combined CNN-LSTM with RF for improved breast 

cancer diagnosis 

5 Amin et al. [6] Healthcare broadly N/A 
Discusses issues, challenges, and opportunities in DL 

healthcare 

6 
Ayus and Gupta 

[20] 

Alzheimer’s 

identification 
Biomedical signal datasets Novel hybrid DL system for Alzheimer’s detection 

7 
Hiriyannaiah et al. 

[11] 
Heartbeat classification 

MIT-BIH arrhythmia 

dataset 

Comparative analysis of LSTM models for ECG 

heartbeat classification 

8 
Sowmya and Jose 

[21] 

Arrhythmia signal 

classification 
ECG signals datasets 

CNN-LSTM based model for arrhythmia 

classification 

3. SYSTEM ARCHITECTURE

The proposed IoT-enabled cardiac monitoring system 

consists of three interconnected layers: IoT Layer, Data 

Processing Layer, and AI/Deep Learning Layer. These layers 

collaboratively enable secure, real-time data acquisition, 

analysis, and integration with clinical systems such as 

Electronic Health Records (EHR). The components of the IoT 
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architecture layer are depicted in Figure 1. 

Figure 1. IoT layer components 

3.1 IoT layer 

(1) Wearable Sensors: Wearable biosensors play a crucial

role in physiological data acquisition for health

monitoring systems. Key devices utilized include the

AD8232 ECG sensor, which captures real-time

electrocardiogram (ECG) signals to assess cardiac activity;

the MAX30100 Pulse Oximeter, which measures both

heart rate and blood oxygen saturation (SpO₂) levels; and

the MLX90614 Infrared Temperature Sensor, which

enables non-contact monitoring of body temperature.

These sensors collectively provide comprehensive vital

signs data essential for continuous heart health

observation, as highlighted in recent studies published by

MDPI.

(2) Microcontroller Unit (NodeMCU): Serves as the central

control component responsible for acquiring sensor data

and enabling wireless communication. It transmits the

collected data to the processing unit using built-in Wi-Fi

or Bluetooth capabilities, thereby facilitating seamless

integration between the sensing environment and the data

analysis system.

3.2 Data processing layer 

(1) Edge Computing Unit: This component is responsible for

conducting preliminary processing of the raw signals

collected from sensors. It applies noise reduction

techniques and other preprocessing methods at the edge

of the network—closer to the data source—before the data

is transmitted to central systems. This ensures that the

information sent onward is cleaner, more accurate, and of

higher quality, thereby enhancing the reliability of

subsequent analysis and reducing the burden on

downstream processing units.

(2) Cloud Integration: Enables the seamless storage of

processed data on cloud platforms, providing scalable

infrastructure for advanced analytics, real-time data

access, and secure long-term archival. It supports

integration with analytical tools and services to derive 

meaningful insights from large datasets 

3.3 AI/Deep learning layer 

(1) Model: The proposed model adopts a hybrid CNN-LSTM

architecture to process ECG (Electrocardiogram) signals,

aiming to extract both spatial and temporal features from

the input data. This is crucial in the context of biomedical

signal analysis, where the morphological structure of the

ECG waveform and the temporal dynamics between

heartbeats are both vital for accurate diagnosis and

classification.

The architecture's first phase for extracting spatial features 

is the Convolutional Neural Network (CNN) component. This 

involves identifying significant localized signal features, such 

as peaks, slopes, and durations within the waveform—more 

particularly, elements like the P-wave, QRS complex, and T-

wave that are involved in the processing of ECG signals. To 

find these local features, 1D convolutional layers typically 

employed, in which filters traverse across the ECG signal. 

Activation functions (such as ReLU), pooling layers (like 

MaxPooling1D) to reduce dimensionality, and batch 

normalization to enhance training stability may also be 

included in this step. Once the CNN has extracted the spatial 

features, the output is passed through a Flatten or Reshape 

layer to prepare the data for temporal modeling. This 

transformation reshapes the data into a format compatible with 

the Long Short-Term Memory (LSTM) network, converting 

the multi-channel spatial outputs into a time-series-like 

sequence of feature vectors. 

