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A unique method for improving predictive analytics and protecting medical data is to 

combine blockchain technology with machine learning. Novel approaches to early detection 

and treatment are necessary for non-communicable diseases like diabetes and 

cardiovascular conditions. In order to predict diabetes and cardiovascular diseases, this 

article suggests a safe framework that combines blockchain technology with machine 

learning methods. To guarantee that only authorized users can decrypt and access Electronic 

Medical Records (EMRs), the system uses smart contracts on the Ethereum blockchain to 

automatically enforce data access permissions. Transparent and secure data sharing between 

healthcare organizations is made possible by this integration, which also ensures data 

integrity, privacy, and regulated accessibility. Blockchain-stored data is subjected to a 

number of machines learning classifiers, such as XG Boost and Random Forest, in order to 

achieve high disease prediction accuracy through thorough performance evaluation and 

optimized parameter tuning. The architecture exhibits scalability and robustness, enhances 

patient privacy, and enables personalized therapies. The effectiveness of this combined 

approach is demonstrated by experimental results, underscoring its potential for practical 

implementation in decentralized healthcare ecosystems. 
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1. INTRODUCTION

Blockchain technology and predictive analytics are 

emerging as powerful instruments in managing diabetes and 

cardiovascular disease (CVD). New technologies offer 

innovative methods for data exchange, risk prediction, and 

personalized treatment for individuals with diverse chronic 

conditions [1, 2]. Blockchain-based solutions enhance clinical 

efficacy and research outcomes by resolving the challenges of 

cross-institutional data interchange in healthcare [3-5]. 

Numerous risk factors for heart disease include advanced age, 

genetic susceptibility, tobacco use, lifestyle choices, substance 

misuse, high blood pressure, high cholesterol, low levels of 

physical exercise, obesity, diabetes, psychological stress, and 

poor hygiene [6, 7]. Diabetes mellitus (DM) and CVD are 

significant global healthcare challenges and frequently 

coexist. Many people with concurrent diabetes mellitus and 

cardiovascular disease are not easily identified by present 

strategies, which cause delays in healthcare access, more 

significant difficulties, and morbidity [8]. Using multi-

signature contracts and encryption, blockchain guarantees 

patient autonomy and privacy over medical data, facilitating 

effective sharing among institutions.  

More complete datasets for research and analysis could 

come from this approach. Using artificial intelligence (AI) and 

machine learning mostly, predictive analytics have shown 

great promise in evaluating CVD risk. With classifier 

accuracies between 79% and 88% [9, 10], studies have shown 

the effectiveness of network-based components and machine-

learning approaches in creating risk prediction models [11]. To 

control sickness, these models can draw insightful analysis 

from several data sources including administrative claims 

data. Combining predictive analytics with blockchain offers a 

great path to improve diabetic and cardiovascular disease care. 

Integrating safe data interchange with powerful analytical 

technology helps healthcare providers create more accurate 

risk assessments, customized treatment plans, and early 

intervention techniques for patients with these related chronic 

illnesses. EHR’s, supply chain management, clinical trials, 

health insurance, medical billing, health information 

exchange, telemedicine, precision medicine, medical research, 

and public health surveillance [12, 13] are among the 

important uses for this information. 

Blockchain technology has the ability to revolutionize 

healthcare operations by enabling the secure storage and 

exchange of patient health records. It contributes to cost 

reduction and enhances data interoperability [14, 15]. Primary 

applications include electronic health records, clinical trials, 

supply chain management, health insurance, medical billing, 

health information exchange, telemedicine, precision 

medicine, medical research, and public health surveillance 

[16]. Dinh et al. [17] utilized survey data and test results to 

identify and predict diabetes and cardiovascular illness in 

individuals through logistic regression, support vector 
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machines (SVM), and ensemble models. Without laboratory 

results, the cardiovascular disease ensemble model scored 

83.1%, whereas with laboratory results, it scored 83.9%. The 

XGB model attained a classification accuracy of 95.7% when 

using laboratory data and 86.2% in the absence of such data 

for diagnosing diabetes. 

For cardiovascular diseases, significant factors included 

age, blood pressure, weight, and chest pain, whereas the 

primary predictors for diabetes comprised waist 

circumference, age, weight, and sodium consumption. Farooq 

and Amjad [18] employed sine-cosine weighted k-nearest 

neighbour alongside various machine learning approaches, 

including SVM, Random Forest (RF), and K-Nearest 

Neighbour (KNN). In comparison to existing methods, SCA-

WKNN achieved a precision increase of 15.51%. Blockchain 

technology provides a secure platform for distributing patient 

data while safeguarding privacy. Figure 1 illustrates a 

healthcare management system integrating blockchain 

technology with machine learning to ensure efficient and 

secure data management. In this method, healthcare 

practitioners gather and oversee patient information, utilizing 

EMR within a framework of medical management. The 

Machine Learning Workflow Process manages data to 

facilitate the examination and generation of intelligent 

analyses, including diagnoses, risk assessments, and 

therapeutic recommendations. The data analyzed securely 

stored on a blockchain, is reliable for maintaining integrity, 

security, and traceability. Patients are apprised of the 

information acquired from the blockchain, promoting secure 

and transparent transmission of medical details. This 

combined strategy improves the process of making medical 

decisions while protecting patient data. Shynu [19] conducted 

a study on diabetes and cardiovascular diseases by employing 

patient health data sourced from Fog Nodes. This data was 

subsequently stored on a blockchain and analyzed using an 

innovative rule-based clustering method in conjunction with a 

feature selection-based adaptive neuro-fuzzy inference system 

(FS-ANFIS). Comprehensive analyses employing accurate 

healthcare data, utilizing criteria such as purity, Normalized 

Mutual Information (NMI), and predictive accuracy, evaluated 

the proposed methodology. The experimental findings 

demonstrated that the proposed framework surpassed existing 

neural network methodologies, achieving over 81% prediction 

accuracy. 

