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The accurate identification of osseous fractures is crucial for precise medical diagnoses and 

treatment planning. This study introduces a new hybrid classification approach, integrating 

EfficientNet-B0 and ResNet50 deep learning models with an SVM classifier, surpassing 

traditional versions. Leveraging pre-trained feature extractors for EfficientNet-B0 and 

ResNet50, the proposed method achieves a test accuracy of 98.01% and a recall of 0.99 for 

fractured cases with EfficientNet-B0+SVM, while reducing runtime to 20.44 minutes. 

ResNet50 + SVM also improved accuracy from 80.05% to 96.41% with a runtime of 38.47 

minutes, compared to 83.96 minutes standalone. This hybrid approach demonstrates 

significant enhancements in accuracy and efficiency, positioning it as a promising tool for 

clinical bone fracture detection. 
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1. INTRODUCTION

Fractures are either entire or partial breaks in the bone. The 

primary cause of fracture is the significant influence or force 

applied to a bone that it is structurally capable of supporting 

[1]. For proper treatment planning and patient care, fractures a 

frequent orthopedic condition need to be diagnosed quickly 

and accurately. Traditional fracture diagnosis relies heavily on 

radiologists' ability to visually analyze X-ray images in order 

to detect and classify fractures. However, when working with 

intricate fracture patterns or minute irregularities, this 

approach can be laborious, subjective, and prone to human 

error [2-4]. In order to help radiologists identify bone fractures, 

artificial intelligence (AI) and deep learning (DL) are currently 

gaining a lot of interest [5-7]. Given that AI enables the 

discovery of significant patterns in massive data sets, it offers 

chances for automated classification, detection, and 

localization, which may result in quicker and more accurate 

diagnosis. In order to manage the case, determine the extent of 

the fracture, and enhance patient outcomes, the treating 

physician may find this useful in making prompt and effective 

judgments. Additionally, it can assist in removing diagnostic 

variability across several observers [8, 9]. Medical imaging 

has undergone a revolution because to the development of 

artificial intelligence (AI), especially deep learning, which 

provides automated solutions for problems like fracture 

detection. Convolutional Neural Networks (CNNs), such as 

ResNet50 and EfficientNetB0, have demonstrated remarkable 

success in image classification tasks by learning hierarchical 

features directly from raw data [10-12]. Notwithstanding these 

developments, the combination of deep learning architectures 

and machine learning frameworks may improve diagnostic 

precision even further, increasing the dependability and 

interpretability of automated systems for bone fracture 

identification. In general, hybrid deep learning algorithms 

minimize computing overhead by addressing class imbalance 

with methods like Synthetic Minority Oversampling 

Technique (SMOTE), preventing overfitting with simpler 

classifiers, and extracting features using pre-trained models 

[13].  

This study evaluates four bone fracture classification 

approaches: traditional training of ResNet50 and 

EfficientNetB0 and hybrid techniques using their features with 

SVM classification. We incorporate SMOTE for data 

balancing, PCA for dimensionality reduction, and threshold 

optimization using Precision-Recall curves to improve 

classification performance. These techniques address key 

challenges such as class imbalance and feature redundancy, 

resulting in significant improvements over direct training. 

There are five sections in this study. The research is 

introduced in Section 1. Section 2 examines relevant research 

on current methods for fracture identification and medical 

imaging. The bone fracture detecting system's methodology is 

described in Section 3. The findings are presented in Section 

4, and Section 5 provides a summary of the paper's conclusions. 

2. RELATED WORK

Numerous related studies that have investigated deep 
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learning and hybrid techniques for fracture classification attest 

to the widespread use of deep learning in medical imaging 

applications, including the identification of bone fractures. 

