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Short-term solar irradiation prediction is essential for smooth running of various industries, 

especially for management of flawless electricity generation and distribution. However, 

solar datasets are rapid, noisy, and non-linear, making standalone models such as LSTM 

struggle to extract meaningful patterns for GHI forecasting. The unidirectional nature of 

LSTM restricts learning to past dependencies only, limiting its ability to forecast sudden 

irradiance drops. Additionally, vanishing gradient issues in long historical data hinder 

ability of LSTM to capture complex temporal dependencies, leading to suboptimal 

forecasting performance. To address these challenges, the proposed model leverages deep 

learning techniques with a feature-refinement approach. Initially, multiple intrinsic mode 

functions (IMFs) are extracted from the solar irradiance data, each representing different 

feature sets. A selection criterion is then applied to retain only the most relevant IMFs, 

which are integrated to form the input feature set. This refined input is used to train a deep 

learning network, resulting in day-ahead solar irradiance forecasting model. The 

performance of the model is evaluated at three distinct locations with varying climatic 

conditions to test its performance consistency. In the proposed model, reduced error rates 

are observed, which reflects in lower values of MAPE (2.31%), RMSE (1.55 W/m²), and 

MAE (1.41 W/m²) as compared to the standalone LSTM model, which records MAPE 

(3.23%), RMSE (3.21 W/m²), and MAE (1.97 W/m²). Results demonstrate significant 

improvements over benchmarking method corresponding to more than 90% improvement 

across all statistical parameters. Also, consistent accuracy across diverse climates highlights 

robustness of the proposed model which makes it a reliable and versatile solution for 

practical forecasting applications. 
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1. INTRODUCTION

The evolution in technology enforced raging demand of 

electricity. To fulfil this demand, most countries still rely on 

fossil fuels which causes greenhouse effects and 

environmental pollution [1]. To mitigate these effects, the 

whole world is exploring renewable energy resources (RER) 

and started inventing new technological advancements and 

policies for efficient use, management and alignment of these 

resources [2]. 

It is predicted that continuous advancement in RE source 

based electricity generation would reduce the fossil fuel 

dependency for electricity generation [3]. Therefore, to boost 

RE resources-based electricity generation, many initiatives are 

started. Many RE sources such as geothermal, wind, water and 

solar are abundantly available on earth. However, owing to 

specific area wise availability resources are chosen for 

electricity generation at that site. Amongst all, solar energy is 

abundant and offers electricity generation with much less 

negative impact on the nearby environment [4]. In most of the 

cases RE sources are considered as secondary option for 

electricity needs, this is because most of the RE sources are 

not able to produce electricity consistently to fulfil total 

demand. Moreover, many times it has been consider as more 

reliable practice to connect RE source-based electricity with 

gridded network to ensure availability of the electricity in case 

of failure of RE source-based electricity generation. This 

makes management of flawless electricity generation and 

distribution extremely crucial. This highlights need of GHI 

availability prediction. Thus, for reliable management of RE 

source-based electricity, forecasting of GHI availability is 

decisive and essential. 

Moreover, a thorough understanding of solar radiation (SR) 

at that location is vital for both environmental sustainability 

and economic potential, as evidenced by the influence of SR 

on agricultural yield, atmospheric circulation, hydrological 

processes, public health, and ecological services [5]. Similarly, 

GHI forecasting is crucial in case of managing and 

commission issues related to meteorology, hydrology, and 

renewable energy usages [6]. Therefore, from many aspects 

GHI forecasting ability is important and influences 

management related to many essential sectors.  

India is located in between the equatorial region and tropic 

of cancer in the northern hemisphere, due to which abundant 

SR is available almost everywhere. With nearly 2300 to 3200 

hours of sunlight in most of the regions per year, India is 
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capable of generating nearly 4-7 kWh/m2 electricity per day 

using solar radiance [7]. Despite of such huge availability of 

solar energy, due to its characteristics such as fluctuation, 

uncertainty and randomness, complete reliance on solar 

energy for electricity generation needs excellent planning and 

backup to fulfil total electricity requirement [8]. Herein, GHI 

forecasting plays crucial role in management of all solar 

energy related task and this also reduces significant amount of 

running cost of power systems [9]. Identifying this trail of need 

for GHI forecasting, present study focuses on development of 

GHI forecasting method and its implementation.  

Researchers have chosen many paths to craft GHI 

forecasting techniques. These techniques are broadly 

categorised as physical method, statistical method, machine 

learning method and hybrid method [10]. The input parameters 

and forecast horizons commonly defines forecasting 

performance of any technique. Mostly, the forecasting ability 

is learned from historic spatial–temporal information which is 

available in the form of various parameters and this correlation 

is used as feature defining contributor while improving the 

accuracy [11]. In the view of this understanding, present work 

focuses on framing the machine learning technique of GHI 

forecasting for Indian region. However, to decide strategy and 

implementation planning of forecasting technique, previous 

literature is reviewed, and most relevant information is 

presented as follows. 

1.1 Related work 

Technological advancements boosted use of machine 

learning approaches in the field of solar irradiance forecasting 

which can be tuned for giving more accurate forecast. The 

machine learning techniques shows capacity of self-learning, 

with this approach the relation with historic events is analysed 

and a pattern is learned which is used to forecast future events. 

The GHI forecasting is attempted using Elman neural network 

(ELMAN) [12], artificial neural network (ANN) [13], and 

support vector machine (SVM) [14] as standalone models. 

Similarly, many deep learning approaches are also tested for 

GHI forecasting. A group of researchers reviewed 

performance of recurrent neural network (RNN), long short 

term memory (LSTM), gated recurrent unit (GRU), and deep 

neural network (DNN) models for GHI forecasting [15-18]. 