Data confidentiality is compromised when medical records 

are transmitted over a network, as centralized storage increases 

a single point of failure’s potential. Furthermore, centralizing 

authorized storage may lead to assaults that result in denial-of-

service. Employing blockchain technology may address 

several of these challenges [20]. Khatoon [21] documented 

surgical procedures and clinical investigations conducted on 

the Ethereum blockchain network. They have assessed the 

associated costs of implementing blockchain in the healthcare 

sector and evaluated the system's potential to enhance 

healthcare services, optimize expenditures, and so assist 

various stakeholders in the medical system. Hasanova [20] 

utilized contracts developed in Solidity on the test network of 

the public blockchain Ethereum. The suggested model has 

been trained and evaluated using data from the current UCI 

public repository. Performance is further characterized by 

metrics such as accuracy, precision, recall, F-score, and R² 

error. According to the evaluation, the suggested prediction 

system outperforms alternative techniques like K-Nearest 

Neighbour and Weighted K-Nearest Neighbour in terms of 

accuracy by an average of 98.5%. Blockchain and machine 

learning technologies offer innovative solutions across various 

sectors, enhancing healthcare outcomes, fortifying financial 

services, and optimizing supply chain management. 

Collectively, these technologies enhance security, 

transparency, and efficiency, hence facilitating 

groundbreaking innovations across various domains. The 

study elucidates the significant potential of integrating 

blockchain with machine learning to revolutionize operations 

and decision-making across several sectors, supported by 

comprehensive research findings and empirical case studies 

[22-24]. 

Figure 1. System architecture integrating blockchain, 

machine learning, and EMR storage for secure disease 

prediction 

Hassan [25] employed multiple machine learning 

classifiers—Gradient Boosted Trees (GBT), Multilayer 

Perceptron (MLP), and Random Forest (RF)—to predict heart 

disease. In total, eleven machine learning classifiers were 

employed to identify significant features enhancing heart 

disease prediction. The study achieved a 95% accuracy rate 

with Gradient Boosted Trees and Multilayer Perceptron, while 

Random Forest yielded a superior accuracy of 96%. Among 

the classifiers employed, Random Forest exhibited superior 

performance in predicting heart disease. AbdelSalam [26] 

optimized the machine learning framework by combining 

various ML models, including RF, XGB, DT, and LR, and 

conducted a comprehensive analysis of predictive efficacy. 

XGB distinguishes itself within this extensive array of models, 

achieving remarkable metrics of 99% accuracy, 100% recall, 

99% F1-measure, and 99% precision. Predictive analytics, 

decision-making, and real-time monitoring are made possible 

in smart healthcare systems by the integration of artificial 

intelligence [27]. These technologies analyse patient data 

gathered from multiple sources, including wearable sensors, to 

aid in the early diagnosis and identification of diseases [28, 

29]. 

Chicco and Jurman [30] utilized diverse machine learning 

classifiers to predict the survival of heart failure patients based 

on electronic medical data. The classifiers employed included 
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Linear Regression for statistical analysis, Random Forests for 

ensemble learning, One Rule for basic rule-based 

classification, Decision Trees for systematic decision-making, 

Artificial Neural Network Perceptron for essential neural 

network modelling, Support Vector Machines for effective 

linear and nonlinear separation, k-Nearest Neighbours for 

instance-based learning, and Naïve Bayes for probabilistic 

classification. The study employed a gradient boosting 

ensemble approach. Random forests demonstrated superior 

efficiency and accuracy compared to the other classifiers 

examined.  

However, few studies have been conducted on integrating 

blockchain and ML data processing and analysis techniques. 

The present study describes a novel framework for 

maintaining EMRs and utilizing machine learning algorithms 

to forecast diabetes and cardiovascular diseases. The 

combination of blockchain technology and machine learning 

strengthens patient privacy while improving predictive 

analytics accuracy. The study used various classifiers such as 

LR, Naive Bayes (NB), SVM, KNN, ANN, decision tree (DT), 

RF, and XGB (extreme gradient boost) on preprocessed 

datasets to obtain maximum accuracy through parameter 

tuning and evaluated their performance on metrics such as 

accuracy, precision, recall, and F-measure. 

2. METHOD

This section describes the methodology used in the study, 

including dataset selection, preprocessing, and model 

evaluation. The datasets were cleaned, normalized, and split 

into training and testing sets to enhance model performance. 

Feature engineering techniques were applied to improve 

predictive accuracy. 

2.1 Data employed 

The Pima Indians Diabetes Dataset and the UCI Heart 

Disease Dataset are two well-known datasets that were used in 

this study to train and evaluate the machine learning models. 