In 2019, Castro-Gutiérrez et al. [14] suggested a technique 

for identifying acetabular fractures in X-ray pictures, with an 

emphasis on the noisy pictures that are frequently seen in 

medical settings. SVM is used for classification, Local Binary 

Pattern (LBP) is used for feature extraction, and Contrast-

Limited Adaptive Histogram Equalization (CLAHE) is used 

for pre-processing to improve image contrast. A trauma 

specialist verified the method's 80% accuracy against a gold 

standard using a small dataset of 15 anteroposterior X-ray 

pictures (10 for training and 5 for validation). While the small 

sample size limits generalizability, the use of CLAHE 

significantly improved feature extraction in low-resolution 

images.  

In 2019, Hržić et al. [15] introduced a novel local-entropy-

based approach for segmenting and detecting fractures in X-

ray images of pediatric radius and ulna bones. The method 

employs a multi-stage pipeline, starting with image alignment 

using Principal Component Analysis (PCA), followed by the 

calculation of local Shannon entropy within a sliding 2D 

window to denoise and remove tissue, thereby enhancing the 

visibility of bone contours. Bone contour extraction is refined 

using a graph theory-based method, and fracture detection is 

accomplished by using polynomial regression to compare 

extracted contours to an ideal healthy bone model. On a dataset 

of 860 X-ray images, the accuracy and precision were 91.16% 

and 86.22%, respectively (218 with fractures, 642 without). 

The approach excels at identifying minor, hard-to-detect 

fractures, outperforming traditional methods, such as the 

Canny filter (61.86% accuracy). False negatives result from its 

inability to detect some fracture types that do not substantially 

change bone shapes.  

In 2020, Abbas et al. [16] proposed a transfer learning-based 

Faster R-CNN model for detecting and classifying lower leg 

bone fractures in X-ray images. The model uses a Region 

Proposal Network (RPN) to create bounding boxes around 

fracture locations using the VGG-16 architecture as a 

foundation network. These boxes are then classified into 

fracture or non-fracture categories. The top layer was retrained 

using the Inception V2 network on a dataset of 50 X-ray 

images (30 for training, 20 for validation) from Bahawal 

Victoria Hospital, achieving an overall accuracy of 94% and a 

mean average precision (mAP) of 60% for fracture 

localization. The model showed effectiveness in locating 

fractures using bounding boxes after 40,000 steps of training 

till the loss hit 0.0005. However, generalizability is limited by 

the small sample size, and the map indicates that detection 

precision could be increased.  

In 2020, Yadav and Rathor [17] presented a study that 

suggested using X-ray pictures to detect and classify bone 

fractures using a deep learning technique. To extract 

information and categorize bones as either healthy or fractured, 

the technique uses a Convolutional Neural Network (CNN) 

with four convolutional layers, max pooling, and dense layers. 

To address overfitting resulting from the initial dataset's low 

size of 100 photographs, data augmentation techniques were 

employed to expand the dataset to 4000 photos. The model's 

classification accuracy, using 5-fold cross-validation, was 

92.44%; it was over 95% and 93% accurate on 10% and 20% 

test splits. 

In 2023, Ahmed and Hawezi [18] developed a method that 

focuses on the lower leg bones and uses machine learning to 

detect bone fractures in X-ray images. They employed pre-

processing techniques including Gaussian filtering and 

adaptive histogram equalization to enhance image quality. The 

next step was to use the Gray-Level Co-occurrence Matrix 

(GLCM) for feature extraction and canny edge detection. 

When the extracted features—such as contrast, correlation, 

and homogeneity—were fed into numerous classifiers, such as 

Naive Bayes, Decision Tree, Nearest Neighbors, and Random 

Forest, SVM achieved the highest accuracy of 92% on a 

dataset of 270 X-ray images. Although the study's 

applicability is limited by its focus on lower leg bones and 

short dataset size, it emphasizes the benefits of integrating 

machine learning with reliable pre-processing for automated 

fracture detection.  