This study revealed the superior performance of LSTM over 

other techniques in terms of RMSE. However, since the 

historic GHI data and other weather parameters are very 

uncertain and nonlinear, forecasting ability using machine 

learning models reached at local minima and limited accuracy 

is being delivered [8]. This prompted researchers to choose 

approaches wherein multiple techniques are combinedly used 

to overcome different issues and a collaborative approach can 

be formed for better accuracy.  

Some research groups designed combined approaches in 

which two networks are fused. In one such approach CNN and 

LSTM are fused; wherein geographical data is analysed using 

CNN and LSTM and historic properties of that data are learned 

[19]. Whereas, the combined CNN-LSTM approach is used 

for GHI forecasting in Indian regions also [20]. In this 

approach temporal features are derived from time-series solar 

irradiance data using LSTM and spatial features are derived 

from the correlation matrix of several meteorological variables 

available at that location and neighbouring locations. This 

approach shows 37%–45% higher forecast skill score over 

many standalone methods. To mitigate the overfitting issue, a 

hybrid model is formed using LSTM and gradient boost 

algorithm, which is when compared with naive predictor and 

SVM model shows superior performance in terms of RMSE 

[21]. Many researchers have tested and shown that LSTM 

shows better performance over other traditional ML or DL 

models. Therefore, various forms of LSTM are investigated 

for their potential application in GHI forecasting. A group of 

researchers compared the forecasting performance of LSTM 

and BiLSTM for hourly solar radiation forecasting and found 

that BiLSTM shows better performance than LR, LSTM and 

SVR with 98.44 W/m2 RMSE, 71.49 W/m MAE [22]. In 

another attempt, BiLSTM is used in conjunction with CNN 

and superior performance than CNN-LSTM, GRU-LSTM, 

LSTM and GRU is demonstrated [23]. 

Another aspect of the data related to solar irradiance or 

weather parameters is random fluctuations of readings and 

time series shows different trends and cycles (depending on 

season and local geographic conditions) which makes it 

difficult to learn by simplistic machine learning and deep 

learning models. This affects the accuracy of prediction ability 

of forecasting models. To tackle these issues, various data 

decomposition techniques are employed in conjunction with 

DL methods. These signal processing techniques clean-up, 

decompose and align the input vector in accordance with 

specified guidelines prior to feed to the predictor. Some signal 

processing techniques such as Wavelet transform (WT) [24], 

SOM, normalization, Kalman filter, Fourier’s transform (FFT), 

empirical mode decompositions (EMD) [25], EEMD, 

CEEMDAN [21], variational mode decomposition (VMD) [26] 

are used in crafting of forecasting techniques. A research 

group used EMD for input data decomposition and used as an 

input for training Auto Regression (AR) method and ANN 

models for GHI forecasting, resulted in enhanced accuracy 

than that of the AR and ANN models alone [12]. Similarly, 

EEMD technique is used in conjunction with Self Organizing 

Map-Back Propagation (SOM-BP) network and the 

aggregated output is obtained. In the similar way, few research 

groups utilized WT to decompose input dataset and used it in 

conjunction with SVM and ANN model [14, 27]. Following 

the similar path many forecasting models are proposed to 

forecast GHI for Indian regions. 

A group of researchers used a dataset of single location 

which is decomposed using WT and then used to train LSTM, 

BiLSTM and GRU. It is demonstrated that learning ability of 

LSTM and GRU improves after the use of data decomposition 

technique and accuracy for 24-h ahead GHI forecasting 

increases [28]. The similar group demonstrated use of full 

wavelet packet decomposition (FWPD) method for single 

location input data decomposition and used it to train BiLSTM 

for 24-hr ahead GHI forecasting [24, 29]. A group of 

researchers used a dataset of single location which is 

decomposed using CEEMDAN and then used to train LSTM 

and GRU. It is demonstrated that learning ability of LSTM and 

GRU improves after the use of data decomposition technique 

[30]. 

On the parallel lines, a group of researchers used a dataset 

of single location and EEMD is used for input data 

decomposition thereafter the most prospective sets of features 

are selected using the Genetic Algorithm (GA) which is then 

used for training LSTM [31]. Similar group also presented the 

method wherein CEEMDAN is used in conjunction with GA 

and BiLSTM for the same single location [32]. For both the 

studies it is demonstrated that selecting the most prospective 

sets of features using GA shows improved forecasting 
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accuracy. A research group formulated eleven different 

models for two different locations using various data 

decomposition techniques such as VMD, WT, EMD, EEMD, 

CEEMDAN and WPD prior feeding input to Feedforward 

neural network (FFNN), LSTM, GRU and BiLSTM. 

Thereafter, the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) is employed to select best 

combination of time lagged data. The results stated that the 

performance of the WPD based BiLSTM model surpasses all 

standalone and hybrid models. On similar lines, a group of 

researchers pre-processed input dataset of four different 

locations using EMD, EEMD and SEEMDAN and Pearson’s 

Correlation Coefficient (PCC) is used to find highest 

correlation coefficient values which are combined to form a 

single input for Adaptive Neuro Fuzzy Inference System 

(ANFIS) to form GHI forecasting system [33]. This method 

demonstrated accuracy with less than 2% MAPE for season 

wise short-term solar irradiance forecasting. In the view of 

discussion, present study utilizes CEEMDAN method to pre-

process input data. Further, the PCC method is employed for 

selecting the prospective features. The selected input features 

are then used to develop forecasting model using BiLSTM. 

Three locations with different climatic conditions are 

considered for model testing. The main contribution and 

highlights of the present work are as follows: 

• The present model is capable of handling nonlinear nature

of the GHI dataset and increasing scale of datasets.

• The integration of deep learning and advanced signal

decomposition methods leads to superior prediction

performance over traditional machine learning techniques.