These databases were chosen because they provide a 

comprehensive overview of the primary factors of diabetes 

and cardiovascular conditions. The Pima Indians Diabetes 

Dataset comprises one hundred thousand patient entries. It 

encompasses nine critical attributes emphasizing significant 

health metrics such as blood pressure, glucose levels, and body 

mass index (BMI). This dataset, sourced from the Kaggle 

repository, is renowned for its organized structure and efficacy 

in diabetes prediction. The UCI Heart Disease Dataset consists 

of 70,000 patient records and includes 14 essential attributes, 

including age, cholesterol levels, and types of chest pain. 

Table 1 presents the extensive data set of patients with diabetes 

and Table 2 displays the data set of heart disease. This dataset, 

supplied by the UCI Machine Learning Repository, is an 

excellent tool for assessing cardiovascular disease risk. The 

pre-processing of data has required significant work to ensure 

its quality and improve our model's performance. We 

employed suitable imputation methods to address missing 

values, concentrated on identifying and managing outliers to 

enhance data consistency and applied normalization 

techniques to ensure a more uniform data distribution. 

Moreover, valuable trends are identified, and our predictive 

accuracy is enhanced through feature engineering techniques. 

The two datasets were systematically divided into training and 

testing groups to facilitate meticulous model evaluation and 

ensure optimal performance on novel, unseen data. 

Table 1. Key attributes of the Pima Indians Diabetes dataset 

Name of Attribute Attribute Description Range 

Pregnancy 

Frequency 
Number of pregnancies 0-17 

The level of glucose Glucose level in Plasma 44-199 

BP level Diastolic hypertension 24-122 

Insulin 
Insulin serum presents for 

2hours 
14-846 

Weight-to-Height 

Ratio 
Body mass index 18.2-67.1 

Hereditary Factor 
A pedigree function of 

Diabetes 

0.078-

2.42 

Chronological Age Age of a person 21-80 

Class Label 
The patient has diabetes or 

not 
0 or 1 

Table 2. Attributes of the UCI Heart Disease dataset 

Attribute Name Attribute Details Range 

Age Years, Age of the Patient 28-76 

Sex Patient gender 0,1 

Chest Pain Type 
Chest Discomfort Type, Angina 

Type 
1,2,3,4 

Trest_bps 
Resting Blood Pressure, Baseline 

BP 
94-200 

Fasting Blood 

Sugar 

Fasting Glucose Level, Preprandial 

Blood Sugar 
0,1 

RestECG 
Baseline ECG, Resting ECG 

Outcome 
0,1,2 

Thalaeh Peak Heart Rate, Max Heart Rate 71-202 

Exang Physical Activity induced Angina 0,1 

OldPeak 
ST Depression, Exercise-Induced 

ST Depression 
0-6.2 

Slope 
Exercise Response Slope, ST 

Segment 
1,2,3 

CA 
Coronary Arteries, Major Vessel 

Count 
0,1,2.3 

Thal 
Thallium Scan Result, Thallium 

Test Outcome 
3,6,7 

Class Label Diagnosis, Heart Disease Status 
0 or 

1 

2.2 System architecture 

Figure 2 shows the system architecture adopted in the 

current study. The proposed healthcare data management 

system integrates blockchain technology, machine learning, 

and decentralized authentication to establish a secure and 

transparent method for data processing. Patients authenticate 

using MetaMask, a centrally managed, confidential 

information system that allows for rapid access and secure 

records retrieval by authorized entities. Healthcare 

professionals and patients can utilize the system via the wallet. 

Furthermore, all information about the doctor and patient will 

be safeguarded and administered via this system. Moreover, 

using the widely favored browser extension MetaMask, 

individuals can interact with decentralized Ethereum 

applications directly from their web browsers. It connects 

users to the Ethereum network and offers an easy-to-use 
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interface for Ethereum account management, engaging with 

smart contracts, and executing transactions [31, 32].  

Figure 2. Proposed system model combining blockchain, 

IPFS, and MongoDB for secure EMR handling 

The system architecture comprises an application server 

utilizing (Node.js) for request management and a MongoDB 

database that stores structured patient information, including 

records, test results, and medical history, as well as 

unstructured data, such as supplementary medical facts. 

MongoDB is the most prevalent database, experiencing 

consistent growth and ensuring security. MongoDB is an 

open-source, cross-platform database that is entirely 

document-oriented, schema-less, and scalable. MongoDB 

organizes data in the form of documents. MongoDB addresses 

contemporary issues associated with managing increasing 

volumes of unstructured and semi-structured data through 

enhanced scalability and availability. Document-oriented 

storage, as offered by MongoDB, is regarded as resilient for 

managing diverse structural information to facilitate IoT 

objectives [33-35]. Furthermore, it integrates a blockchain 

component to store medical record hashes securely [36]. This 

configuration preserves data integrity and immutability by 

validating MongoDB records against hashes stored on the 

blockchain. 