In 2024, Thota et al. [19] compared Convolutional Neural 

Networks (CNNs) with MobileNet, a lightweight architecture 

designed for devices with little resources, to create a deep 

learning-based system for bone fracture detection utilizing X-

ray images. Their methods included pre-processing, data 

augmentation, and training with ReLU and sigmoid activation 

functions on a dataset of 5,000 labeled X-ray pictures from 

Kaggle. They achieved an outstanding 98% accuracy with 

MobileNet, compared to 86% with CNNs. Through depth-

wise separable convolutions, the study demonstrates 

MobileNet's effectiveness, which qualifies it for real-time 

applications. Its wider usefulness is constrained by its focus on 

single-bone types and difficulties with mobile deployment.  

In 2024, Spoorthi et al. [20] introduced a hybrid approach 

for hand bone fracture classification, integrating the 

EfficientNet-B3 deep learning model with a Support Vector 

Machine (SVM) classifier, achieving a high accuracy of 

93.5%. To improve feature extraction, the methodology uses a 

dataset of 8,812 hand X-ray pictures that have been pre-

processed using edge detection, denoising, Gaussian and 

median blurring, and grayscale conversion. EfficientNet-B3, 

fine-tuned on this dataset, extracts detailed features, which 

SVM then classifies to establish robust decision boundaries. 

The model outperforms traditional methods, such as SIFT and 

other CNN-based approaches, as demonstrated by low false 

positives and negatives in the confusion matrices and high-

performance indicators including precision, recall, and F1-

score.  

In 2025, Aldhyani et al. [21] used a Kaggle dataset of 

10,580 X-ray images to propose a deep learning framework 

for automated bone fracture identification. The framework 

uses VGG16, ResNet152V2, and DenseNet201, is trained with 

a 70-20-10 split using the Adam optimizer, and is 

supplemented with attention mechanisms and skip 

connections. Because of its deep connection, DenseNet201 

fared better than the others, obtaining 97.35% accuracy, 

97.41% F1-score, 97.78% sensitivity, and 97.06% specificity. 

The accuracy scores for VGG16 and ResNet152V2 were 

96.55% and 92.15%, respectively. The method is restricted by 

the diversity of datasets, but it enhances feature extraction for 

clinical diagnosis. Future research proposes combining multi-

modal imaging and transformer attention. 

In 2025, Torne et al. [22] evaluated VGG-16, VGG-16 with 

Random Forest, ResNet-50 with SVM, and EfficientNetB0 

with XGBoost on a dataset of 1,129 images, spanning 10 

fracture categories, in order to compare deep learning models 

for bone fracture classification using X-ray images. Because 

of the deep architecture of the VGG-16 and Random Forest's 

capacity to reduce overfitting, the VGG-16 and its ensemble 

with Random Forest obtained the greatest accuracy of 95%, 
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along with higher precision, recall, and F1 scores. 

EfficientNetB0 with XGBoost fared poorly at 41%, most 

likely because it was ineffective with grayscale X-ray pictures, 

but ResNet-50 with SVM produced a strong 93% accuracy. 

With data taken from pre-trained CNNs and categorized using 

conventional ML algorithms, the study used ensemble and 

transfer learning approaches. Grad-CAM images were used to 

confirm the classification of clinically significant regions. 

3. METHODOLOGY

3.1 Dataset 

Two classes comprise the dataset used in the present study: 

non-fractured and fractured. The 3367 images in the FracAtlas 

data set, which is accessible on Kaggle, were used to create the 

non-fractured X-ray images [18]. According to bone fracture 

detection, the 4147 images in the Roboflow data set were used 

to obtain the fracture X-ray images [19]. Thus, 7514 X-ray 

pictures make up the entire dataset. Stratified sampling was 

used to maintain class distribution across splits, dividing the 

dataset into 80% training (6011 images), 10% validation (751 

photos), and 10% testing (752 images). 

3.2 Training of ResNet50 and EfficientNetB0 

The model architecture for ResNet50 and EfficientNetB0, 

including their block structures, is presented in Figure 1. 

Traditional training comprises eight main steps after data 

selection, as shown in Figure 2 and illustrated below: 

 Data Pre-processing: it is enhancing the model's reliability.