The model's temporal learning stage is depicted by the 

LSTM component, which appears next. A specific type of 

Recurrent Neural Network (RNN), LSTMs are exceptionally 

good at discovering sequential patterns and long-term 

dependencies in time-series data. The LSTM learns to 

recognize irregular intervals, rhythmic patterns, and temporal 

anomalies between heartbeats in ECG signals by recording 

how features shift over time. This is particularly critical for 
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identifying diseases like arrhythmias, which are characterized 

by erratic heartbeat patterns and temporal spacing. 

The outcome is passed into a number of Dense (fully 

connected) layers for final feature integration and decision-

making after passing through the LSTM layers. Depending on 

the task, the output layer, which is the last layer, utilizes the 

proper activation function. For instance, a sigmoid is used for 

binary classification tasks (such as normal vs. abnormal), 

whereas a softmax activation is used for multi-class 

classification (such as distinguishing between different cardiac 

conditions). 

(2) Function: Using ECG signal data, the proposed CNN-

LSTM model's primary objectives involve categorizing

various heartbeat types and forecasting possible

cardiovascular risk patterns. Given that precise

classification of cardiac rhythms aids in the early

identification of cardiac disorders like arrhythmias, atrial

fibrillation, and other abnormal heart conditions, this task

is crucial for clinical diagnostics.

Using the CNN and LSTM components, the model first 

investigates the provided ECG signal to extract crucial 

features, both temporally and spatially. The form of heartbeat 

found in each ECG segment is then determined using these 

features that have been extracted. For instance, it may 

differentiate between different kinds of arrhythmic patterns, 

including bundle branch blocks, supraventricular ectopic beats, 

and premature ventricular contractions (PVCs), and a typical 

sinus rhythm. This classification aids doctors in determining 

whether the heart is beating normally or if there are anomalies 

that call for additional research or medical attention. 

The model can be trained to predict possible risk patterns in 

addition to classification. Learning from a wide range of 

structured ECG signals, including those linked to previous 

cardiac events, the model is able to identify minute 

irregularities or shifts from normal patterns that could point to 

a higher risk of cardiac problems in subsequent years. 

Potential warning indicators could include, for example, 

persistent irregularities in heartbeat intervals or a gradual 

lowering of specific ECG components. 

IoT-based wearable devices and remote health monitoring 

systems, which regularly gather and evaluate real-time ECG 

data, benefit greatly from these predictive features. The CNN-

LSTM model can be used in these systems to continuously 

track patients and notify medical professionals of possible 

risks before clinical signs appear. 

4. METHODOLOGY

The model is divided following phases: 

• Data Acquisition

• Preprocessing

• Input Representation

• CNN-based Feature Extraction

• LSTM-based Temporal modelling

• Model Training

• Deployment

4.1 Data acquisition 

To assure complete representation and generalization, 

cardiovascular signals from multiple sources are gathered and 

aggregated during the data gathering phase. The MIT-BIH 

Arrhythmia Database, which provides comprehensive ECG 

recordings with appropriate diagnostic labels, is one example 

of an annotated dataset. Furthermore, IoT-enabled biomedical 

sensors—such as wearable and implantable devices—provide 

real-time data streams by gathering physiological signals from 

patients in clinical or mobile settings. The dataset is robust for 

training and testing intelligent models due to the integration of 

these sources, which assures that it reflects both typical and 

unconventional cardiac behavior under various conditions. 

4.2 Preprocessing 

In addition to technical constraints, patient movement, and 

environmental disturbances, raw cardiac signals from sensors 

are vulnerable to noise and irregularities. Preprocessing is 

therefore required for transforming noisy, unstructured inputs 

into clean, standardized data that can be used to train models. 

4.2.1 Signal denoising 

In an attempt to reduce unwanted noise while retaining 

clinically significant features, denoising is used. Baseline 

wander, powerline disruption, and muscle distortions are 

removed, and the frequency factors of interest are 

distinguished using methods like bandpass filtering, wavelet 

decomposition, and Empirical Mode Decomposition (EMD). 