2.3 Data processing and ML algorithms 

Before using machine learning algorithms, preprocessing 

and cleaning of the data is carried out to guarantee optimal 

accuracy. A thorough approach to data preprocessing was 

employed to ensure data quality and improve model 

performance. Missing numerical values, such as glucose levels 

and blood pressure, were addressed using mean imputation to 

maintain reliability. Mode imputation was utilized for 

categorical variables, like gender. Outliers were identified 

using the Interquartile Range (IQR) method and removed to 

prevent adverse impacts on model predictions. Categorical 

variables, including gender and chest pain type, were 

transformed through one-hot encoding. Continuous variables 

such as age, BMI, and cholesterol levels were scaled using 

Min-Max scaling to ensure a balanced impact from each 

feature. New attributes, like age groups, were created to 

uncover additional patterns and enhance accuracy. Principal 

Component Analysis (PCA) was applied to reduce the 

dimensions of the dataset, simplifying the data while retaining 

crucial information for more efficient computations. The 

datasets were divided into two parts: 70% was allocated for 

training and 30% for testing. A 5-fold cross-validation 

approach was used to boost the model's reliability and fine-

tune its settings, thereby reducing the risks of overfitting. This 

integrated preprocessing method ensured that the data was 

dependable, consistent, and appropriately tailored for precise 

model predictions. The system utilized various classifiers, 

including LR, NB, SVM, KNN, ANN, DT, RF, and XGB, 

leveraging blockchain-stored data for a decentralized, secure, 

and transparent processing methodology. The Ethereum 

blockchain facilitates the sharing of patient data, guaranteeing 

that each participant can access only the information they are 

permitted to. Patients can create, maintain, and update their 

medical records, which are securely documented as immutable 

transactions on the blockchain, ensuring data traceability and 

integrity. 

2.4 Blockchain implementation details 

2.4.1 Data Synchronization between IPFS and MongoDB 

The synchronization of patient data between IPFS (Inter 

Planetary File System) and MongoDB is essential to 

guaranteeing data accessibility and integrity in the suggested 

proposed system. After being encrypted for privacy, a newly 

created EMR is uploaded to IPFS, which creates a unique 

content identifier (CID) that acts as a tamper-proof reference 

to the data stored there. A smart contract is then used to record 

this CID on the Ethereum blockchain, making it verifiable and 

unchangeable. In the meantime, MongoDB stores related 

metadata, including access timestamps and patient identifiers, 

enabling quick and effective querying of non-sensitive data. 

During any data access or modification event, the smart 

contract verifies user permissions on-chain before authorizing 

the operation. If authorized, the system retrieves the latest CID 

from the blockchain to access the encrypted EMR on IPFS, 

and concurrently references MongoDB for supplementary 

metadata. Synchronization between these components is 

automatically enforced; any updates, deletions, or additions to 

EMRs trigger corresponding updates in both IPFS (generating 

a new CID and blockchain entry) and MongoDB, ensuring that 

no discrepancy can arise between the content hash on-chain 

and the actual medical data. This hybrid framework leverages 

the strengths of decentralized storage for integrity and 

traceability, alongside quick-access off-chain metadata for 

scalability, while the blockchain’s access control guarantees 

that all data transactions remain both transparent and secure. 

2.4.2 Rationale for Ethereum consensus mechanism selection 

The Ethereum blockchain was selected as the foundational 

decentralized platform in this study primarily due to its robust 

security features, mature smart contract ecosystem, and 

evolving consensus mechanism based on Proof-of-Stake 

(PoS). Ethereum is the perfect option for healthcare data 

applications that require both high security and prompt access 

because the PoS consensus improves energy efficiency and 

transaction finality when compared to the conventional Proof-

of-Work. Sensitive Electronic Medical Records (EMRs) must 

1756



be protected in accordance with privacy regulations, and 

Ethereum's extensive support for programmable smart 

contracts makes it easier to implement automated, fine-grained 

access control policies. Furthermore, Ethereum's extensive use 

and vibrant developer community offer a wealth of tools, 

resources, and integration choices, including Layer-2 scaling 

solutions and MetaMask, guaranteeing scalability and 

interoperability. Together, these characteristics allow for a 

transparent, scalable, and reliable blockchain infrastructure 

that easily facilitates decentralized trust, secure data sharing, 

and immutable audit trails—all of which are necessary to 

satisfy the demanding needs of contemporary decentralized 

healthcare. 

3. EXPERIMENTAL RESULTS

The accuracy of different machine learning methods is 

shown in Table 3. The accuracy vs various algorithms 

demonstrated in Figure 3 show how well machine learning 

models predict diabetes and heart disease situations. XGB 

classifier shows a high accuracy of 95.91% in diabetic 

prediction compared to other models. Its effective boosting 

mechanism, which sequences decision trees while fixing past 

iteration mistakes, helps explain this better performance. 

Using strong regularizing methods (L1 and L2 penalties), 

XGB efficiently manages unbalanced data common in 

healthcare datasets. The tree-pruning technique also helps 

avoid overfitting, so XGB is a dependable model for medical 

predictions where anomalies and dataset noise are common 

[37]. The RF and DT models show close accuracy of 94.97% 

and 94.98% in predicting diabetic disease, as both models 

reduce overfitting by using ensemble learning techniques [38]. 

Table 3. Accuracy of ML classifiers in the prediction of 

diabetic and heart diseases 

ML Algorithms Accuracy (%) 

