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Manual stenosis interpretation in X-ray Coronary Angiography (XCA) is often subjective 

and prone to high inter-observer variability, primarily due to the small diameter of coronary 

arteries. Moreover, current automatic detection methods remain inadequate in addressing 

the wide variability in stenosis shapes and sizes. This study proposes a deep learning-based 

approach to enhance segmentation performance by focusing on the stenosis area through 

region-based cropping. The proposed method evaluates three CNN architectures—

ResNet34, UNet, and Residual UNet—for a binary stenosis segmentation task using 

100x100-pixel cropped patches. Residual UNet achieved the best performance, with 

99.22% accuracy, 88.25% IoU, 87.82% precision, 86.89% recall, and an F1-score of 

86.78%. These results highlight the potential of binary segmentation in reducing inter-

observer variability and improving CAD diagnostic support, particularly in resource-

constrained environments. Residual UNet also reduces reliance on manual interpretation. 
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1. INTRODUCTION

Artificial Intelligence (AI) has demonstrated reliable 

capabilities that play a pivotal role in modern society [1-3], 

offering solutions with a high likelihood of achieving desired 

outcomes [4]. The integration of AI into various domains 

continues to expand, with significant applications in 

infrastructure [5], governance [6], agriculture [7], and 

healthcare [8]. Organizations and companies increasingly 

adopt AI technologies to enhance decision-making processes 

by analyzing vast amounts of data through algorithmic 

approaches such as Machine Learning (ML). Leveraging 

neural networks, ML can extract critical features from data to 

construct models [9-11] that generate actionable knowledge, 

thereby supporting both institutional and individual activities. 

In the healthcare sector, Artificial Intelligence (AI) has been 

widely applied across various domains, including medical 

diagnosis, treatment planning, drug discovery, and disease 

research [12]. One area that continues to attract significant 

research interest is coronary artery disease (CAD), a leading 

cause of sudden death and a persistent global health challenge. 

Recent studies have demonstrated the potential of Machine 

Learning (ML) in predicting CAD [13]. The primary 

pathological basis of CAD is the narrowing of the coronary 

arteries, a condition referred to as stenosis [14]. Stenosis is a 

critical clinical marker for diagnosing CAD, typically 

evaluated based on the degree of arterial narrowing [15, 16]. 

Stenosis can occur along either the left or right coronary 

arteries, leading to reduced blood flow and abnormal 

myocardial wall motion due to atypical arterial vibrations [17]. 

Early detection of stenosis plays a critical role in preventing 

complications, such as stroke and other cardiovascular events 

[18]. However, individuals with insignificant stenosis—

classified within the minimal to moderate narrowing 

categories—often remain asymptomatic [19]. In such cases, 

screening is typically conducted using X-ray coronary 

angiography (XCA) through catheterization, where Physician 

Visual Assessment (PVA) remains the clinical gold standard 

for evaluating stenosis severity. 

Nonetheless, several challenges hinder accurate assessment. 

Coronary arteries are relatively small, with an average 

diameter of approximately 3–4 mm [20], making precise 

visual evaluation difficult. This challenge is further 

compounded in stenotic regions where the arterial diameter is 

reduced [21]. Although Quantitative Coronary Angiography 

(QCA) devices are designed to offer more accurate and 

objective measurements, they are prohibitively expensive and 

rely on manual, resource-intensive procedures. Moreover, the 

evaluation of stenosis in dynamic XCA video frames 

introduces additional complexity due to cardiac motion and 

inter-individual anatomical variation. These factors contribute 

to the ambiguity and inconsistency in stenosis interpretation. 

Despite the existence of several AI-based approaches, many 

still fall short of the performance levels required for clinical 

deployment [22]. Therefore, the development of improved and 

reliable stenosis detection methods remains a pressing need. 
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To date, the application of Machine Learning (ML) 

continues to be extensively studied and developed for the 

identification of coronary artery disease (CAD). To improve 

model performance, various studies have implemented data 

preprocessing, feature selection, and optimization techniques. 

For example, Abdar et al. [23] normalized categorical and 

numerical attributes, performed feature selection, and 

eliminated redundant features using Genetic Algorithms and 

Particle Swarm Optimization (PSO). Similarly, Shahid et al. 

[15] employed a hybrid PSO-based Extreme Learning 

Machine (PSO-ELM) for CAD diagnosis, incorporating the 

Fisher algorithm for feature selection to enhance model 

accuracy. 

Joloudari et al. [24] proposed a feature ranking-based 

method to select significant predictive features, thereby 

improving classification performance. Kwankye and Dadzie 

[25] utilized the Synthetic Minority Oversampling Technique 

(SMOTE) to address class imbalance, applied one-hot 

encoding to categorical features, and handled missing values 

and outliers to optimize model learning. Zhang et al. [26] also 

adopted SMOTE along with Adaptive Synthetic Sampling 

(ADASYN) to balance the dataset, and evaluated performance 

using the eXtreme Gradient Boosting (XGBoost) algorithm. 