• Utilizing CEEMDAN allows for effective decomposition

of solar irradiation data, revealing crucial intrinsic

features for improving model performance.

• The role of Pearson’s Correlation Coefficient in refining

feature selection enhances model efficiency, paving the

way for compact and robust forecasting mechanisms.

• The proposed CEEMDAN-BiLSTM model enhances

short-term solar irradiation predictions significantly.

2. PROPOSED MODEL

2.1 Equations 

The data decomposition technique known as Complete 

ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) is developed and derived through several stages 

such as EMD, EEMD, and CEEMD. The basic idea of EMD 

is decomposition of non-linear and non-stationary data. The 

data decomposition is sorting the dataset with different 

frequencies and scales in several IMFs and residuals. However, 

in this technique similar elements are mapped in different 

IMFs. To overcome mode mixing issue EEMD is proposed, 

but after IMF reconstruction, it is prone to addition of 

Gaussian white noise leading to incorporation of error. To 

resolve these issues CEEMDAN is proposed [34, 35]. The 

CEEMDAN method sorts the dataset into different IMFs along 

with one residue. Following steps are carried out to generate 

IMFs using CEEMDAN technique. 

As a first step, Gaussian noise 𝑤𝑛(𝑡) and noise standard error 

(𝜀) are added to original data sequence, and the process can be 

represented mathematically as  

𝑘𝑛 (𝑡) = 𝑘(𝑡) + 𝜀𝑜𝑤𝑛 (𝑡) (1) 

where, 𝑛 changes from 1 to m with the difference of 1. 

In the second step, average of all decomposed component is 

considered to calculate IMF 

𝐼𝑀𝐹1 (𝑡) =
1

𝑥
∑ 𝐼𝑀𝐹1

𝑖𝑥
𝑖=1 (𝑡) (2) 

To calculate residue following relation is used 

𝑟1 (𝑡) =𝑘(𝑡)−𝐼𝑀𝐹1(𝑡) (3) 

In the third step, EMD is used to decompose 𝑟1(𝑡) +
 𝜀1𝐸𝑀𝐷1𝑤𝑛(𝑡)  and second IMF and residue are obtained

using following Eqs. (4) and (5). 

𝐼𝑀𝐹2 (𝑡) = 
1

𝑥
 ∑ 𝐸𝑀𝐷1

𝑥
𝑛=1 (𝑟1(𝑡) + 𝜀1𝐸𝑀𝐷1(𝑤𝑛(𝑡)) (4) 

𝑟2 (𝑡) = 𝑟1 (𝑡) − 𝐼𝑀𝐹2(𝑡) (5) 

Following the similar trend, rest of the IMFs and residues 

are computed up to the SD value in the following Eq. (6) 

reaches to 0.2 

∑
|𝑟𝑥−1(𝑡)−𝑟𝑥(𝑡)|2

𝑟𝑥−1
2 (𝑡)

𝑄
𝑞=0 ≤ 𝑆𝐷𝑥 (6) 

where, Q is to keep accountability of the length of sequence 

K(t) and the sequence after xth decomposition is denoted as 

𝑟𝑥(𝑡).

At last, following Eq. (7) is used to reconstruct the signal 

K(t) considering final residual function 𝑅(𝑡). 

𝑦(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑅(𝑡)𝑇
𝑖=1 (7) 

2.2 Pearson's Correlation Coefficient (PCC) 

In previous few attempts [36, 37], all decomposed 

components are used as input to train forecasting neural 

network architecture. However, later studies included the IMF 

selection strategy with which only feature set with prospective 

higher correlation with GHI forecasting is considered as input 

for training forecasting neural network architecture [31-33]. 

The PCC is being used to evaluate the relationship between 

two continuous variables. Both strength of the relationship and 

its dependency direction are evaluated using PCC. The method 

takes into account reliance on covariance and therefore can be 

used effectively for assessing associations of the variables.  

This type of data sorting is important when dataset is very 

complex such as weather parameters, solar irradiance and 

many other time series datasets. In the present case, solar GHI 

time series dataset shows different trends, random fluctuations 

and cycles. This makes forecasting modelling difficult and 

vast scope for random predictions is caused due to use of such 

dataset. To solve this issue, prospective selection of feature 

dataset is beneficial. Present work utilizes PCC for 

identification of prospective feature dataset. In the present 

work, PCC is calculated for a set of objective variables (X, Y) 

and defined as follows. 

Ƥ(𝑋,𝑌) =
∑(𝑋𝑖−𝑋̅) (𝑌𝑖−𝑌̅)

√∑(𝑋𝑖−𝑋̅)2  ∑(𝑌𝑖−𝑌̅)2 (8) 

In this Eq. (8), Ƥ (𝑋,𝑌)  is Pearsons correlation coefficient,

which is calculated using Values of x and y variables denoted 
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as 𝑋𝑖 and 𝑌𝑖 respectively in sample set. Similarly, mean of the

values of the x and y variable are denoted as 𝑋̅  and 𝑌̅ of a 

sample set.  

2.3 LSTM 

Figure 1. Fundamental architecture of LSTM 

The Recurrent Neural Network (RNN) is structured in 1982 

to process the data with certain sequence. In case of RNN, its 

output is again connected to input via feedback, serving as a 

kind of dynamic memory [36]. This network worked well for 

short-term forecasting, but unstable results are obtained in case 

of long-term forecasting. It is then realized that, the vast 

gradient, or abruptly significant changes in training weights 

causing this instability [38]. By permitting memory cells in the 

hidden layer(s), the LSTM network offered a solution to the 

vast gradient problem. The memory cells are included in layer 

to selectively discard the information from dataset or retain the 

information in dataset. Figure 1 depicts the fundamental 

architecture of LSTM. LSTM contains memory cells which 

are constituted using input gate (it), output gate (ot) and forget 

gate (ft), with the help of which information can be accepted 

or rejected. To operate forward movement function, the output 

value ht-1 from previous cell ‘Ct-1’ is also considered. In the 

present time ‘t’, three input for LSTM are considered, which 

are output of previous cell ‘ℎ𝑡−1’, bias (𝑏) and 𝑥𝑡  use here

parameter (P) [38]. Similarly, weight vectors are signified as 

“W”. For considering the next parameter, the network needs 

to forget the previous parameter, therefore following step is 

considered. 