Diabetic Disease Heart Disease 

LR 92.02 87.39 

NB 90.39 86.41 

SVM 93.04 75.54 

KNN 92.49 73.30 

ANN 91.51 69.94 

DT 94.97 89.43 

RF 94.98 89.43 

XGB 95.91 88.32 

Figure 3. Comparison of accuracy of ML classifiers in the 

prediction of diabetic and heart diseases 

In contrast, RF and DT show 89.43% accuracy in predicting 

heart disease. Their capacity to create several decision paths 

guarantees improved generalization over various patient data, 

thereby leading to this excellent performance. Although XGB 

expounded the accuracy of 88.32%, its minor accuracy drop 

compared to RF points to the latter's bagging method, perhaps 

providing more data variability resistance. With 93.04% 

accuracy, the Support Vector Machine (SVM) model 

effectively predicted diabetes. However, it weakened in heart 

disease prediction with a lowered accuracy of 75.54%. This 

implies that whilst the heart disease dataset most certainly 

included overlapping features or noisy data that hampered the 

SVM margin-based method, the diabetes dataset may have 

more explicit class boundaries that SVM could effectively 

separate [39]. The models such as NB (90.39%), KNN 

(92.49%) and ANN (91.51%) also demonstrated good 

accuracy in predicting diabetic disease; however, they could 

not perform well in obtaining high accuracy for heart disease 

prediction. KNN's sensitivity to noise [40], which results from 

its reliance on proximity measurements, may help to explain 

its lowered accuracy (73.30%). Likewise, the performance of 

ANN (69.94%) shows the need for thorough hyper parameter 

tweaking, especially with the number of hidden layers, 

neurons, and activation functions. Usually performing better 

with more data, ANN models may perform poorly from 

inadequate training data or incorrect parameter values [41].  

Figure 4. Comparative graph of precision, recall and F1 

score of ML algorithms for the prediction of diabetic disease 

The effectiveness of the suggested ML classifiers or 

algorithms is assessed using the performance measures. The 

evaluation metrics and their importance are shown in Table 4. 

True positives (TP) refer to the positive cases accurately 

recognized as positive, whereas false negatives (FN) denote 

the count of positive instances misclassified as negative. A 

false positive (FP) denotes cases that are disease-free yet are 

incorrectly forecasted as positive. True negative (TN) denotes 

the occasions where the absence of sickness is accurately 

recognized as such by the model. The bar chart depicting 

Diabetes Prediction, as presented in Figure 4, demonstrates the 

performance of various models in terms of Precision, Recall, 

and F1-Score. XGB is the most efficacious model for this task, 

demonstrating superior metrics (Precision: 0.96, Recall: 0.95, 

F1-Score: 0.955), evidencing its exceptional ability to handle 

complex patterns and reduce errors. Random Forest and 

Decision Tree exhibit reliability and efficacy in structured data 

tasks, with Precision at 0.95, Recall at 0.94, and F1-Score at 

0.945. Owing to their vulnerability to hyper parameter 

adjustments and data distribution, SVM (Precision: 0.93, 
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Recall: 0.92, F1-Score: 0.925) and ANN (Precision: 0.93, 

Recall: 0.90, F1-Score: 0.915) exhibit commendable 

performance. However, they fall somewhat short. Despite 

their simplicity and assumptions about data independence 

potentially limiting their efficacy, KNN (Precision: 0.92, 

Recall: 0.91, F1-Score: 0.915) and Naive Bayes (Precision: 

0.91, Recall: 0.90, F1-Score: 0.905) exhibit moderate 

performance. Ensemble approaches, such as XGB and RF, 

demonstrate superior generalization and predictive accuracy in 

diabetes prediction.  

The experiment results obtained by previous studies show 

that the XGB algorithm is significant in accurately predicting 

diabetic disease among the other chosen ML classifiers [41]. 

Table 4. Definitions and significance of evaluation metrics 

used to assess ML model performance in disease prediction 

[42] 

Metrics Formula Importance 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

It is a tool for evaluating an 

algorithm's performance in 

classification jobs. The 

percentage of accurately 

identified data points relative to 

the total number of 

observations is used to 

calculate this. 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

It indicates the ratio of selected 

data items that are relevant. In 

essence, it evaluates how many 

of the cases an algorithm has 

marked as positive are actually 

positive. 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

It indicates the proportion of 

selected data that the algorithm 

accurately recognizes as 

positive among the actual 

positive instances. 

F1-Score 
2

×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ± 𝑅𝑒𝑐𝑎𝑙𝑙

An algorithm's performance is 

evaluated using the F-score, 

which takes into account both 

recall and precision. It is 

computed as these two metric’s 

harmonic mean. 

The performance metrics of several models for Heart 

Disease Prediction are shown in the bar chart in Figure 5, 

which is assessed in terms of F1-Score, Precision, and Recall. 

The following are the outcomes: The F1-Score is 0.895, the 

precision is 0.90, and the recall is 0.89. Decision Tree and 

Random Forest exhibit optimal performance in handling 

complex patterns and providing reliable predictions for heart 

disease. XGB performs well, albeit somewhat lower than DT 

and RF, perhaps because of the specific structure of the dataset 

(Precision: 0.89, Recall: 0.88, F1-Score: 0.886). Despite their 

assumptions concerning data distribution and linearity 

potentially limiting their efficacy, NB (Precision: 0.87, Recall: 

0.86, F1-Score: 0.865) and LR (Precision: 0.88, Recall: 0.87, 

F1-Score: 0.875) exhibit moderate performance. The 

suboptimal performance of SVM (Precision: 0.76, Recall: 

0.75, F1-Score: 0.755) and ANN (Precision: 0.71, Recall: 

0.70, F1-Score: 0.705) is likely attributable to their 

susceptibility to imbalanced data or insufficient hyper 

parameter optimization. KNN exhibits suboptimal 

performance, perhaps because to its vulnerability to noise and 

high-dimensional input, with a Precision of 0.74, Recall of 

0.73, and F1-Score of 0.735. Ensemble methods, such as 

Random Forest and Decision Tree, demonstrate superior 

capacity to generalize and handle the complexities of heart 

disease prediction difficulties. The study [43] found XGB and 

RF to be significant algorithms for predicting heart diseases 

based on their accuracy and F1 score.  