4.2.2 Normalization 

Normalization methods like min-max scaling or z-score 

standardization are used to remove bias brought on by 

variances in signal amplitudes among sensors or subjects. This 

enhances efficiency and reliability during training by ensuring 

that the input signals received by the deep learning model fall 

within a consistent range. 

4.2.3 Segmentation 

In addition to the persistent nature of ECG signals, temporal 

analysis is made simpler by segmenting the data into distinct 

windows or cardiac cycles. Individual heartbeat segments can 

be extracted with the aid of techniques like peak detection-

driven segmentation and predetermined-length windowing. 

Deep learning models then use these segments as units of input. 

4.2.4 Artifact removal 

Noise removal methods like threshold-based filters or 

Independent Component Analysis (ICA) are used to reduce 

non-cardiac noise and improve signal quality even more. 

Cleaner signal inputs enhance model precision and lower false 

alarms as a result. 

These preprocessing methods work together to convert 

noisy, unstructured raw data into clean, standardized, and 

well-segmented inputs, which help deep learning algorithms 

detect and anticipate cardiac abnormalities. Therefore, the 

success of the intelligent IoT-enabled heart monitoring system 

recommended in this study depends critically on efficient 

preprocessing. 

4.3 Input representation 

After preprocessing, each ECG segment is formatted as a 

one-dimensional time-series vector: 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑇],  𝑥 ∈ 𝑅𝑇 (1) 

where, T denotes the number of time steps in a single segment. 

This representation serves as the input to the convolutional 
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layers, capturing both local and global morphological features 

necessary for downstream classification. 

4.4 CNN-based feature extraction 

The initial stage of the deep learning pipeline involves 

Convolutional Neural Networks (CNNs) that extract spatial 

features from the input signal. CNNs are particularly effective 

in identifying morphological patterns in ECG signals, such as 

QRS complexes, P waves, and T wave irregularities. 

4.4.1 Convolution operation 

Convolutional filters slide across the input signal to detect 

local patterns: 

yi = ∑ wj ∗ xi+j + b

k

j=1

(2) 

where, k is the kernel size, 𝑤𝑗  are the filter weights, and b is

the bias. 

4.4.2 Batch normalization and ReLU 

Batch normalization is applied to stabilize learning, 

followed by a ReLU activation function: 

𝑓(𝑥) = max (0, 𝑥) (3) 

These steps improve model convergence and address 

vanishing gradient problems. 

4.4.3 Max pooling and dropout 

Max pooling downsamples the feature map, reducing 

computational load and emphasizing dominant features: 

yi = max(xi, xi+1, … , xi+p) (4) 

Dropout regularization prevents overfitting by randomly 

disabling a fraction of neurons during training. 

4.4.4 Fully connected layer 

Extracted features are passed through a dense layer to 

consolidate local patterns into higher-order representations: 

𝑦 = 𝑤𝑥 + 𝑏 (5) 

4.5 LSTM-based temporal modeling 

The output of the CNN block is fed into Long Short-Term 

Memory (LSTM) layers to model the temporal dependencies 

between heartbeats across segments. 

4.5.1 LSTM mechanics 

LSTM networks capture long-term dependencies using 

gates and memory cells. The core operations include: 

Forget gate: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑓) (6) 

Input gate: 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖), 𝐶𝑡
~

= tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐

(7) 

Cell state update: 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡
~ (8)

These mechanisms allow the model to retain clinically 

important temporal dynamics that span across multiple cardiac 

cycles. 

4.5.2 Final dense and softmax layers 

The LSTM output is passed through one or more fully 

connected layers, followed by a softmax layer: 

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑁
𝑗=1

, 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑦𝑖) (9) 

This produces the class probabilities, allowing the model to 

predict heart conditions such as normal rhythm, arrhythmia, or 

other cardiac abnormalities. 