𝑓𝑡=𝜎 (𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (9) 

To decide next information to be stored in cell is decided 

using two operations. In the first operation a next value is 

decided via a sigmoid layer also denoted as input gate layer 

using following Eq. (10).  

𝑖𝑡= 𝜎 (𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) (10) 

After which, in second operation, the vector of next value is 

created using tanh layer. 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (11) 

Finally, the new cell state is updated using following Eq. 

(12). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1  +  𝑖𝑡 ∗  𝐶̃𝑡 (12) 

Now, to decide output, first using sigmoid layer, a part of 

cell is selected for output. 

𝑜𝑡= 𝜎 (𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (13) 

At last, the cell state is put through tanh which decide the 

value between -1 to 1 and multiplication of it with output of 

output gate produces selective output which needed to be carry 

forward for next step. 

ℎ𝑡= 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (14) 

2.4 BiLSTM 

In case of BiLSTM, both backward and forward movement 

functioning is possible. The hidden characteristics and pattern 

of the data can be revealed while processing is carried out in 

backward direction [39]. The identification of such patterns is 

absent in case of LSTM which proceeds only in forward 

direction, therefore choosing BiLSTM becomes beneficial in 

case of long historic weather-related database wherein many 

such hidden patterns can be identified if processed properly. 

Figure 2 depicts the fundamental architecture of BiLSTM [22]. 

Figure 2. Fundamental architecture of BiLSTM 

For updating the network, the backward hidden layer ‘𝐻𝐿𝑏’,

output sequence ‘𝑥0(𝑡)’, and forward hidden layer ‘𝐻𝐿𝑓’ are

considered. With this initiation, the network of BiLSTM 

updates iteratively in backward and forward direction. Output 

for forward pass forward (𝐻𝐿𝑓 ), backward pass backward

( 𝐻𝐿𝑏 ) and output parameter from that layer ( 𝑥0(𝑡) ) is

calculated using following Eqs. (15) to (17). 

𝐻𝐿𝑓=𝜎 (𝑊1 𝑥𝑡 + 𝑊2 𝐻𝐿𝑓−1 + 𝑏𝐻𝐿𝑓
) (15) 

𝐻𝐿𝑏=𝜎(𝑊3 𝑥𝑡 + 𝑊5 𝐻𝐿𝑏−1 + 𝑏𝐻𝐿𝑏
) (16) 

𝑥0=𝑊4 𝐻𝐿𝑓 + 𝑊6 𝑥 + 𝑏𝑥0 (17) 

where, weights coefficients are denoted as W and the biases 

are signified as ‘𝑏𝐻𝐿𝑓
’, ‘𝑏𝐻𝐿𝑏

’ and ‘𝑏𝑥0
’.

2.5 Performance assessment 

The GHI forecasting models are assessed using different 

matrices such as MAPE, RMSE and MAE. These matrices are 
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symbolic and persuasive, which makes them reliable for 

testing the forecasting ability of the present developed models. 

The results shown by these matrices enhances the acceptability 

of these models for real world application. The following Eqs. 

(18) to (20) are used to calculate respective type of error,

where 𝑦𝑖is the result predicted by the model; ŷi is the actual

test sample value; and n is the total number of test samples.

𝑀𝐴𝐸(𝑦,ŷ) =
1

𝑛
∑ |𝑦𝑖 − ŷ𝑖|

𝑛
𝑖=1 (18) 

𝑀𝐴𝑃𝐸(𝑦,ŷ) =
1

𝑛
∑ |

𝑦𝑖−ŷ𝑖

𝑦𝑖
|𝑛

𝑖=1  (19) 

𝑅𝑀𝑆𝐸(𝑦,ŷ) = √
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)

𝑛
𝑖=1 (20) 

2.6 Network architecture and workflow for GHI 

forecasting 

Combining the aspects of CEEMDAN-PCC-BILSTM, a 

model is developed to forecast 1-day ahead GHI for three 

different locations. Overall workflow of the CEEMDAN-

PCC-BILSTM is as follows. 

(1) The solar irradiance data (GHI) (single variable) from

three different locations is collected from the source. Data

pre-processing steps are followed to sort the dataset.

(2) Data from each location is divided into a training set and

a test set.

(3) The training dataset of each location is decomposed into

IMFs using CEEMDAN technique.

(4) PCC (Ƥ (𝑋,𝑌))  is calculated to select IMFs with most

relevant information which are then further used to train

BiLSTM.

(5) The selected IMFs are combined to finalize input dataset

and used for training the BiLSTM based model for 1 day

ahead GHI forecasting.

(6) Forecasting accuracy is tested using various matrices.

3. EXECUTION DETAILS OF PROPOSED CEEMDAN-

PCC-BILSTM FRAMEWORK

3.1 Dataset description 

In this study three locations from India located in 

Maharashtra state, are considered. These locations are chosen 

by considering Koppen-Geiger stated different climatic 

conditions. The locations are Nagpur, Jalgaon and Pune. 

Nagpur with Lat./Long. 21.146633°/79.088860° shows 

tropical wet and dry climate (Köppen Aw). Jalgaon with 

Lat./Long. 21.004194° /75.563942° shows hot semi-arid 

climate (Köppen BSh). Pune with Lat./Long. 