Figure 5. Comparative graph of precision, recall and F1 

score of ML algorithms for the prediction of heart disease 

Algorithm 1 is a simple Solidity smart contract for EMR 

access control is implemented in this sample of code. It names 

an owner, usually the healthcare administrator, who deploys 

the contract and keeps track of authorized users. Electronic 

medical records may be managed securely and with 

permission on the Ethereum blockchain. 

Algorithm 1. Solidity smart contract for EMR access 

control using owner-based authorization 

pragma solidity ^0.8.0; 

contract EMRRoleManager { 

    address private superAdmin; 

    enum Role { None, Patient, Doctor, Researcher, Admin } 

    mapping(address => Role) private roles; 

    constructor() { 

        superAdmin = msg.sender; 

        roles[msg.sender] = Role.Admin; // contract deployer 

= Admin 

    } 

modifier onlySuperAdmin() { 

        require(msg.sender == superAdmin, "Not 

SuperAdmin"); 

        _; 

    } 

    modifier onlyAdmin() { 

        require(roles[msg.sender] == Role.Admin, "Only 

Admin allowed"); 

        _; 

    } 

    function assignRole(address user, Role role) external 

onlyAdmin { 

        roles[user] = role; 

    } 
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function isDoctor(address user) external view returns (bool) 

{ 

        return roles[user] == Role.Doctor; 

    } 

    function isPatient(address user) external view returns 

(bool) { 

        return roles[user] == Role.Patient; 

    } 

    function isResearcher(address user) external view returns 

(bool) { 

        return roles[user] == Role.Researcher; 

    } 

} 

Algorithm 2. Secure patient data storage using 

Blockchain, MongoDB, and IPFS 

Input: Pid - Patient ID 

HCPid - Healthcare Professional ID 

PD - Patient Data (structured) 

PF - Patient Files (large files, images) 

BCN - Blockchain Network 

MDB - MongoDB Storage 

IPFS - InterPlanetary File System 

Output: Secured and verified access to patient data 

Begin 

For ∀ Pid ∈ P 

BCN ← BCN ∪ {Pid} 

Store (Pid, PKPid) in BCN 

EndFor 

For ∀ HCPid ∈ HCP 

BCN ← BCN ∪ {HCPid}   

Store (HCPid, PKHCPid) in BCN 

EndFor 

For ∀ Pid ∈ P   

CID ← Store PF(Pid) in IPFS 

MDB ← MDB ∪ {PD(Pid), CID} 

EndFor 

For ∀ Pid ∈ P   

If Pid ∈ AttackerA   

BCN ← BCN \ {Pid}   

MDB ← MDB \ {PD(Pid)} 

End If   

EndFor   

For ∀ HCPid ∈ HCP   

If HCPid ∈ AttackerA   

BCN ← BCN \ {HCPid} 

End If   

EndFor   

End 

Algorithm 2 provides a secure way to store patient 

information using Blockchain, IPFS, and MongoDB. Patient 

and healthcare provider identities are registered first on the 

blockchain. Real patient information is stored in IPFS, and its 

hash is stored on the blockchain for integrity. MongoDB keeps 

metadata for quick access. Unauthorized users and malicious 

data are automatically deleted from both the blockchain and 

storage layers to keep data secure. Algorithm 3 guarantees 

secure performance of healthcare operations by checking 

permission access through Blockchain. Every operation is 

logged on the blockchain and associated with patient and 

healthcare provider IDs. Access is granted if the healthcare 

provider is permitted, or else denied. Operation records are 

kept in IPFS as well as MongoDB for integrity and fast 

retrieval. Unauthorized entries are deleted to ensure system 

security and trust. 

Algorithm 3. Secure healthcare operations 

Input: Pid – Patient ID   

HCPid – Healthcare Professional ID 

Opid – Operation ID   

BCN – Blockchain Network   

IPFS – InterPlanetary File System   

MDB – MongoDB Storage   

Output: Verified Execution and Decentralized 

Storage of Healthcare Operations   

Begin   

For ∀Opid ∈ Operations For ∀Opid ∈ 

Operations   

CID ← IPFS ⋃ {OpRecord(Opid)}   

BCN ← BCN ⋃ {CID} 

MDB ← MDB ⋃ {Opid, CID, Pid, 

HCPid}   

EndFor   

For ∀Opid ∈ UnauthorizedList   

BCN ← BCN \ {Opid}  

MDB ← MDB \ {OpRecord(Opid)} 

EndFor   

End 

(Opid, Pid, HCPid)   

Else   

Deny Access (Opid, Pid, HCPid)   

End If   

EndFor 

Figure 6 plots the latency difference between Blockchain-

based storage and IPFS-based off-chain storage of heart 

dataset against the number of patient records [44]. The 

findings show that Blockchain latency is consistently higher 

than IPFS latency because of the extra computational overhead 

involved in cryptographic verification and consensus 

algorithms. With 10,000 records, Blockchain latency is 1.14 

ms and that of IPFS is much less at 0.57 ms. With the dataset 

size being increased to 70,000 records, Blockchain latency 

jumps to 2.04 ms whereas IPFS latency stays at 1.02 ms.  

Figure 7 shows latency difference between Blockchain-

based storage and IPFS-based off-chain storage of heart 

dataset against the number of 100,000 patient records with 

Blockchain latency is 2.43 ms, but IPFS stands at 1.21 ms. 