Sayadi et al. [27] focused on feature selection to enhance 

model performance, evaluating the results across various 

algorithms including Decision Tree, Deep Learning, Logistic 

Regression, Random Forest, Support Vector Machine (SVM), 

and XGBoost. Gupta et al. [28] addressed data quality issues 

by eliminating missing or duplicate entries and applied a 

standard scaler to normalize data values on a common scale, 

which is useful for identifying and handling non-zero (non-

null) values within the dataset. 

Supani et al. [13] handled missing values through data 

duplication, converted categorical data into numerical format 

using one-hot encoding, and standardized numerical data 

using a standard scaler. Additionally, they performed 

hyperparameter tuning for each model using the Grid Search 

(GS) algorithm to optimize performance. In a subsequent 

study, Supani et al. [29] applied similar preprocessing steps—

data duplication for missing values, scaling for numeric 

features, and one-hot encoding for categorical variables—

across two evaluated models: XGBoost and K-Nearest 

Neighbors (KNN). To optimize these models, Grid Search 

combined with 3-fold cross-validation was implemented. 

Numerous studies have been conducted to enhance the 

performance of Machine Learning (ML) models for the 

diagnosis of CAD. However, these models still face 

limitations in fully addressing the challenges of CAD 

identification, particularly when relying on cardiac health 

screening data in tabular form. In contrast, stenosis images 

obtained from XCA are considered the gold standard for CAD 

diagnosis [30, 31]. 

Traditional ML approaches also present several drawbacks. 

These include the need for multiple preprocessing steps, such 

as manual feature extraction and selection [32, 33], as well as 

data augmentation procedures that are often labor-intensive 

and time-consuming [34]. The structured and limited nature of 

tabular datasets further complicates the development of robust 

models, often requiring extensive hyperparameter tuning to 

achieve satisfactory performance [35-38]. These factors 

contribute to delays in generating actionable insights for 

clinical decision-making. 

To address the limitations of conventional ML methods, 

recent research has increasingly turned to Deep Learning (DL) 

approaches for medical image analysis and outcome prediction 

[39]. Notable examples include coronary artery segmentation 

[14, 40-43] and stenosis classification [44, 45], which 

demonstrate the potential of DL to streamline the diagnostic 

process and improve accuracy. 

Currently, the application of Deep Learning (DL) for 

stenosis analysis in the context of CAD identification has been 

explored in several studies. For instance, Au et al. [46] 

addressed the Quantitative Coronary Angiography (QCA) task 

by characterizing right coronary artery stenosis through a 

three-step process: localization, segmentation, and 

classification. The localization output was segmented, and the 

resulting outputs were classified using a regression model with 

a 70% threshold to determine the presence of significant 

stenosis. 

Chen et al. [40] proposed a method to enhance segmentation 

performance by filtering the coronary tree and integrating the 

original coronary artery image with a vessel map. This 

enriched input was fed into a 3D multichannel UNet model to 

better capture the tubular structure of coronary arteries. 

Similarly, Zreik et al. [16] extracted the coronary artery 

centerline to generate multi-planar reformatted (MPR) images. 

These MPR images were then annotated based on three 

categories: no stenosis, stenosis <50%, and stenosis >50%. 

Wu et al. [44] introduced a sequence-frames-per-second 

(seq-fps) module designed to preserve the temporal 

consistency of sequential XCA frames, which effectively 

reduced false positives and improved stenosis detection 

accuracy. Meanwhile, Ovalle-Magallanes et al. [30] 

developed synthetic artificial data to enhance model 

generalization. They applied the “optimal cut and fine-tuned 

layer” method, evaluating 20 different configurations per layer 

within a transfer learning framework. Three fine-tuning 

strategies were explored: training on real data only, artificial 

data only, and a combination of both, each yielding promising 

results. 

Rodrigues et al. [22] proposed a method for detecting 

stenosis based on view angles in XCA. The detected stenosis 

regions were highlighted using bounding boxes on the region 

of interest, utilizing the RetinaNet model. In a different 

approach, Moon et al. [45] recognized stenosis by extracting 

key frames from right coronary artery video sequences. They 

applied a self-attention module for classification, focusing on 

stenosis with ≥50% narrowing, and visualized the specific 

locations of the stenotic lesions. 

Zhao et al. [19] performed coronary artery segmentation by 

generating a probability map, which was then fused with the 

original image and an edge-enhanced version. These three 

channels were input into a multi-input and multi-scale (MIMS) 

UNet model to produce the final segmentation output. 

Furthermore, Zreik et al. [31] conducted fractional flow 

reserve (FFR) estimation using coronary computed 

tomography angiography (CCTA). They integrated the 

coronary artery tree with the left ventricular (LV) myocardium 

and applied a convolutional autoencoder (CAE) to 

characterize both anatomical structures. 