18.516726°/73.856255° shows a tropical wet and dry (Köppen 

Aw) climate, closely bordering upon a hot semi-arid climate 

(Köppen BSh).  

The GHI data for these three locations is accessed from 

NSRDB or NIWE national data portal. The GHI data is 

collected hourly with 30-minute gap over the period of June 

2016- May 2019. The input data is important and impacts the 

training of forecasting model. The GHI data collected is non-

linear and random this may cause flaws in training forecasting 

model. Similarly, reading with weak pyranometer reaction 

may introduce incomplete and negative data recording in the 

dataset [19]. These entries are cleared before further 

processing. Also, since solar irradiation is absent at night, the 

GHI data points of night hours are discarded. This is because 

large blocks of zero values may bias the model by overfitting 

toward predicting zeros, thereby reducing sensitivity to 

variations during the day when forecasting is required. 

Moreover, since the focus of the present models is day-ahead 

GHI forecasting for power generation application, the 

exclusion of night-time data does not compromise model 

generalizability to operational scenario. However, it is 

acknowledged that excluding night-time data may bias the 

model toward daylight conditions, making it unsuitable for 

applications requiring a full 24-hour solar profile (e.g., thermal 

storage or nocturnal cooling). In such cases, training with 

night-time zeros can ensure continuity. However, for daytime 

GHI forecasting aimed at solar power generation and grid 

integration, exclusion improves efficiency, reduces noise, and 

enhances accuracy without affecting practical generalizability. 

Similarly, GHI data points collected just before the sunset 

and just after sunrise are introduced with cosine error of 

instruments and therefore necessary to be removed. Data 

points in both these condition shows solar zenith angle greater 

than 80° and therefore these data points can be removed easily 

[40]. After this, the dataset is categorized in four seasons as 

monsoon (June–September), autumn (October–November), 

winter (December-February) and summer (March–May). 

Further, to enhance input data set quality, data is converted 

into stationary form by considering normalized value of data. 

The normalize value is calculated using following Eq. (21) 

[41]. 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
(21) 

where, standardized value is denoted as 𝑋𝑛𝑜𝑟𝑚 , X is the

original value from dataset, and minimum and maximum 

values from dataset are denoted as 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥

respectively. 

3.2 Hyperparameter selection approach 

After the data processing, choice of hyperparameters for 

training forecasting models plays crucial role and influence the 

prediction accuracy. Therefore, the present work considered 

following approach. At the beginning the dataset is divided 

into two sections for training and testing. By accounting the 

previously reported approaches [42-44] nearly 80% dataset is 

assigned for training from where prospective IMF functions 

are selected using PCC and used for training the forecasting 

model. Similarly, 20% dataset is considered for testing and 

validating the outcomes from forecasting model. This is 

followed for each location separately, wherein, data of first 

two years is used for training and third year data is used for 

testing. 

3.3 Reconstruction of input for training 

As described earlier, dataset of first two years is used for 

training the forecasting model for each three locations 

separately. However, before using this dataset for training, 

several processing steps are followed to select prospective 

input for enhancing the forecasting ability of the model. First 

pre-processing step is cleaning of the dataset after which, two 

years GHI time series data is segmented into four seasons viz. 

Monsoon (June–September), autumn (October–November), 
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winter (December-February) and summer (March–May). On 

this data, CEEMDAN decomposition technique is applied to 

generate 10 IMF and 1 residue for each season. Figure 3 shows 

IMFs and residue plots for autumn season for Jalgaon city. To 

select prospective IMFs with prospective feature sets, PCC is 

used. 

Table 1 shows the PCC values for the decomposed IMFs 

obtained using CEEMDAN. For every location, season wise 

IMFs and corresponding Residual are obtained using 

CEEMDAN and compared amongst each other to find highest 

correlation coefficient values. To avoid overfitting the model, 

for each location, all season wise IMFs showing PCC 0.5 and 

above are combined with residue to form a single input. 

Finally, using this single input, models are trained to forecast 

one day ahead GHI, for three different locations. 

Figure 3. Decomposition results of GHI of autumn season for the Jalgaon city obtained using CEEMDAN 

Table 1. Details of PCC with corresponding IMFs using CEEMDAN for different seasons for different cities 

Location Site IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 Residual 

Jalgaon 

Autumn 0.31733 0.53508 0.61992 0.5582 0.61172 0.16971 0.06092 0.01821 0.01118 0.00912 0.01593 

Monsoon 0.26878 0.36494 0.48948 0.51081 0.72306 0.45989 0.14267 0.08957 0.05258 0.04123 0.08116 

Summer 0.30523 0.52984 0.59883 0.54713 0.63149 0.14236 0.05891 0.03691 0.02608 0.02256 0.05103 

Winter 0.2992 0.50198 0.58981 0.56564 0.66037 0.46905 0.04535 0.0378 0.02567 0.02199 0.02451 

Pune 

Autumn 0.32958 0.56942 0.61502 0.55465 0.59339 0.17858 0.04598 0.00951 0.01285 0.01016 0.02401 

Monsoon 0.27595 0.4031 0.51309 0.51598 0.71025 0.40105 0.12636 0.08114 0.06308 0.06165 0.10794 

Summer 0.31933 0.39148 0.62088 0.56382 0.59801 0.12595 0.0693 0.04927 0.03018 0.02765 0.02587 

Winter 0.32099 0.54192 0.57933 0.56093 0.65046 0.49023 0.12019 0.06104 0.0589 0.03965 0.04603 

Nagpur 

Autumn 0.30181 0.50119 0.60167 0.57094 0.63992 0.36083 0.07558 0.03299 0.00114 0.01012 0.06693 

Monsoon 0.24983 0.30595 0.42948 0.46206 0.72933 0.61096 0.15046 0.11026 0.08603 0.07925 0.09599 

Summer 0.26704 0.51401 0.59093 0.54025 0.62084 0.21012 0.08032 0.04594 0.0451 0.03925 0.05503 

Winter 0.27025 0.51998 0.57503 0.57028 0.68514 0.51095 0.05609 0.05505 0.03392 0.03156 0.05045 

3.4 Training and testing 

The models in the present work are trained to forecast 24-h 

ahead solar GHI, specifically to consider month wise data 

separately. This is also helpful in fine tuning the model from a 

season wise perspective. To evaluate the credibility of each 

step considered in the framework of this model, we trained 

standalone BiLSTM, then the BiLSTM coupled with 

CEEMDAN and finally CEEMDAN-PCC-BiLSTM coupled 

together which sorts most correlated input for model training. 