There are some necessary operations that must be applied

to images that have been loaded such as converted to RGB,

resized all images to 224×224, and normalized to [0, 1].

 Data Augmentation: it is a method to increase the number

of data set files through applying various operations [23].

To rectify class imbalance, ImageDataGenerator was used

to apply rotation, shifting (both vertically and horizontally),

and zooming to the Fractured class.

 Model Selection: This study utilized pre-trained ResNet50

or EfficientNetB0 models, which were originally trained

on the ImageNet dataset (a large-scale image database

widely used in computer vision research, particularly for

training and evaluating deep learning models). It was

created as part of the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). During the experiment,

the layers of these models were "frozen," meaning their

weights were not updated during training, allowing only

the newly added layers to be trained for the specific task

(likely bone fracture detection). This approach leverages

the pre-trained models' learned features while adapting

them to a new task, resulting in reduced training time.

 Model Layers: Added a GlobalAveragePooling2D layer to

reduces the spatial dimensions of the feature maps by

averaging each feature map, enhancing the model's

effectiveness and fewer possibilities to overfit "The

architecture for both EfficientNetB0 and ResNet50

included the addition of a single GlobalAveragePooling2D

layer to reduce feature map dimensions, followed by Dense

layers for classification". a Dense layer it is a fully

connected layer with 1024 neurons and Rectified Linear

Unit activation is added to learn complex patterns from the

pooled features. And a Dense layer as final fully connected

layer with one neuron, and Sigmoid activation is added for 

binary classification. These layers adapt the pre-trained 

model to the binary classification task by transforming its 

features into a single probability score as illustrated in the 

Figures 1(a) and 1(b). 

Figure 1. Model architecture 

Through Figure 1(a), the "Bottleneck" in the architecture 

diagram refers to a specialized residual block in ResNet50, 

consisting of 1x1, 3x3, and 1x1 convolutional layers, designed 

to reduce computational complexity by narrowing channel 

dimensions before expanding them with skip connections 

enhancing gradient flow [24, 25]. Similarly in Figure 1(b), the 

"BatchNorm + Swish" denotes batch normalization stabilizing 

training by normalizing layer inputs across each mini-batch, 

followed by the Swish activation function enhancing non-

linearity and performance [26]. 

 This study's feature extraction method extracted

hierarchical visual characteristics from X-ray pictures

using pre-trained ResNet50 and EfficientNetB0 models

with frozen layers that were trained on the ImageNet

dataset. These features included low-level elements such

as edges, textures, and gradients (e.g., bone boundaries),

mid-level patterns like shapes and contours (e.g., bone

outlines), and high-level semantic information (e.g.,

potential fracture lines). The extracted feature maps were

transformed into fixed-length vectors using a

GlobalAveragePooling2D layer, enabling the subsequent

Dense layers to perform binary classification.

 During the training phase, a binary cross-entropy loss

function optimized with the Adam optimizer was used to

train the EfficientNetB0 and ResNet50 models. In order to

train the custom classification layers

(GlobalAveragePooling2D, Dense 1024, and Dense 1), the

models were first trained using a learning rate of 0.001, a

batch size of 16, and 10 epochs, while maintaining the pre-

trained base layers frozen. For EfficientNetB0, an

additional fine-tuning phase was implemented, unfreezing

layers 101 to 237, reducing the learning rate to 0.0001, and

training for 5 extra epochs to enhance performance on the

fracture detection task. The training process utilized a

stratified dataset split (80% training, 10% validation, 10%

test) to ensure balanced class representation, with data

augmentation applied to the fractured class to address

potential imbalances, as detailed in Table 1.

 EfficientNetB0 Fine-Tuning: Fine-tuning of

EfficientNetB0 involved unfreezing the model (originally

frozen), then freezing the first 100 layers while allowing
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layers 101 to 237 to train as shown in Figure 1(c). The 

model was recompiled with a lower learning rate of 0.0001 

and trained for 5 additional epochs to enhance performance 

on the fracture detection task. While, we maintained the 

pre-trained weights of ResNet50 frozen to ensure a robust 

baseline for comparison with EfficientNetB0, leveraging 

its strong feature extraction capabilities learned from 

ImageNet. This approach was adopted based on the 

acceptable initial accuracy of 80.05% and computational 

considerations, while reserving fine-tuning as a potential 

enhancement for future investigations to further improve 

performance if necessary. 