Chen et al. [47] investigated the detection of coronary artery 

stenosis in X-ray coronary angiography using a convolutional 

neural network (CNN) with temporal fusion, which integrates 

convolution and attention modules. The results showed that 

this fusion strategy significantly improved performance in 

distinguishing stenosis (P < 0.05), achieving an accuracy of 

88.4%, a recall of 86.3%, and a specificity of 90.2%. 

Despite recent advances, existing deep learning-based 
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studies on automated stenosis detection have yet to achieve 

optimal effectiveness and efficiency, particularly for early 

diagnosis of coronary artery disease (CAD). Therefore, further 

research and development of deep learning approaches for 

automated stenosis analysis using X-ray coronary angiography 

remain essential. These efforts are crucial not only to enhance 

diagnostic accuracy and clinical applicability but also to 

address the challenge of interobserver variability through 

automated methods. 

This paper aims to produce a high-performance binary 

stenosis segmentation model for detecting and analyzing 

stenosis in X-ray coronary angiography by testing three 

architectures: Resnet34, UNet, and Residual UNet on coronary 

artery stenosis dataset after cropping on the stenosis area. The 

private stenosis dataset, obtained from two hospitals in 

Indonesia, is used to validate the experimental results. All 

three models are trained using identical hyperparameters to 

ensure fair comparison. The study targets binary segmentation 

of stenosis into two classes: normal (narrowing <50%) and 

abnormal (narrowing ≥50%) [48], with a balanced distribution 

between the two. The primary contribution of this work lies in 

the comprehensive evaluation of standard Convolutional 

Neural Network (CNN) architectures for the task of stenosis 

segmentation. This approach enables a more streamlined and 

practical implementation of CNNs for detecting stenosis 

contours in X-ray coronary angiography. The key novelties 

and contributions of this study are summarized as follows: 

 

• Propose an efficient segmentation framework using three 

CNN architectures, namely Resnet34, UNet, and Residual 

UNet tested on a cropped coronary artery stenosis dataset. 

• Analyze the segmentation results of the three models and 

the unseen data test results, using accuracy, Intersection 

over Union (IoU), precision, recall, and F1 score as 

evaluation metrics. 

• Deliver a high-accuracy stenosis detection model for 

CAD identification. 

We structure the rest of this paper as follows: Section 2 

explains the methodology used in conducting the research 

more clearly; for example, stenosis image preprocessing in X-

ray coronary angiography. Explanation of segmentation 

models: ResNet34, UNet, and residual UNet. Section 3 

presents the results and discussion in tables and graphs for 

each experiment of the model and discusses the results by 

comparing them with other studies. Finally, section 4 presents 

a conclusion, which explains the findings generated by the 

models and presents one best model. 

 

 

2. RESEARCH METHOD 

 

This section outlines the stages of the research, beginning 

with the collection, selection, and validation of coronary artery 

stenosis data. It then describes the pre-processing procedures 

applied to the stenosis images, the design of the proposed 

model architecture, and the evaluation of the experimental 

results. The workflow is illustrated in Figure 1. 

 

2.1 Collection of raw data 

 

Coronary artery data is difficult to obtain and is not yet 

widely available to the public. During the raw data collection 

phase, a total of 242 coronary artery stenosis videos were 

collected from 30 patients diagnosed with coronary artery 

disease (CAD) at two hospitals in Palembang, Indonesia, 

between January 2022 and December 2022. These videos were 

categorized by their sources based on the severity of stenosis, 

including 94 videos from 14 patients with stenosis less than 

50%, classified as non-significant narrowing (normal), and 

148 videos from 16 patients with stenosis greater than 50%, 

classified as significant narrowing (abnormal). Additionally, 

31 other videos were prepared as unseen data, consisting of 19 

videos from 9 patients with stenosis greater than 50% and 12 

videos from 8 patients with stenosis less than 50%. 

 

 

 
 

Figure 1. Workflow of binary stenosis segmentation 
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2.2 Video to image conversion 

 

X-ray coronary angiography was produced with a resolution 

of 512x512 pixels, where the vessel segment affected by the 

lesion (stenosis) is highlighted with a red rectangular box in 

Figure 2(a) for the abnormal case and Figure 2(b) for the 

normal case. This conversion process resulted in a total of 

1,400 frames for training and testing data, consisting of 700 

normal and 700 abnormal frames. Meanwhile, unseen data 

was collected separately, comprising 403 frames in total, 

including 173 normal and 230 abnormal frames. 

 

 
(a) Abnormal coronary artery stenosis 

 
(b) Normal coronary artery stenosis 

 

Figure 2. Coronary artery stenosis with 512×512 px 

 

2.3 Pre-processing 

 

Preprocessing is the initial step in preparing stenosis images 

for analysis, involving a cropping operation. The primary 

objective of this stage is to center the area of stenosis within 

the frame, thereby enhancing the focus on the region of interest 

through a square cropping approach [49-51], in order to obtain 

equal height and width dimensions, resulting in a well-

balanced stenosis area [52-54]. The theoretical foundation of 

the cropping technique is based on a set of mathematical 

expressions defined in Eq. (1) to (4) [55]. 