This is to investigate that fine tuning of hyperparameters along 

with initialization of input holds much importance for 

achieving better accuracy. Even though there are no specific 

rules for setting hyperparameters we have chosen the 

following hyperparameters for training present model and kept 

it constant throughout experimentation. In the present study 

Adam Optimizer is used. Initially, reference values for the 

parameters were taken from [32, 24]. Based on preliminary 

experimental results, the parameters were then finalized as 250 

Epoch, 0.0001 learning rate, 200 hidden units, 0.01 gradient 

units. Since the model training considered month wise (season 

wise) training, the testing is also carried out on seasonal basis, 

wherein prediction accuracy for four seasons viz., autumn, 

monsoon, summer and winter are tested separately. The real 
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solar GHI is predicted by using normalized predicted sequence 

and actual values are calculated using following Eq. (22) 

which reveal the relation between denormalized value 

(𝑋𝑑𝑒𝑛𝑜𝑟𝑚) and normalized value (𝑋𝑛𝑜𝑟𝑚) , maximum value

(𝑋𝑚𝑎𝑥 ), minimum value (𝑋𝑚𝑖𝑛).

𝑋𝑑𝑒𝑛𝑜𝑟𝑚 = 𝑋𝑚𝑖𝑛 +  (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) × 𝑋𝑛𝑜𝑟𝑚 (22) 

4. RESULT ANALYSES

In this study, CEEMDAN-PCC-BiLSTM are combined to 

form a framework of the model which is used to forecast 24-h 

ahead solar irradiance (GHI). Three different locations as 

Jalgaon, Nagpur and Pune, from India are chosen for this study. 

To test the proficiency of the model, the performance is 

compared with other standalone models such as, Gate 

Recurrent Unit (GRU), Back Propagation Neural Network 

(BPNN), RNN, LSTM and BiLSTM and similarly with other 

methods reported in the literature. For experimentation, 

MATLAB 2019a is chosen and all the models are 

implemented and analyzed. The deep learning hyper 

parameters are carefully tunes to forecast this short term GHI 

which is season wise categorized. For training data of two 

years is used while testing is conducted using one year data. 

The evaluation matrices such as MAPE (%), MAE (W/m2) and 

RMSE (W/m2) are calculated for analyzing prediction 

accuracy and ease of comparison. 

Table 2. Statistical analysis (MAPE (%)) of a day ahead GHI 

forecasting for location Jalgaon 

MAPE (%) 

Models Summer Monsoon Autumn Winter Annual 

BPNN 4.01 6.12 4.16 4.31 4.61 

RNN 3.11 5.1 4.12 3.56 3.91 

GRU 2.71 4.9 2.89 3.66 3.56 

LSTM 2.16 4.54 2.68 3.58 3.23 

BiLSTM  1.85 4.21 2.21 3.39 3.16 

CEEMDAN -

BiLSTM  
1.69 4.02 1.98 2.51 2.65 

Proposed Model 0.99 3.7 1.36 2.08 2.31 

Table 3. Statistical analysis (RMSE(W/m2)) of a day ahead 

GHI forecasting for location Jalgaon 

RMSE(W/m2) 

Models Summer Monsoon Autumn Winter Annual 

BPNN 2.99 5.89 3.63 3.51 4.18 

RNN 2.56 4.98 2.89 3.47 3.59 

GRU 2.32 4.21 2.41 3.12 3.35 

LSTM 2.01 3.86 2.35 2.78 3.21 

BiLSTM  1.83 3.56 1.57 1.86 2.62 

CEEMDAN -

BiLSTM  
0.71 3.13 1.13 1.73 2.01 

Proposed Model 0.36 2.58 0.88 1.59 1.55 

For the sake of simplicity and ease in explanation, at first 

statistical analysis of single location is considered. To analyze 

proficiency of the framed strategy used to develop final model, 

step by step analysis is carried out. For this Jalgaon is chosen 

as the first location and using this data, all the standalone 

models are trained. Similarly, in case of CEEMDAN-BiLSTM, 

the model is trained using all the IMFs summarized in Table 1 

and further based on PCC values, selected IMF functions are 

used to train final proposed CEEMDAN-PCC-BiLSTM model. 

Table 4. Statistical analysis (MAE (W/m2)) of a day ahead 

GHI forecasting for location Jalgaon 

MAE (W/m2) 

Models Summer Monsoon Autumn Winter Annual 

BPNN 2.41 5.41 3.21 3.61 3.91 

RNN 1.89 4.98 3.78 2.98 3.12 

GRU 1.61 3.65 2.61 2.61 2.51 

LSTM 1.35 3.21 1.85 2.35 1.97 

BiLSTM 1.15 3.14 1.53 1.97 1.77 

CEEMDAN -

BiLSTM 
0.98 2.96 1.08 1.56 1.64 

Proposed 

Model 
0.73 2.86 0.45 1.18 1.41 

For ease of analysis, only a single location is considered at 

first and then the viability of the proposed model is extended 

to other locations. First the data from Jalgaon location is used 

to train all the models and observed data is tabulated. In Table 

2 (MAPE(%)), Table 3 (RMSE(W/m2)), Table 4 (MAE 

(W/m2)) statistical analysis for all the standalone models such 

as BPNN, RNN, GRU, LSTM and BiLSTM are tabulated 

along with CEEMDAN-BiLSTM and proposed model. 