 Evaluation of the models was conducted on the test set,

comprising approximately 10% of the total dataset (751

images, with a balanced distribution of fractured and non-

fractured X-ray images), using a probability threshold of

0.5 to classify predictions as either fractured or non-

fractured. The performance was assessed using accuracy as

the primary metric, alongside comprehensive classification

reports that included precision, recall, and F1-score for

both classes, providing a detailed insight into the models'

ability to detect bone fractures. Predictions were generated

by applying the trained models to the test images, with

results compared against ground truth labels to compute

these metrics, ensuring a robust evaluation of the

EfficientNetB0 and ResNet50 architectures under the

defined experimental conditions.

Table 1. Training parameters 

Parameter 

EfficientNetB0 

(Initial 

Training) 

EfficientNetB0 

(Fine-Tuning) 
ResNet50 

Loss Function 
Binary Cross-

Entropy 

Binary Cross-

Entropy 

Binary Cross-

Entropy 

Optimizer Adam Adam Adam 

Learning Rate 0.001 0.0001 0.001 

Batch Size 16 16 16 

Number of 

Epochs 
10 5 10 

Frozen Layers All (0 to 237) 
First 100 (0 to 

100) 
All (0 to 175) 

Trainable 

Layers 

Custom Layers 

(3) 
Layers 101 to 237 

Custom 

Layers (3) 

Data 

Augmentation 

Yes (Fractured 

class only) 
No 

Yes 

(Fractured 

class only) 

Dataset Split 

80% Train, 10% 

Validation, 10% 

Test 

80% Train, 10% 

Validation, 10% 

Test 

80% Train, 

10% 

Validation, 

10% Test 

Input Shape (224, 224, 3) (224, 224, 3) (224, 224, 3) 

Activation 

(Final Layer) 
Sigmoid Sigmoid Sigmoid 

Figure 2. Workflow of bone fracture classification using 

traditional training 

3.3 Hybrid approaches (ResNet50 and EfficientNetB0 with 

SVM) 

Hybrid approaches comprise essentially nine main steps 

after data selection: as shown in Figure 3, and described below: 

 Data Pre-processing: Same as Traditional Training.

 Data Augmentation: Same as Traditional Training

 Feature Extraction: Features were extracted using either

pre-trained ResNet-50 or EfficientNet-B0 (with frozen

layers).

 Feature Normalization: The StandardScaler, a pre-

processing tool from the scikit-learn module in Python that

is used to standardize features in a dataset, was used to

apply feature normalization. The method, also known as Z-

score normalization or standardization, modifies the data

so that the standard deviation is one and the mean is zero

for each feature. At this point, the extracted features are

scaled to have a mean of zero and a standard deviation of

one in order to guarantee consistent feature distributions

and improve the performance of the subsequent machine

learning classifier.

 Dimensionality Reduction: The data's dimensionality was

decreased using Principal Component Analysis (PCA),

which preserved 95% of the variance while reducing the

feature dimensions. This technique reduces noise and

computing complexity while maintaining the most crucial

information for classification by distilling the original

characteristics into a smaller set of uncorrelated primary

components, with the 95% threshold selected to balance

information retention and computational efficiency.

 Data Balancing: In order to improve model performance,

SMOTE was employed to address the class imbalance in

the training set, initially comprising 6011 images

(Fractured: 3318, Non-Fractured: 2693), by generating

synthetic samples for the minority non-fractured class to

ensure equal representation, resulting in a balanced set of

6636 images (Fractured: 3318, Non-Fractured: 3318). The

sampling strategy was set based on the majority fractured

class size (3318) to adjust the oversampling ratio, aligning

the non-fractured class to match, thus achieving equal class

distribution and confirming robust training.