4.6 Customized CNN–LSTM for ECG signal processing 

To address ECG-specific characteristics and ensure robust 

detection of arrhythmias and related anomalies, we introduce 

a customized CNN–LSTM model that combines spatial and 

temporal feature learning with physiological constraints. 

Unlike generic CNN and LSTM formulations, this design 

incorporates beat-synchronous segmentation, multi-scale 

convolutions matched to ECG wave durations, morphology-

aware regularization, RR-interval conditioning, and a 

temporally consistent early-alarm loss. The proposed model 

processes ECG signals as follows: 

4.6.1 Beat-synchronous input representation 

Each ECG segment is extracted around R-peak positions to 

ensure alignment with cardiac cycles: 

𝑥𝑡  =  𝛱(𝑋, [𝑟𝑡  −  ⌊𝑊/2⌋, 𝑟𝑡  +  ⌊𝑊/2⌋])  ∈  ℝ𝐿×𝑊 (10) 

where, X is the multi-lead ECG input, rtr_trt is the R-peak 

index for beat t, L is the number of leads, and W is the window 

length in samples. 

4.6.2 Lead-attention fusion 

Physiologically important leads (e.g., V1, V2 for QRS 

morphology) are adaptively weighted: 

𝑥𝑡
~(𝜏) = ∑ 𝑥𝑡

(𝑙)
(𝑇)

𝐿

𝑙=1

, 𝛼ℓ =
exp (𝛼ℓ)

∑ exp (𝛼𝑗)
𝐿

𝑗=1

(11) 

where, 𝛼ℓ are attention scores for each lead.

4.6.3 Multi-scale dilated convolutions 

To capture P-wave, QRS, and T-wave patterns, we use 

multiple convolution kernels with physiologically tuned 

receptive fields: 

𝑓𝑡
(𝑚)(𝑇) = 𝜎 (𝑏𝑚 + ∑ 𝑤𝑘

(𝑚)

𝐾𝑚−1

𝑘=0

𝑥𝑡
~(𝑇 + 𝑑𝑚𝑘)) ,

𝑚 = 1, … , 𝑀 

(12) 

where, 𝑑𝑚  controls dilation (spacing) and 𝐾𝑚  is the kernel

size. 
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4.6.4 Morphology regularization for QRS complex 

To enforce sharp, near-symmetric QRS detection, we 

regularize CNN kernels: 

𝑅𝑚𝑜𝑟𝑝ℎ  =  𝜆𝑠𝑦𝑚  ∑ ∑(𝑤𝑘
(𝑚)

 +  𝑤𝐾𝑚−1−𝑘
𝑚  )

2

𝑘𝑚∈𝑄

+ 𝜆𝑡𝑣 ∑ ∑(𝑤𝑘+1
(𝑚)

− 𝑤𝐾𝑚+1

(𝑚)

𝑘𝑚∈𝑄

− 𝑤𝑘
(𝑚)

)
2

(13) 

where, Q is the set of QRS-focused kernels. 

4.6.5 RR-interval conditioning 

Rhythm variability is encoded by concatenating RR 

intervals with CNN features: 

𝑠𝑡  =  𝜑(𝐺𝐴𝑃(𝑓𝑡)  ∥  𝑧𝑡) (14) 

where, 𝑧𝑡  represents a short RR history and GAP is global

average pooling. 

4.6.6 LSTM temporal modeling 

𝑖𝑡  =  𝜎(𝑊𝑖  𝑠𝑡  +  𝑈𝑖  ℎ𝑡−1 + 𝑏𝑖), 
𝑓𝑡  =  𝜎(𝑊𝑓 𝑠𝑡  +  𝑈𝑓  ℎ𝑡−1 + 𝑏𝑓), 

𝑐̃𝑡  =  𝑡𝑎𝑛ℎ(𝑊𝑐  𝑠𝑡  +  𝑈𝑐  ℎ𝑡−1 +  𝑏𝑐), 
𝑜𝑡  =  𝜎(𝑊𝑜 𝑠𝑡  +  𝑈𝑜  ℎ𝑡−1 + 𝑏𝑜), 

𝑐𝑡  =  𝑓𝑡  ⊙  𝑐𝑡−1 +  𝑖𝑡  ⊙  𝑐̃𝑡 , 
ℎ𝑡  =  𝑜𝑡  ⊙  𝑡𝑎𝑛ℎ(𝑐𝑡)