It can be observed from Table 2 that the MAPE for 

standalone models resulted in the following range as BPNN 

4.01-6.12%, RNN 3.11-5.1%, GRU 2.71-4.9%, LSTM 2.16-

4.54% and BiLSTM 1.85- 4.21%. In a similar way, RMSE for 

standalone model range as BPNN 2.99-5.89 W/m2, RNN 2.56-

4.98 W/m2, GRU 2.32-4.21 W/m2, LSTM 2.01-3.86 W/m2 and 

BiLSTM 1.69-4.02 W/m2. Also, the MAE values range for 

standalone models as BPNN 2.41-5.41 W/m2, RNN 1.89-4.98 

W/m2, GRU 1.61-3.65 W/m2, LSTM 1.35-3.21 W/m2 and 

BiLSTM 1.12-3.1 W/m2. A similar trend has been observed 

when data from other locations is used to train all these models. 

All the statistical data revealed that BiLSTM outperforms over 

all the other standalone models which agrees with previously 

published reports [22, 23]. This also recites the fact that 

BiLSTM models are suitable for the use of forecasting models 

wherein timeseries data is used.  

It is important to note here that since standalone deep 

learning models such as BPNN, RNN and GRU fine 

adjustment of learning parameters is not considered it limits 

the forecasting ability of these models. As compared to these 

models, LSTM performs better, however, unidirectional 

training and information processing enhances training time 

and limits performance. Therefore, to overcome these 

limitations, the proposed model uses BiLSTM as its 

foundational base.  

To validate this observation further, all the above 

experimentation is repeated using the data of other two 

locations viz., Nagpur and Pune. To observe other meaningful 

trends, the graphical representation of the MAPE (%), MAE 

(W/m2) and RMSE (W/m2) for standalone models such as 

BPNN, RNN, GRU, LSTM and BiLSTM along with 

CEEMDAN-BiLSTM and proposed models are also presented. 

Another important aspect of the proposed model is global 

horizontal irradiance input data is decomposed using 

CEEMDAN preprocessing technique, which generate ten 

IMFs and one residue. When all IMFs are used to train the 

BiLSTM network, improvement in forecasting accuracy is 

evident. This is cited from reduced forecasting errors in 

CEEMDAN-BiLSTM models for all the cities (Tables 2-4 and 

Figures 4-6). The CEEMDAN-BiLSTM model outperforms 
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the standalone BiLSTM model since CEEMDAN removes 

mode mixing constraints and holds the input time series data 

to improve the quality of training data. 

Figure 4. The statistical analysis of the proposed model in 

terms of MAPE for Nagpur and Pune location 

Figure 5. The statistical analysis of the proposed model in 

terms of RMSE for Nagpur and Pune location 

Figure 6. The statistical analysis of the proposed model in 

terms MAE for Nagpur and Pune location 

However, literature shows that considering only most 

relevant data for training deep neural network can improve its 

performance. Therefore, in the present case, PCC is calculated 

for each IMF generated and only the IMF with 0.5 and above 

PCC values are combined to form an input. Using this input, 

BiLSTM network is trained which is the concept of proposed 

model and denoted as CEEMDAN-PCC-BiLSTM model. It 

can be observed from Tables 2-4. that this model shows annual 

MAPE as 2.32%, RMSE as 1.55 W/m2 and MAE as 1.41 W/m2 

respectively for Jalgaon, which demonstrates outperformance 

of the proposed models as compared to other models. 

Similarly, Figures 4-6 demonstrated that for Nagpur location 

with 2.2% MAPE, 1.49 W/m2 RMSE and 1.3 W/m2 MAE, 

proposed model outperforms other models. On the similar line, 

for Pune location with 2.27% MAPE, 1.51 W/m2 RMSE and 

1.37 W/m2 MAE, proposed model outperforms other models. 

These results showcase the forecasting performance 

credibility of the proposed model for all the locations. Further 

detailed analysis suggests that use of CEEMDAN and PCC to 

process the input enhances learning outcomes specially for 

summer and autumn as compared to winter and monsoon. This 

may be because summer and autumn shows persistent clear 

environmental circumstances which supports model to 

correlate more significantly between forecasted and measured 

GHI at that time. On the other hand, presence of clouds in rainy 

days and other fast changing environmental parameter in 

monsoon and winter increases correlation difficulties between 

forecasted and measured GHI, leading to increased errors in 

GHI forecasting.  

Finally, performance of the proposed model is compared 

with previously reported techniques which use other neural 

network-based learning strategies for GHI forecasting. We 
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also compared the performance with day-ahead persistence 

model which is considred as standard benchmarking reference 

in the field of irradiance forecasting. We included the 

statistical analysis related to the persistence model for all the 

three locations and compared the performance of proposed 

model. Table 5 presents the comparative performance of the 

proposed model with other models in terms of MAPE, RMSE 

and MAE. 