 SVM Training: SVM was trained using GridSearchCV to

optimize hyperparameters, selecting C=10, gamma=0.01,

and an RBF kernel, ensuring robust performance.

StratifiedKFold cross-validation was employed to

maintain class distribution across folds, enhancing the

model's generalizability for fracture detection.

 Threshold Optimization: The optimal threshold (ResNet50:

0.79, EfficientNetB0: 0.45) was determined using the

Precision-Recall curve to maximize the F1-Score.

 Evaluation: Using the ideal threshold, models were

assessed on the test set.

Figure 3. Workflow fracture of classification using 

ResNet50 and EfficientNetB0 with SVM 
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4. RESULTS

Evaluating the performance of model and dependability is 

essential to determining the bone fraction classification 

system's efficacy. To do this, we used commonly used metrics, 

including a confusion matrix, accuracy, recall, and precision. 

The models were evaluated and implemented with scikit-learn 

and TensorFlow. A CPU-only system, lacking a GPU, was 

used for training in order to mimic scenarios with limited 

resources, ensuring reproducibility across diverse hardware 

without reliance on specialized equipment. Python 3.8 with 

TensorFlow 2.5.0 was used for all tests on an HP ProBook 450 

G4 laptop with the following specs: 32 GB RAM, Windows 

10 Pro 64-bit, Intel Core i7-7500U CPU @ 2.70 GHz (4 CPUs, 

~2.9 GHz). 

4.1 Accuracy 

Since accuracy calculates the proportion of accurately 

predicted data to all anticipated data, it is sometimes regarded 

as the most explicit performance metric [27]. Below is the 

formulation of the Eq. (1): 

Accuracy = TP + TN/TP + FP + TN + FN (1) 

 Recall: The following Eq. (2) illustrates this ratio, which is

often referred to as sensitivity or true positive rate:

accurately predicted positive observations divided by total

positive observations [28].

Recall = TP/TP +  FN (2) 

 Precision: The total number of predictions the model

makes is used to determine its precision. The link between

the total predictions (TP + FP) and the prediction

percentage (TP) is then obtained by dividing the number of

right predictions by the total predictions [29, 30]. Below is

Eq. (3) that illustrates this information.

Precision = TP/TP + FP (3) 

where: The term "True Positive" (TP) describes X-ray pictures 

that are accurately classified as broken [18]. Images that are 

appropriately classified as non-fractured are referred to as 

True Negatives (TN). When non-fractured X-ray images are 

mistakenly classified as fractured, this is known as a false 

positive (FP). When broken X-ray scans are mistakenly 

classified as non-fractured, this is known as a False Negative 

(FN). 

4.2 Classification performance 

Table 2 summarizes the performance of the four approaches 

that implemented based on datset consists of 752 images (415 

Fractured, 337 Non-Fractured). 

Table 2. Comparison of classification performance 

Model 
Test 

Accuracy 

Recall 

(Fractured) 

F1-Score 

(Fractured) 

Total 

Time 

(Minutes) 

ResNet50 80.05% 0.72 0.80 83.96 

ResNet50 with 

SVM 
96.41% 0.95 0.97 38.47 

EfficientNetB0 95.35% 1.00 0.96 63.92 

EfficientNetB0 

with SVM 
98.01% 0.99 0.98 20.44 

As shown in the Table 2 above, ResNet50 obtained a test 

accuracy of 80.05%, with a low Recall of 0.72 for Fractured 

cases, indicating that 28% of fractures were missed. The F1-

Score for Fractured cases was 0.80, reflecting the poor balance 

between Precision and Recall. While ResNet50 with SVM 

improved the test accuracy to 96.41%, with a Recall of 0.95 

for Fractured cases, missing only 5% of fractures and F1-Score 

increased to 0.97, showing a better balance. Also, 

EfficientNetB0 (traditional training): Obtained a test accuracy 

of 95.35%, with a perfect Recall of 1.00 for Fractured cases, 

detecting all fractures. The F1-Score was 0.96, slightly 

affected by a lower Precision. Finally, EfficientNetB0 with 

SVM: Recorded the highest test accuracy of 98.01%, with a 

Recall of 0.99 for Fractured cases and an F1-Score of 0.98, 

demonstrating excellent performance. 