In this context, let 𝒫 denote a collection of data elements 

(e.g., pixels), and 𝒩 represent a neighborhood system. For 

each pair of neighboring elements {p, q} in 𝒫, a binary vector 

𝐴 = (𝐴₁, …, 𝐴ₚ, …, 𝐴_|𝒫|) is defined, where 𝐴ₚ indicates 

whether pixel p belongs to the object or the background. This 

vector 𝐴 represents the segmentation result. The overall 

quality of the segmentation is evaluated by a cost function 

E(A), which is used to optimize the distinction between the 

stenotic region and the background. 

 

𝑀𝑖𝑛 𝐸(𝐴) =  𝜆. 𝑅(𝐴) + 𝐵(𝐴) (1) 

 

where: 

 

𝑅(𝐴) =  ∑ 𝑅𝑝(𝐴𝑝)𝑝∈𝒫   (2) 

 

𝐵(𝐴) =  ∑ 𝐵{p,q}. 𝛿(𝐴𝑝, 𝐴𝑞){p,q}∈𝒩   (3) 

And 

 

{
𝛿(𝐴𝑝, 𝐴𝑞) = 1 𝑖𝑓 𝐴𝑝 ≠ 𝐴𝑞

𝛿(𝐴𝑝, 𝐴𝑞) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

The coefficient λ ≥ 0 in Eq. (1) specifies the relative 

importance of the regional property associated with R(A) 

versus the property associated with B(A). The regional term 

R(A) assumes that the respective penalties for assigning p 

pixels to the object and background, corresponding to the 

given Rp(object) and Rp(background), are. The goal is to 

compute the global minimum of Eq. (1) among all 

segmentations. 

The stenosis cropping process was performed using a square 

crop method with the Microsoft Paint Tool. The original 

coronary artery image, with a resolution of 512×512 pixels, 

was manually cropped in stenosis area to a 100×100-pixel [56], 

referred to as a stenosis patch. From several cropping trials of 

the stenosis area, the size of 100x100 pixels was found to be 

the most appropriate for the model to interpret. The stenosis 

patch is shown in Figure 3(a) for abnormal stenosis and Figure 

3(b) for normal stenosis, where the stenosis is indicated by a 

red square box in each figure. 

 

 
(a) Abnormal 100×100 px 

 
(b) Normal 100×100 px 

 

Figure 3. A patch of stenosis with 100×100 px 

 

2.4 The annotation of segmentation 

 

The annotation of the stenosis area was carried out by 

manually delineating contours around regions of reduced 

arterial diameter using the LabelMe Tool. This process is 

illustrated in Figure 4(a) for abnormal stenosis and Figure 4(b) 

for normal stenosis. The annotated contours correspond to two 

classification categories based on the degree of arterial 

narrowing: abnormal stenosis (≥ 50%) and normal stenosis (< 

50%). These annotations serve as ground truth masks for 

training and evaluating the segmentation models. 

Following the stenosis contour annotation process, a 

thresholding technique was applied to the annotated regions to 

generate binary masks. This process resulted in a white region 

representing the stenosis area and a black background for all 

other areas. The outcomes of this binary segmentation are 
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illustrated in Figure 5(a) for abnormal stenosis and Figure 5(b) 

for normal stenosis. These thresholded masks were 

subsequently used as ground truth labels for training and 

validating the segmentation models. 

 

 
(a) Annotation of abnormal stenosis contours 

 
(b) Annotation of normal stenosis contours 

 

Figure 4. Annotation of stenosis contours 

 

 
(a) Abnormal stenosis thresholding 

 
(b) Normal stenosis thresholding 

 

Figure 5. Stenosis thresholding results 

 

Table 1. Summary of stenosis dataset after split 

 

Classes Training Testing Unseen 

Normal 557 142 173 

Abnormal 563 135 170 

Total 1120 277 403 

 

After annotating the 1,400 datasets and 403 unseen data 

samples, the annotated dataset was randomly divided using 

Python source code, allocating 80% for training and 20% for 

testing. The training set was used to train the segmentation 

models, while the testing set served to validate the models' 

performance during development. In addition, the unseen 

dataset was employed to assess the models’ ability to 

generalize to new, previously unencountered stenosis patterns 

and sizes. During the validation process, three testing samples 

were found to be undetected by the model and were therefore 

excluded from the analysis. The complete distribution of the 

datasets is presented in Table 1. 

 

2.5 The proposed CNN architecture 

 

2.5.1 Residual network (ResNet34) 

ResNet34 is a convolutional neural network (CNN) 

architecture designed based on the concept of residual learning, 

which incorporates residual blocks to facilitate more effective 

feature extraction. The primary purpose of using residual 

blocks is to address the vanishing gradient problem [57], 

thereby improving training efficiency and overall model 

accuracy [58]. As illustrated in Figure 6, the proposed 

ResNet34 architecture follows the original residual network 

design, where skip connections (also known as identity 

shortcuts) are introduced between convolutional layers [58, 

59]. These connections enable the network to learn residual 

functions with reference to the input layer, rather than learning 

unreferenced functions directly. The ResNet34 model consists 

of 34 convolutional layers organized in residual blocks, 

making it well-suited for deep feature learning tasks such as 

stenosis segmentation in coronary artery images. 