(15) 

4.6.7 Early-alarm prediction & loss 

To encourage early detection, predictions are made h beats 

ahead: 

𝑝𝑡+ℎ =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 ℎ𝑡  +  𝑏) (16) 

The overall loss combines class-weighted cross-entropy, 

temporal consistency, early-alarm emphasis, and morphology 

regularization: 

𝐽 =  𝐿𝐶𝐸  +  𝜆𝑡𝑒𝑚𝑝 𝐿𝑡𝑒𝑚𝑝  +  𝜆𝑒𝑎𝑟𝑙𝑦 𝐿𝑒𝑎𝑟𝑙𝑦

+ 𝜆𝑚𝑜𝑟𝑝ℎ  𝑅𝑚𝑜𝑟𝑝ℎ  +  𝜆2 𝛴 ||𝛩||
2 (17) 

where, Θ denotes all learnable parameters. 

4.7 Model training 

The training process for the proposed CNN-LSTM model 

involves leveraging annotated cardiovascular signal datasets, 

where each signal segment is labeled to indicate specific heart 

conditions such as normal rhythm, arrhythmias, or other 

abnormalities. Initially, the preprocessed data—consisting of 

clean, normalized, and segmented heart signal windows—is 

fed into the Convolutional Neural Network (CNN) component. 

The CNN automatically extracts spatial features, such as 

morphological patterns in the heartbeats, by applying a series 

of filters across the signal. These high-level features are then 

passed to the Long Short-Term Memory (LSTM) layers, 

which are responsible for learning the temporal dependencies 

and sequential dynamics present in cardiac signals over time. 

The model undergoes supervised learning, where the predicted 

outputs are compared to ground truth labels, and the error is 

minimized through backpropagation and optimization 

algorithms such as Adam or RMSprop. To enhance 

generalization and robustness, techniques like dropout, early 

stopping, and batch normalization are employed during 

training. Furthermore, the trained model is validated using a 

separate set of real-time or unseen input data to evaluate its 

accuracy, sensitivity, specificity, and overall performance in 

detecting cardiac anomalies. This ensures the model's 

reliability and readiness for deployment in real-world, IoT-

enabled heart monitoring systems. 

The CNN-LSTM model was trained using the MIT-BIH 

Arrhythmia dataset and real-time ECG segments. The training 

process involved supervised learning with categorical cross-

entropy as the loss function, optimized using the Adam 

optimizer with an initial learning rate of 0.001. 

Hyperparameters were tuned through a grid search over 

learning rates [0.0001, 0.001, 0.01][0.0001, 0.001, 

0.01][0.0001,0.001,0.01], batch sizes [32,64,128][32, 64, 

128][32,64,128], and dropout rates [0.2,0.5][0.2, 0.5][0.2,0.5]. 

The final configuration employed a batch size of 64, dropout 

of 0.3, and early stopping with a patience of 10 epochs to 

prevent overfitting. The model was trained for 50 epochs, with 

an 80:10:10 split for training, validation, and testing. 

Regularization was achieved through L2 weight decay (λ = 

0.0001) and dropout layers. 

4.8 Deployment 

Once the deep learning model (e.g., CNN or LSTM) is 

trained and validated using preprocessed cardiac data, it is 

deployed to a cloud-based server environment. This cloud 

infrastructure provides the scalability, processing power, and 

storage capacity required to handle continuous streams of data 

from multiple IoT-enabled wearable or implantable sensors. 

