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This study presents the first integration of EfficientNet with time-distributed layers and K-

Nearest Neighbors (KNN) classification for real-time driver drowsiness detection through 

sequential image processing. Unlike existing approaches that analyze individual frames in 

isolation, our methodology uniquely captures temporal patterns in facial expressions by 

combining EfficientNet's compound scaling properties for feature extraction with KNN's 

effectiveness in sequential pattern classification. The proposed EfficientNet-KNN 

architecture processes 5-second video segments through time-distributed layers, reducing 

feature dimensionality from 1,228,800 to 1,280 while preserving critical temporal 

information. Preprocessing incorporates facial detection using Haar Cascade filters and 

Global Average Pooling for computational optimization. Experimental validation on the 

ULg Multimodality Drowsiness Database (DROZY) demonstrates superior performance 

across varying dataset proportions (25%, 50%, 75%, and 100%). The integrated model 

achieved 99.52% accuracy with 0.55-second execution time on the complete dataset, 

representing a 49.9× improvement in computational efficiency compared to baseline KNN 

approaches while maintaining higher accuracy. Statistical t-test analysis confirmed 

significant performance differences (p<0.05), with Cohen's d indicating large effect sizes 

for both accuracy and speed improvements. However, evaluation remains limited to 

controlled laboratory conditions with potential demographic bias, requiring comprehensive 

real-world validation across diverse driving environments and population groups. The 

framework contributes a computationally efficient drowsiness detection system suitable for 

real-time automotive applications, balancing high accuracy with minimal resource 

requirements to enhance driver safety systems. 
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1. INTRODUCTION

Driver drowsiness represents a significant risk factor in road 

safety, causing momentary attention lapses that can lead to 

severe accidents [1, 2]. Recent studies indicate that 

drowsiness-related incidents account for a substantial 

proportion of traffic accidents globally, with significant 

economic and human costs [3]. This phenomenon is 

particularly prevalent during prolonged driving in monotonous 

traffic conditions, where drivers often underestimate their 

fatigue levels and continue operating vehicles despite 

increasing impairment [4]. As highlighted by Kumar and Tarei 

[4], unsafe driving behaviors significantly contribute to road 

accidents, with driver drowsiness being a key contributing 

factor. 

Technological interventions, particularly those leveraging 

artificial intelligence and computer vision, present promising 

solutions to this critical safety challenge [5, 6]. The application 

of deep learning techniques for automated drowsiness 

detection represents a proactive approach to enhancing road 

safety through early warning systems [7]. Recent advances in 

this field have demonstrated remarkable potential, with CNN-

based approaches achieving accuracy rates exceeding 95% in 

controlled environments [8]. These AI-powered systems 

analyze data from in-vehicle cameras to detect preliminary 

signs of drowsiness, enabling timely alerts and preventive 

measures. As demonstrated by Gwak et al. [6], ensemble 

machine learning approaches using hybrid sensing have 

shown particular promise in early drowsiness detection. 

Current state-of-the-art approaches in drowsiness detection 

demonstrate varying levels of success. Deep learning-based 

methods, such as Magán et al.'s [9] ADAS system, show the 

potential of analyzing temporal image sequences, though 

achieving only moderate accuracy (65%). More advanced 

CNN implementations, as shown by JR et al. [8], have 

achieved 95.3% accuracy in controlled environments. 

Physiological signal-based approaches, exemplified by 

Ayatollahi et al.'s [10] ECG analysis, offer alternative 

detection mechanisms but face practical implementation 

challenges in vehicular environments. While these studies 

advance the field, they often prioritize accuracy over 

computational efficiency, limiting their practical deployment 
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in real-time automotive systems. 

Despite these advances, current drowsiness detection 

systems face several critical limitations. First, many 

approaches analyze individual frames in isolation, failing to 

capture the progressive nature of fatigue manifestation in 

facial expressions over time, as noted in recent temporal 

analysis studies [11, 12]. Second, existing solutions often 

require substantial computational resources, making real-time 

deployment challenging in resource-constrained automotive 

environments [13]. Third, the trade-off between detection 

accuracy and processing speed remains inadequately 

addressed, particularly for sequential image analysis. These 

limitations are further complicated by variations in 

environmental conditions and individual differences in 

drowsiness expression patterns [14], highlighting the need for 

more robust and efficient detection approaches. 