 

2.5.2 UNet 

UNet is a convolutional neural network architecture 

designed primarily for semantic segmentation tasks, 

particularly in biomedical image analysis. It is characterized 

by a symmetric structure consisting of an encoder (contracting 

path) on the left, a decoder (expanding path) on the right, and 

a bridge that connects the two. The encoder is composed of 

four computational blocks, each followed by a max pooling 

layer, which progressively reduces the spatial dimensions 

while increasing the feature depth. The decoder mirrors this 

structure, using four transposed convolutions (ConvTranspose) 

to upsample the feature maps, and includes four skip 

connections that concatenate feature maps from the encoder to 

preserve spatial information. Each convolutional layer in the 

network is followed by a Rectified Linear Unit (ReLU) 

activation function and Batch Normalization to enhance 

convergence and stability during training. In the final layer, a 

1×1 convolution is applied to map the resulting 64-component 

feature vectors to the desired output segmentation map. 

Overall, the UNet architecture comprises 23 convolutional 

layers, as illustrated in Figure 7 [60]. 

 

2.5.3 Residual UNet 

Residual UNet is an enhanced variant of the original UNet 

architecture that incorporates elements of residual learning to 

improve segmentation performance and training efficiency. 

The key modification lies in the integration of a residual block, 

based on the basic block of the residual network (ResNet), 

within the bridge section that connects the encoder and 

decoder paths. Specifically, this residual block is inserted after 

the 512-channel convolutional operations, allowing the 

network to retain deep features while addressing potential 

issues such as vanishing gradients and degradation in deep 

networks. This architectural enhancement increases the total 

number of convolutional layers from 23 (in the original UNet) 

to 25 convolutional layers in Residual UNet, as illustrated in 

Figure 8 [61]. By leveraging residual connections, the model 

benefits from improved feature propagation and better 

convergence behavior during training, making it more robust 
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in handling complex segmentation tasks such as coronary artery stenosis localization. 

 

 
 

Figure 6. Proposed ResNet34 architecture [59] 

 

 
 

Figure 7. The proposed UNet architecture [60] 

 

 
 

Figure 8. The proposed residual UNet architecture [61] 

 

2.6 Evaluation metrics  

 

This subsection aims to evaluate the results of each model 

using the evaluation metrics of accuracy, IoU, precision, recall, 

and F1-score to compare the performance of each model 

evaluating on the same dataset. The Eqs. (5) to (9) are to 

calculate these evaluation metrics [13, 29]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
  (5) 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
  (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (8) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 ×+𝐹𝑃+𝐹𝑁
  (9) 

 

where, 

TP= True Positive; TN = True Negative; FP = False Positive; 

FN = False Negative. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Results 

 

Initial experiments were conducted on one model using 
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randomly selected hyperparameter settings, including batch 

size, learning rate, and number of epochs. The best 

performance was observed with a batch size of 64, a learning 

rate of 10-4, and 300 training epochs. These optimal settings 

were then applied to the other models for consistency. The 

results showed that all three models achieved promising 

performance metrics. Accuracy scores were particularly high, 

while the other four metrics—IoU, precision, recall, and F1-

score—also demonstrated strong performance. Importantly, 

no 'Not a Number' (NaN) values were encountered, indicating 

the validity of all metric scores. A summary of these results is 

presented in Table 2. 

 

Table 2. Summary of performance metrics of three 

segmentation models 

 

Models 
Performance Metrics (%) 

Acc. IoU Prec. Rec. F1 

Resnet34 99.14 87.47 85.50 87.24 85.88 

UNet 99.14 87.45 83.33 88.58 85.83 

Residual UNet  99.22 88.25 87.82 86.89 86.78 

Notes: Acc: accuracy, IoU: intersection over union, Prec.: precision, Rec.: 

Recall, F1: F1-score 
 

The three models achieved the following performance 

scores: Accuracy: ResNet34 and UNet both achieved 99.14%, 

while Residual UNet slightly outperformed them with 99.22%. 

IoU: Residual UNet achieved the highest IoU at 88.25%, 

followed by ResNet34 at 87.47%, and UNet at 87.45%. 

Precision: Residual UNet again led with 87.82%, compared to 

85.50% for ResNet34 and 83.33% for UNet. Recall: UNet 

achieved the highest recall at 88.58%, followed by ResNet34 

at 87.24%, and Residual UNet at 86.89%. F1-score: Residual 

UNet obtained the highest F1-score of 86.78%, closely 

followed by ResNet34 at 85.88% and UNet at 85.83%. These 

results highlight Residual UNet’s overall superior 

performance, particularly in accuracy, precision, IoU, and F1-

score. 