The model is integrated into a backend system that supports 

real-time inference, allowing it to analyze incoming heart 

signals and detect anomalies on the fly. To ensure accessibility 

and usability, the system is connected to a user-facing mobile 

or web application. This application serves as the interface 

through which patients, caregivers, or healthcare professionals 

can monitor heart activity in real time, receive alerts about 

irregular patterns, and access historical health data. The 

deployment not only ensures 24/7 availability and seamless 

access but also facilitates remote healthcare by bridging the 

gap between real-time data acquisition and clinical decision-

making. Security and privacy measures, such as encryption 

and authentication protocols, are implemented to safeguard 

sensitive health data during transmission and storage. The 

methodology is illustrated in Figure 2. 

Figure 2. CNN-LSTM model architecture 

5. RESULTS AND EVALUATION

Table 3 presents a comparative analysis of the performance 

of three deep learning models—CNN, LSTM, and the hybrid 

CNN+LSTM—evaluated using four key metrics: Accuracy, 
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Precision, Recall, and F1-Score. This comparison highlights 

the strengths and weaknesses of each model in processing and 

interpreting cardiac signals. Correspondingly, Figure 3 

illustrates these results in a graphical format, clearly showing 

that the CNN+LSTM hybrid model consistently outperforms 

both standalone models across all evaluation criteria. This 

superior performance underscores the hybrid model's 

robustness and enhanced capability in accurately detecting and 

classifying heart signal anomalies, making it a more effective 

solution for real-time cardiac monitoring applications. 

Table 3. Performance comparison of CNN, LSTM and 

proposed model 

Metric CNN Value LSTM Value CNN+LSTM Value 

Accuracy 92.41% 91.89% 96.5% 

Precision 92.12% 91.34% 95.2% 

Recall 91.98% 90.68% 94.7% 

F1-Score 92.03% 91.11% 94.9% 

These intervals indicate that the proposed CNN+LSTM 

model consistently outperforms standalone models with a high 

level of confidence, reinforcing its robustness for real-world 

deployment. 

Statistical Significance Analysis: 

To validate whether the performance improvements of the 

proposed CNN+LSTM model over standalone CNN and 

LSTM models are statistically significant, we conducted a 

paired t-test on cross-validation folds. The null hypothesis (H₀) 

assumes no significant difference between models, while the 

alternative hypothesis (H₁) assumes the CNN+LSTM model 

performs better. 

Results indicate p-values < 0.05 for all metrics (Accuracy, 

Precision, Recall, F1-score), confirming that the performance 

gains of the hybrid model are statistically significant as shown 

in Table 4. 

Figure 3. Performance comparison of CNN, LSTM and 

proposed model 

Table 4. Statistical significance (p-values) of performance 

comparison between models 

Comparison 
Accuracy p-

Value 

Precision p-

Value 

Recall p-

Value 

F1-Score 

p-Value

CNN vs 

CNN+LSTM 
0.002 0.004 0.003 0.005 

LSTM vs 

CNN+LSTM 
0.001 0.003 0.002 0.004 

6. CONCLUSION

The integration of IoT and AI-driven deep learning provides 

a transformative approach for continuous, real-time cardiac 

monitoring. By leveraging wearable devices for data 

acquisition and a hybrid CNN–LSTM model for spatial and 

temporal feature analysis, the proposed framework enhances 

diagnostic accuracy and enables proactive interventions. 

Cloud integration further ensures scalability, secure data 

access, and seamless connectivity for remote healthcare 

applications. Experimental results validate its robustness, with 

the hybrid model achieving 96.5% accuracy, 95.2% precision, 

and an F1-score of 94.9%, outperforming standalone CNN and 

LSTM models. This work demonstrates a practical, intelligent 

solution for early detection and management of cardiac 

anomalies, bridging the gap between algorithmic innovation 

and real-world deployment. 

7. LIMITATIONS AND FUTURE WORK

The proposed CNN-LSTM IoT framework, while effective 

on benchmark datasets, faces key limitations. First, reliance on 

the MIT-BIH dataset introduces demographic bias, limiting 

generalizability. Second, real-world deployments may 

encounter noise, motion artifacts, and inconsistent sensor 

quality. 

Future work will explore bias reduction via federated 

learning, lightweight edge-compatible models, adaptive noise 

handling, and large-scale clinical trials for real-world 

validation. 
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