Table 5. Performance comparison of the proposed model with other reported models 

Time Horizon Ref Location Model MAPE (%) RMSE (W/m2) MAE (W/m2) 

24 h 

24-h 

- 

[45] 

Jalgaon, India 

Nagpur, India 

Pune, India 

Qingdao, China 

Persistence Model 

DFT + PCA + Elman/BPNN 

10.2 

10.8 

11.3 

_ 

145 

138 

156 

127.3 

33.8 

32.5 

34.2 

_ 

1-h [20] SanDiego, USA LSTM–CNN _ 42.89 27.38 

1-h [18] New Delhi, India XGBF-DNN 
 

51.35 
 

1-h [22] US BiLSTM _ 98.44 _ 

24-h [24] Ahmadabad, India WT + BiLSTM 6.48 45.61 _ 

24 h Proposed model Jalgaon, India CEEMDAN-PCC-BiLSTM 2.31 1.55 1.41 

24 h Proposed model Nagpur, India CEEMDAN-PCC-BiLSTM 2.2 1.49 1.3 

24 h Proposed model Pune, India CEEMDAN-PCC-BiLSTM 2.27 1.51 1.37 

As can be observed from the Table 5, persistence model 

performed least competantly as compared to other models. The 

persistent model uses simplistic forecasting tactics by 

considering most recent observed GHI value of previous day 

as day-aheah predicted GHI value. This is how it “persists” the 

latest measurement forward in time. However, this neglects 

the effect of other inputs and produce suboptimal forecasting 

results. Thus, the proposed model produce improvement in 

MAPE, RMSE and MAE by 79%, 98% and 95% respectively 

as compared to persistence model. Further, the statistical 

analysis indicated that for all the three locations, proposed 

model offered above 98% RMSE improvement than model 

which used DFT+PCA+Elman/BPNN [45] for GHI 

forecasting. Further, the proposed model outperforms WT + 

BiLSTM based model [24] and offer 96.68% and 64.96% 

improvement in RMSE and MAPE respectively. The WT + 

BiLSTM model [24] has superior localization features in both 

time and frequency domain which make is better performer 

than DFT + PCA + Elman/BPNN. However, for a given 

dataset, choice of appropriate wavelet function limits error 

resilience in model. Similarly, though XGBF-DNN [18] 

produces better forecasting accuracy, limited error resilience 

is observed due to variational mode decomposition-based 

execution and poor performance of XGBF on unstructured 

data. 

On the other hand, LSTM–CNN model [20] perform better 

than all these models since, CNNs excel at capturing local 

patterns and features, while LSTMs are adept at handling long-

term dependencies in sequential data. Combining them 

leverage both strengths and offers better forecasting ability. 

Despite this, the proposed model offered improved RMSE 

(96.47%) and MAE (94.99%) over the LSTM–CNN model for 

all locations. Overall observations indicate that the forecasting 

ability of the proposed model surpass the other mentioned 

models. This outcome of the proposed model is due to fine 

tuning BiLSTM network which is driven by the process which 

is followed to construct the input of BiLSTM network. The 

proposed method first utilizes CEEMDAN technique to 

decompose data, which is capable of handling noise in the 

input dataset and produce IMFs. After which PCC is used to 

find most relevant IMFs. Only the most correlated IMFs are 

used for input signal reconstruction. Therefore, the forecasting 

ability of the proposed model is the outcome of fine tuning of 

BiLSTM which is achieved after processing the input using 

CEEMDAN and PCC techniques. As result of above 

discussion, the proposed model can be used effectively for 

GHI forecasting purposes.  

It is also interesting to view this study from a future 

perspective. The findings highlight that hybrid forecasting 

models integrate multiple techniques to leverage their 

strengths while compensating for weaknesses, making them 

particularly valuable in complex domains such as renewable 

energy forecasting. In the future, to better accommodate GHI 

variations under diverse climatic conditions, more such 

models can be developed to enhance forecasting accuracy and 

robustness while maintaining a balance between 

interpretability and flexibility. Particularly, transformers are 

evolving rapidly in the field of forecasting due to their unique 

capabilities and have been shown to outperform other deep 

learning-based methods [46]. Hybrid transformer models 

present a powerful solution for multivariate renewable energy 

forecasting [47]. For instance, the CNN-LSTM-Transformer 

model for solar energy production forecasting excelled at 

capturing temporal dependencies [48]. Whereas, integrating 

transformers with GPA, RFF, and Laplace Approximation 

(LA) produced an efficient probabilistic framework for solar 

power generation forecasting [49]. These examples highlight 

potential future directions, where the present work could be 

combined with transformer-based models to achieve even 

greater accuracy and robustness in forecasting. 

5. CONCLUSION

In this study, a deep learning network is tuned for a day 

ahead GHI forecasting. Typically, the solar irradiance dataset 

is a collection of non-linear time series data. For standalone 

models, learning nonlinear patterns is a tricky task and this 

often compromises accuracy of results. To solve this problem, 

at first different feature sets in the form of IMF are extracted 

from solar irradiance dataset using CEEMDAN technique. 

Thereafter, a selection criterion is applied wherein PCC 

technique is used to select the most relevant IMFs, which are 

then integrated to construct the most prospective feature set. 

Further using the most prospective feature set as an input, the 

BiLSTM network is tuned for a day ahead GHI forecasting. 

The versatility of the proposed model is tested at three 

locations with different climatic conditions. For the proposed 

model it is observed that statistical analysis such as MAPE, 

RMSE and MAE shows more than 90% improvement than 
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standalone models and other similar deep learning models. 

The resultant improvement reflects that use of CEEMDAN 

technique is suitable for extracting the inherent characteristics 

of time series data and its use in conjunction with BiLSTM 

enhances its learning ability. Therefore, CEEMDAN-PCC- 

BiLSTM framework works well for a day ahead GHI 

forecasting and can be integrated with many other applications. 

Similarly, the demonstrated success of the CEEMDAN-

PCC-BiLSTM framework across tropical wet–dry and hot 

semi-arid climates in India suggests its applicability to other 

regions with comparable conditions. Areas such as Southeast 

Asia, Sub-Saharan Africa, the Middle East, and parts of South 

America face similar challenges of high solar variability and 

rapid atmospheric fluctuations. Implementing this model in 

such regions could significantly enhance day-ahead GHI 

forecasting, supporting reliable renewable energy integration, 

grid stability, and sustainable energy planning on a global 

scale. 
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