It is noteworthy that the precision and recall scores across 

the three models do not differ significantly. Residual UNet 

exhibits nearly identical precision and recall values, 

suggesting a balance between false positives and false 

negatives, with true positives being the dominant prediction 

outcome. In contrast, UNet shows a higher recall than 

precision, indicating a higher number of false positive 

predictions compared to false negatives.  

In the experiment, none of the three models produced Not a 

Number (NaN) values, indicating that all metric scores are 

valid. Among the evaluated performance metrics, Residual 

UNet achieved the highest scores in four key metrics: accuracy, 

Intersection over Union (IoU), precision, and F1-score. 

Meanwhile, UNet obtained the highest recall. Based on these 

results, Residual UNet demonstrates superior overall 

performance compared to the other models. 

For the unseen data experiments, the performance results of 

the models are presented in Table 3. The accuracy scores were 

98.80%, 98.76%, and 98.89% for ResNet34, UNet, and 

Residual UNet, respectively. IoU scores were 83.15% for 

ResNet34, 81.97% for UNet, and 83.73% for Residual UNet. 

In terms of precision, ResNet34 achieved 78.45%, UNet 

80.37%, and Residual UNet 81.33%. The recall scores were 

83.32% for ResNet34, 77.72% for UNet, and 81.90% for 

Residual UNet. Finally, the F1-scores were 79.87%, 77.39%, 

and 80.50% for ResNet34, UNet, and Residual UNet, 

respectively. 

Notably, only Residual UNet achieved scores above 80% 

across all performance metrics, indicating strong 

generalization to unseen data. In contrast, ResNet34 and UNet 

exhibited more variation in metric scores. Based on these 

results, Residual UNet demonstrates superior overall 

performance, particularly in accuracy, IoU, precision, and F1-

score. 

 

Table 3. Summary of the performance of three segmentation 

models for unseen data 

 

Models 
Performance Metrics (%) 

Acc. IoU Prec. Rec. F1 

Resnet34 98.80 83.15 78.45 83.32 79.87 

UNet 98.76 81.97 80.37 77.72 77.39 

Residual UNet 98.89 83.73 81.33 81.90 80.50 
Acc.: accuracy, IoU: intersection over union, Prec.: precision, Rec.: Recall, 

F1: F1-score 
 

In addition to the quantitative performance metrics used to 

evaluate model effectiveness, graphs of training and testing 

accuracy, as well as training and testing loss, were presented. 

These visualizations provide insight into the learning 

dynamics and generalization capabilities of each model 

throughout the training process, further substantiating the 

performance claims and demonstrating the robustness of the 

proposed architectures. 

The train and test accuracy graphs generated by the 

ResNet34 model are shown in Figure 9. At the initial point 

(epoch 0), the train accuracy graph increases sharply directly 

past the value of 0.95, then gradually continues to increase 

until it approaches the accuracy value of 0.9914 at the 50th 

epoch. After that, the train accuracy graph tends to be stable 

from the 50th to the 300th epoch, maintaining an accuracy 

score above 0.9914. Meanwhile, the test accuracy graph starts 

from a value close to 0.85, then experiences a sharp spike with 

small fluctuations until it reaches a score of 0.9914 at around 

the 50th epoch. The test accuracy graph then shows stability 

with very small fluctuations and remains consistent until the 

300th epoch, maintaining an accuracy value at 0.9914. 

Visually, the difference between the train and test accuracy 

graphs is very small, indicating that the model does not 

experience overfitting and is able to generalize well to the test 

data. 

The train loss and test loss graphs for the ResNet34 model 

are shown in Figure 10. Both the train and test loss graphs start 

at values above 0.9. As the number of epochs increases, both 

graphs show a consistent decrease, indicating that the model 

has successfully minimized the error during the training 

process. Stability begins to appear around the 50th epoch, 

where the loss values on the train and test graphs tend to 

converge. The train loss graph remains stable until the 300th 

epoch, while the test loss graph also shows a stable trend, 

although there are some slight fluctuations. Overall, the 

pattern of loss decreases and stabilization indicates that the 

ResNet34 model has successfully learned effectively from the 

training data and is able to maintain good performance on the 

test data without showing any significant indication of 

overfitting. 

The training and testing accuracy graphs for the UNet 

model are shown in Figure 11. At the initial epoch (epoch 0), 

the training accuracy graph starts at around 0.5, while the 

testing accuracy graph starts at around 0.8. Both graphs then 

experience a sharp increase, where the training accuracy 

exceeds a score of 0.9914 and the testing accuracy reaches the 
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same value, namely 0.9914. After reaching that point, both 

graphs show stability from around the 10th epoch to the 300th 

epoch. The difference between the training and testing 

accuracy graphs at the 300th epoch is very small, indicating 

that the model does not experience overfitting and is able to 

generalize well to previously unseen test data. 