This reflects that IPFS is a better scalable solution to retrieve 

data quickly, while Blockchain provides integrity and security 

at the expense of relatively higher latency [45]. 
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Figure 6. Latency of heart dataset of blockchain storage and 

IPFS storage 

Figure 7. Latency of diabetes dataset of blockchain storage 

and IPFS storage 

Figure 8 displays the blockchain-based storage system 

throughput in terms of transactions per second (TPS) against 

the rise in the number of patient records. Upon increasing 

dataset size from 10,000 to 100,000 records, a consistent 

decrease in throughput is noted. With less throughput than 

legacy centralized architectures, the uniform performance at 

higher scales illustrates the resilience of the blockchain. This 

supports the appropriateness of blockchain for secure and 

verifiable data storage in healthcare systems where integrity 

and auditability are more important than raw throughput.  

Figure 9 displays the generation time of hash (in 

milliseconds) for the Heart Disease and Diabetes datasets 

versus the number of patient records. The outcome verifies the 

nearly linear rise in the hash generation time of both the 

datasets, a fact that signals the scalability of hashing. For 

10,000 records, the time to generate hashes is around 200 ms 

for both datasets. As the dataset grows, the diabetes dataset 

maintains slightly higher hash generation times than that of the 

Heart Disease dataset. At 70,000 records, the diabetes dataset 

is at 1250 ms, while the Heart dataset is at ~1200 ms. 

Figure 8. Blockchain throughput performance for heart and 

diabetes datasets 

Figure 9. Hash generation time (ms) 

The small difference comes from differences in data 

structure and preprocessing overhead. These findings confirm 

the effectiveness of cryptographic hashing, showing that even 

with a large increase in patient records, the hash calculation is 

still within tolerable latency boundaries. 

3.1 Learning curves and cross-validation results 

We conducted a number of validation procedures to address 

overfitting issues in order to guarantee the dependability and 

generalizability of the XG Boost classifier, which achieved a 

high accuracy of 95.91% in diabetes prediction (Table 2). 

3.1.1 Cross-validation 

The diabetes dataset was subjected to a 5-fold cross-

validation procedure. With mean accuracy of 95.45% and 

standard deviation of 0.36%, the averaged cross-validation 

accuracies closely matched the accuracy of the original test 

set, suggesting model stability and little variation across 

training partitions. The fold-wise cross-validation metrics, are 

summarized in Table 5. 
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Table 5. XGBoost 5-fold validation accuracy on the diabetes 

dataset 

Fold Validation Accuracy (%) 

1 95.52 

2 95.08 

3 95.67 

4 95.91 

5 95.07 

Mean 95.45 

3.1.2 Learning curves 

To further assess the potential for overfitting, we plotted 

learning curves demonstrating both training and validation 

accuracy as a function of the number of training samples (see 

Figure 5). The curves converge smoothly, with validation 

accuracy nearly paralleling training accuracy, and no 

significant gap between the two as data size increases. This 

pattern suggests neither high variance (overfitting) nor high 

bias (underfitting). 

3.1.3 Train-test distribution 

To guarantee stratification and representativeness across 

training and testing splits, a detailed analysis of the class 

distribution and feature statistics was conducted. Both sets 

preserve comparable proportions for the diabetes-positive and 

diabetes-negative labels and balanced data partitioning is 

shown in Table 6, which provides summary statistics for 

important parameters (such as average glucose, age, and BMI). 

Table 6. Train-test distribution of glucose level, BMI, and 

age in the diabetes dataset. 

Feature Train Mean +-SD Test Mean +- SD 

Glucose level 119 28 121 27 

BMI 32.1 6.7 31.8 6.5 

Age 35.4 12.3 36.2 12.0 

Visual examination of learning curves, k-fold cross-

validation, and meticulous dataset partitioning all serve to 

validate that the XGBoost model's remarkable predictive 

accuracy is a reflection of its strong generalization skills. 

Together, the statistics, tables, and figures offer compelling 

proof that there is little chance of overfitting and that the model 

performs consistently. 

3.2 Model explainability and clinical interpretation 

All of the machine learning models in our blockchain 

enabled diabetic and cardiovascular disease prediction system 

underwent a thorough SHAP (SHapley Additive exPlanations) 

value analysis. This method made the model predictions 

interpretable both locally and globally. Age, BMI, and plasma 

glucose level were the most significant features, according to 

SHAP summary plots for the XGBoost diabetes classifier 

(trained on the Pima Indians dataset). This was in line with 

accepted clinical practice and the data properties listed in 

Table 1. Age, cholesterol, and the kind of chest discomfort 

were the most important characteristics in the heart disease 

(UCI) dataset in Table 2. 

SHAP force plots were utilized for individual prediction 

analysis to show how certain patient characteristics, such as 

high blood sugar (172 mg/dL) and a high body mass index 

(33.5), positively contributed to a diagnosis of diabetes in 

typical cases. On the other hand, non-diabetic subjects with 

normal ranges of these traits showed high negative SHAP 

values, leading to accurate negative classifications. Clinical 

validation and comprehension of the model's logic are 

facilitated by these customized visual explanations. Across 

both datasets, the SHAP analysis consistently identified 

medically relevant features, and amplified risk predictions 

showed the influence of combined attributes, such as advanced 

age combined with high glucose or cholesterol levels. 