Figure 4 and Figure 5 present the confusion matrices for the 

hybrid and the traditional approaches respectively. 

Figure 4. Confusion matrix for Hybrid approaches 
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Figure 5. Confusion matrix for traditional approaches 

The confusion matrix Figure 4(a) is correctly identified 395 

out of 415 Fractured cases (TP) and 330 out of 337 Non-

Fractured cases (TN). It misclassified 7 Non-Fractured cases 

as Fractured (FP) and 20 Fractured cases as Non-Fractured 

(FN). However, the confusion matrix for EfficientNetB0 with 

SVM (Figure 4(b)) correctly identified 409 out of 415 

Fractured cases and 328 out of 337 Non-Fractured cases, with 

only 9 False Negatives and 6 False Positives, demonstrating 

superior performance. 

Figure 5(a) shows the confusion matrix for EfficientNetB0 

that correctly identified 415 out of 415 Fractured cases (TP) 

and 302 out of 337 Non-Fractured cases (TN), with only 35 

Non-Fractured cases as Fractured (FP). However, the 

confusion matrix for ResNet50 (Figure 5(b)) correctly 

identified 297 out of 415 Fractured cases and 305 out of 337 

Non-Fractured cases. It misclassified 35 False Negatives and 

118 False Positives. 

4.3 Loss function and Precision-Recall 

Figure 6 illustrates the loss functions of training and 

validation over 10 epochs for the traditional  ResNet50 and 

EfficientNetB0. ResNet50 exhibited higher loss values, 

indicating suboptimal learning, while EfficientNetB0's loss 

decreased more effectively due to fine-tuning. 

Figure 6. Loss function of training and validation loss for ResNet50 and EfficientNetB0 

Figure 7. Precision-Recall curve for ResNet50 and EfficientNetB0 with SVM 
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Finally, Figure 7 presents Precision-Recall curves for 

hybrid approaches (ResNet50 and EfficientNetB0 with SVM), 

with vertical lines indicating recall at the optimal threshold 

0.95 for ResNet50 with SVM and 0.99 for EfficientNetB0 with 

SVM, demonstrating how precision and recall are traded off. 

5. CONCLUSION

This study demonstrates the superiority of hybrid 

approaches over traditional training for the classification of 

bone fractures. The hybrid approaches, combining ResNet50 

with SVM and EfficientNetB0 with SVM, demonstrated 

superior performance compared to traditional training 

methods across multiple metrics. EfficientNetB0 with SVM 

achieved an impressive accuracy of 98.01% and a near-perfect 

recall of 0.99 for fractured cases, establishing it as a highly 

reliable option for clinical applications. The EfficientNet-B0 

+ SVM outperformed others due to its effective feature fusion

mechanism, where EfficientNet-B0’s optimized feature

extraction complements SVM’s precise classification.

Similarly, ResNet50 with SVM significantly enhanced 

performance over direct ResNet50 training, improving 

accuracy from 80.05% to 96.41% and recall from 0.72 to 0.95, 

effectively addressing challenges such as poor generalization 

and class imbalance inherent in traditional methods.  

On the other hand, EfficientNetB0 with SVM was 

particularly efficient, requiring just 20.44 minutes compared 

to 63.92 minutes for direct training (a 68% reduction), while 

ResNet50 with SVM reduced training time from 83.96 

minutes to 38.47 minutes (a 54% reduction). The hybrid 

approaches yielded steady and dependable results, which 

made them ideal for clinical deployment, particularly in 

settings with constrained computational resources, in contrast 

to older methods that gave inconsistent results across tests. 
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