 

 
 

Figure 9. Train and test accuracy graph for ResNet34 

 

 
 

Figure 10. Train and test loss graph for ResNet34 

 

 
 

Figure 11. Training and testing accuracy graph for UNet 
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Figure 12. Training and testing loss graphs for UNet 

 

 
 

Figure 13. Training and testing accuracy graphs for residual UNet 

 

 
 

Figure 14. UNet training and testing residual loss graphs 

 

The training and testing loss graphs for the UNet model are 

shown in Figure 12. The training loss graph starts from a value 

slightly above 0.7, while the testing loss graph starts from a 

value slightly below 0.7. As the number of epochs increases, 

both graphs show a gradual decrease. The training loss graph 

decreases consistently until around the 50th epoch and reaches 
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a value range between 0.0 and 0.1, then remains stable until 

the 300th epoch. Meanwhile, the testing loss graph also 

experiences a gradual decrease until reaching a value range 

between 0.0 and 0.1 at the 50th epoch. However, there is a 

short spike that occurs around the 70th epoch. After the spike, 

the graph stabilizes again and maintains a low and consistent 

loss value until the 300th epoch. Overall, the pattern of the 

decrease and stabilization of the loss graphs in the UNet model 

indicates that the model is able to learn effectively and 

maintain good performance on the test data, with only minor 

fluctuations that are not significant to the overall performance. 

The training and testing accuracy graphs for the Residual 

UNet model are shown in Figure 13. At the beginning of 

training (epoch 0), the training accuracy graph starts at a range 

of between 0.5 and 0.6, then increases sharply to approach a 

value above 0.9922. Meanwhile, the testing accuracy graph 

starts at around 0.9 and also shows an increase until it reaches 

a score of around 0.9922. Both graphs then show very good 

stability until the 300th epoch, where the training accuracy 

graph remains slightly above 0.9922 and the testing accuracy 

graph remains at 0.9922. Visually, the difference between the 

training and testing accuracy graphs at the 300th epoch is very 

small, indicating that the model does not experience 

overfitting. This also shows that Residual UNet is able to learn 

the shape and size of stenosis features well, including on data 

that has never been seen before. 

The performance of the training and testing loss graphs for 

the Residual UNet model is shown in Figure 14. The training 

loss graph starts from a value of around 0.7 and gradually 

decreases until it reaches a range between 0.0 and 0.1 at around 

the 50th epoch. After that, the training loss graph remains 

stable and maintains that value until the end of training at the 

300th epoch. Meanwhile, the testing loss graph also starts from 

a value close to 0.7 and shows a gradual decrease until it 

reaches a range between 0.0 and 0.1. Although there is a slight 

fluctuation during epochs 0 to 50, the testing loss graph then 

stabilizes and maintains that value until the 300th epoch. The 

difference between the training and testing loss graphs at the 

300th epoch is very small, with a range of around 0.01. This 

indicates that the Residual UNet model has very good 

generalization capabilities and does not show any indication 

of overfitting and is able to maintain consistent performance 

on both training and testing data. 
 

3.2 Discussion 
 

To contextualize and differentiate the performance 

achievements of the proposed models, this study includes a 

comparative analysis with previous research, as presented in 

Table 4. AlOthman et al. [62] focused on coronary artery 

visualization and feature extraction using convolutional neural 

networks (CNNs) for coronary artery disease (CAD) detection. 

Their model achieved precision and recall scores of 92% and 

96%, respectively. However, their study did not report 

accuracy, Intersection over Union (IoU), or F1-score. 

In another study, Gao et al. [63] employed an ensemble 

approach for coronary artery segmentation in X-ray coronary 

angiography, utilizing filter-based features with Gradient 

Boosted Decision Trees (GBDT) and Deep Forest classifiers. 

The GBDT model achieved an average F1-score of 87.4%, an 

area under the receiver operating characteristic curve 

(AUROC) of 94.7%, sensitivity of 90.2%, and specificity of 

99.2%. The Deep Forest model reported an F1-score of 86.7%, 

AUROC of 95.0%, sensitivity of 86.7%, and specificity of 

99.3%. Notably, this study did not provide accuracy, IoU, or 

precision metrics. 

 

Table 4. Comparison of stenosis studies with other studies 

 

Authors 
Study Methods and 

Models 

Performance Results 

(%) 

AlOthman et 

al. [62]  

Visualizing coronary 

arteries and extracting 

features with high 

spatial resolution 

using CNN for CAD 

detection. 

Precision and recall 

are 92% and 96%, 

respectively. 

Gao et al. 

[63] 

Performing ensemble 

coronary artery with 

filter-based features 

for segmentation, 

which is fed to GBDT 

and deep forest 

classifier 

F1-score 87.4%, 

AUROC 94.7%, 

sensitivity 90.2%, and 

specificity 99.2% for 

GBDT, F1 score 

86.7%, AUROC 95%, 

sensitivity 86.7%, and 

specificity 99.3% for 

deep forest classifier. 