3.2.1 Visual explanations of typical prediction cases 

To enhance transparency and provide clinicians with clear 

interpretability of the model’s decisions, we employed SHAP 

(SHapley Additive exPlanations) visualizations to explain 

individual prediction cases for both diabetes and 

cardiovascular disease classification tasks. For representative 

samples drawn from the test datasets, SHAP force plots and 

decision plots were generated to illustrate how specific patient 

features contributed to the predicted outcome. For instance, in 

a correctly classified diabetic patient case, high plasma 

glucose (172 mg/dL) and elevated BMI (33.5) received the 

largest positive SHAP values, driving the model towards a 

positive (diabetes) prediction. 

On the other hand, a case that was not diabetic and had low 

BMI and glucose levels showed negative SHAP contributions, 

which led to a negative prognosis. Similar to this, force charts 

are used to illustrate the impact of certain characteristics on the 

favorable outcome of heart disease in specific cases, such as 

the type of chest discomfort and cholesterol level. 

By enabling healthcare workers to examine and verify the 

logic behind every clinical choice, these customized SHAP 

visualizations help close the gap between machine learning 

predictions and useful healthcare insights. The figures section 

contains all of the illustrated example cases that were taken 

from our test cohorts. The captions that go with each case 

describe the patient's characteristics and how they affected the 

direction and size of the model's output. 

3.2.2 Clinical impact of key features 

The machine learning models used in this study 

continuously gave clinically significant features top priority in 

their predictions for both diabetes and cardiovascular disease, 

according to an analysis of SHAP value distributions. Age, 

BMI, and plasma glucose level had the biggest positive effects 

on the model's output for diabetes prediction using the Pima 

Indians dataset in Table 1. In the model's interpretation, high 

BMI and glucose levels significantly raised the risk of 

diabetes, especially in older individuals. This finding supports 

published epidemiological data and current treatment 

recommendations. The alignment between SHAP analysis and 

standard medical risk factors reinforces both the validity and 

interpretability of the predictive framework. By transparently 

identifying and quantifying how patient-specific features drive 

each prediction, the system not only supports accurate risk 

stratification but also offers actionable insights that clinicians 

can trust and apply in patient care.  

3.2.3 Comparative analysis with existing blockchain-

healthcare systems 

We carried out a thorough performance analysis, 

contrasting our suggested framework with notable earlier 

works. Modern blockchain-based healthcare data management 

systems are exemplified by these projects. Data security and 

system throughput are two crucial metrics that we compare 

experimentally. 
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1. Data Security

We guarantee immutability, fine-grained access control,

and patient privacy protection by integrating Ethereum smart 

contracts with IPFS-backed encrypted storage. Our method 

reduces single points of data breach and achieves stronger 

tamper resistance through distributed storage (IPFS) in 

contrast to the model cited in, which primarily uses 

permissioned blockchain without decentralised storage. 

Further improving security over manual or off-chain 

authorization techniques as detailed in, our smart contracts 

also enforce transparent and automatic access permissions. 

2. Throughput and Latency

The number of successful data upload/download

transactions per second under various loads was used to 

calculate the system throughput. Experiments confirmed that 

our architecture was more scalable than earlier systems. In 

order to reduce blockchain congestion, the hybrid on-

chain/off-chain design uses IPFS for large data storage while 

preserving only Ethereum hashes. Compared to systems that 

store more data directly on-chain, this increases transaction 

throughput and lowers latency. Additionally, our findings 

show a notable latency spike beyond moderate traffic, while 

throughput declines gracefully under high workload. 

The comparative findings show that our framework 

guarantees the following by using Ethereum smart contracts 

with effective metadata management (MongoDB) and 

decentralized off-chain storage (IPFS):  

• Improved traceability and data integrity.

• Controlled and auditable access control.

• Reduced latency and enhanced performance

scalability. 

These experimental results demonstrate the usefulness of 

our method for real-world healthcare situations that call for 

high-throughput, transparent, and safe data management. 

Limitations: 

• Scalability and Latency – Although blockchain-based

systems provide enhanced security, they also result in 

increased latency, rendering them less suitable for 

environments that necessitate low latency.  

• Computational Cost – ML algorithms such as XGB

and RF require extensive tuning and incur substantial 

computational costs as data volumes increase.  

Real-World Applicability – Despite their success with 

benchmark data, these systems lack validation in real-world 

settings, necessitating clinical trials for practical application. 

4. CONCLUSION

In order to improve predictive analytics for the management 

of diabetes and cardiovascular disease while maintaining the 

confidentiality of healthcare data, this study offers a 

revolutionary framework that combines blockchain 

technology and machine learning. The suggested method uses 

the Ethereum blockchain for safe, decentralized EMR 

verification, addressing important issues with data integrity, 

patient privacy, and predictive accuracy. An off-chain storage 

strategy is used in place of directly keeping patient data on the 

blockchain. This ensures immutability and tamper resistance 

by storing the cryptographic hash of the data on the blockchain 

and the real medical data in a safe database. According to the 

analysis, the Random Forest model performed exceptionally 

well in predicting heart disease, whereas the XGB classifier 

attained greater accuracy in predicting diabetes. Despite 

blockchain's benefits in terms of security and data integrity, a 

comparison of blockchain-integrated storage with traditional 

database storage revealed that the overhead of cryptographic 

processing and transaction validation causes higher latency 

and lower throughput. These issues are lessened by the off-

chain storage technique, which maximizes storage efficiency 

while preserving data verifiability via blockchain hashing. 
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