Eschen et al. 

[64] 

Performing coronary 

artery cine loop for 

right/left artery 

classification, which is 

fed to 3D CNN. 

ROC-AUC 90.3% 

Wang et al. 

[65] 

visualizing coronary 

artery through an 

online interface and 

localizing and 

classifying stenosis by 

system using a CNN. 

Accuracy 88.9%, 

recall 85.4%, mAP 

87.5%, dan F1-score 

87.1%. 

Abedin et al. 

[66] 

Full coronary artery 

segmentation using U-

Net, with 

DenseNet121 

(pretrained weights) as 

the encoder and a 

Self-Organizing 

Neural Network as the 

decoder 

Accuracy 98.96%, 

IoU 82.52%, precision 

90.10%, sensitivity 

90.64%, and F1-score 

90.35% 

Our approach  

Cropping in stenosis 

areas, which is fed to 

ResNet34, UNet, and 

Residual UNet. 

Residual UNet excels 

with accuracy 99.22%, 

IoU 88.25%, precision 

87.82%, recall 

86.89%, and F1-score 

86.78%. 

 

Eschen et al. [64] developed a method for classifying right 

or left coronary arteries—or other categories—using coronary 

artery cine loops with manual annotation. Their model 

achieved a receiver operating characteristic–area under the 

curve (ROC-AUC) of 90.3%. However, the study did not 

report other commonly used performance metrics such as 

accuracy, Intersection over Union (IoU), precision, recall, or 

F1-score. 

Wang et al. [65] investigated the integration of stenosis 

localization and classification on coronary angiography 

images using a web-based system that relies on angiographic 

image assessment. A total of 1,606 angiography images were 

tested using a CNN, which achieved an accuracy of 88.9%, a 

recall of 85.4%, a mean Average Precision (mAP) of 87.5%, 

and an F1-score of 87.1%. 

Abedin et al. [66] investigated full segmentation of 

coronary arteries using UNet by implementing DenseNet121 

with pretrained weights as the encoder and a self-organizing 

neural network (Self-ONN) as the decoder to replace 
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conventional convolution. The results achieved were an 

accuracy of 98.96%, IoU of 82.45%, precision of 90.10%, 

sensitivity of 90.64%, and an F1-score of 90.35%. 

In contrast, our study focuses on improving model 

performance for stenosis detection and coronary artery disease 

(CAD) identification through multiple experimental models. 

We evaluated three models—ResNet34, UNet, and Residual 

UNet—on their ability to detect coronary artery stenosis. Each 

stenosis region was cropped as a 100×100 pixel patch, 

annotated, and used for training and testing the models. 

All three models demonstrated strong performance, with 

Residual UNet emerging as the best-performing model. The 

presence of skip connections between the encoder and decoder 

enables the model to overcome the vanishing gradient problem, 

thereby helping to prevent overfitting. Residual UNet 

achieved 99.22% accuracy, 88.25% IoU, 87.82% precision, 

86.89% recall, and 86.78% F1-score. Although ResNet is also 

equipped with skip connections, its performance did not 

surpass that of Residual UNet. ResNet matched UNet in terms 

of accuracy but fell short on the other performance metrics. 

Unlike previous studies that did not report accuracy or IoU 

values, our approach successfully achieved very high accuracy 

and consistently strong performance across all metrics—on 

both test data and unseen data. These findings highlight the 

effectiveness and generalizability of the proposed 

segmentation strategy in detecting stenosis. 

 

 

4. CONCLUSIONS  

 

This study presented the evaluation of three binary 

segmentation models on a cropped coronary artery stenosis 

dataset and identified the most effective model for detecting 

and segmenting stenosis. Among the models tested, the 

Residual UNet outperformed the others, achieving the highest 

performance on validation data with an accuracy of 99.22%, 

IoU of 88.25%, precision of 87.82%, recall of 86.89%, and F1-

score of 86.78%. It also demonstrated the ability of 

generalization on unseen data, achieving an accuracy of 

98.89%, IoU of 83.73%, precision of 81.33%, recall of 81.90%, 

and F1-score of 80.50%. While these results were promising, 

further improvements are necessary, particularly in addressing 

multiclass segmentation with imbalanced datasets and 

expanding the model to support object detection and 

classification. Enhancing the model in these directions will 

enable a more comprehensive stenosis analysis system that can 

identify, segment, and classify different types of lesions. 

Ultimately, this research contributes to advancing diagnostic 

support tools, especially in resource-limited settings where 

access to cardiologists or advanced medical infrastructure is 

limited. The proposed model holds strong potential for 

integration into hospital computer software systems to support 

early diagnosis, reduce mortality, and improve patient care.  

This study still has limitations regarding the amount of data, 

the sources of the data, and potential bias in the cropping 

process. Future work will involve a more in-depth 

investigation into detecting complex and diverse stenosis 

patterns across various hospital datasets, in order to develop a 

more robust and generalizable model, despite the challenges 

in acquiring such data. 
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