This paper addresses these challenges through three primary 

contributions: 1) Development of a novel architectural 

integration combining EfficientNet's feature extraction 

capabilities with KNN classification for optimal drowsiness 

detection, building upon recent advances in efficient deep 

learning architectures [15, 16]; 2) Implementation of an 

efficient sequence processing approach that captures temporal 

patterns in facial expressions while maintaining minimal 

computational overhead, addressing the limitations identified 

in previous temporal analysis studies [17, 18]; 3) Introduction 

of a comprehensive evaluation framework demonstrating 

significant improvements in both accuracy (99.52%) and 

computational efficiency (49.9× faster than baseline 

approaches). 

Our approach uniquely leverages EfficientNet's compound 

scaling properties for feature extraction while utilizing KNN's 

effectiveness in classification, particularly for sequential data 

patterns indicative of drowsiness progression. 

The remainder of this paper is organized as follows: Section 

2 provides a comprehensive review of drowsiness detection 

approaches, highlighting the evolution of methodologies in 

this field. Section 3 details our technical approach, including 

the integration of EfficientNet feature extraction with KNN 

classification and our sequence processing methodology. 

Section 4 presents experimental results demonstrating 

substantial improvements in both accuracy and computational 

efficiency. Section 5 discusses the implications of the findings 

for automotive safety systems, while Section 6 concludes the 

study and highlights avenues for future research.  

2. RELATED WORKS

Vision-based drowsiness detection systems utilizing 

Convolutional Neural Networks (CNNs) have emerged as a 

prominent solution for enhancing road safety by identifying 

driver fatigue through visual cues. These systems typically 

analyze facial features, particularly around the eyes and 

mouth, to detect signs of drowsiness, such as eye closure and 

yawning. The effectiveness of CNN-based approaches in this 

domain is underscored by their ability to achieve high 

accuracy rates, often exceeding 90% in various studies. For 

instance, a study by Adhithyaa et al. [19] highlights that CNNs 

have become a state-of-the-art method for detecting 

drowsiness, despite challenges posed by variations in lighting 

and facial expressions. Similarly, Florez et al. [20] reported 

that their CNN-based approach achieved an impressive 

accuracy of 99.71% in detecting drowsiness through real-time 

eye state identification. Other studies, such as that by Jahan et 

al. [21], emphasize the potential of deep learning techniques 

to automate drowsiness detection, significantly improving the 

chances of preventing accidents. However, while CNNs 

demonstrate remarkable accuracy, they also come with 

limitations. One significant challenge is their computational 

intensity, which can hinder real-time application, especially on 

mobile platforms. Sowmyashree and Sangeetha noted that 

although CNNs provide good accuracy, their computational 

demands can be a barrier to implementation in resource-

constrained environments [22]. Additionally, the accuracy of 

these systems can be influenced by individual differences 

among drivers, such as facial structure and the presence of 

eyewear, which can obstruct the detection process [14]. 

Furthermore, variations in environmental conditions, such as 

lighting and camera angles, can also affect the performance of 

CNN-based drowsiness detection systems [13]. 

Vision-based drowsiness detection systems using 

MobileNet architectures have gained traction due to their 

lightweight nature and efficiency in real-time applications. 

MobileNet, a family of Convolutional Neural Networks 

(CNNs), is designed to perform well on mobile and edge 

devices, making it suitable for drowsiness detection systems 

that require quick processing without sacrificing accuracy. 

MobileNet's feature extraction capabilities are particularly 

beneficial for detecting drowsiness through facial analysis. 

The architecture utilizes depthwise separable convolutions, 

which significantly reduce the number of parameters 

compared to traditional CNNs while maintaining competitive 

performance. For instance, Kim et al. [23] demonstrated that 

their lightweight driver monitoring system based on Multi-

Task MobileNets achieved an accuracy of 95% in detecting 

drowsiness by analyzing eye movements and facial 

expressions. This efficiency is crucial for deployment in 

vehicles where computational resources may be limited. 

Another study by Phan et al. [24] highlighted the effectiveness 

of MobileNet-V2 in detecting driver drowsiness, achieving an 

accuracy of 93.7% [24]. The authors emphasized the model's 

ability to analyze video frames in real-time, allowing for 

immediate feedback to drivers. This capability is essential for 

practical applications, as timely alerts can significantly reduce 

the risk of accidents caused by drowsiness. Despite these 

advantages, there are notable limitations associated with using 

MobileNet for drowsiness detection. One significant challenge 

is the model's sensitivity to variations in lighting conditions 

and facial occlusions, such as sunglasses or masks. As noted 

by Lee et al. [25], traditional CNNs, including MobileNet, may 

struggle to maintain accuracy under these conditions, 

potentially leading to false negatives in drowsiness detection. 

Furthermore, while MobileNet is designed to be lightweight, 

the trade-off often results in a reduction in feature extraction 

depth, which can impact the model's ability to capture subtle 

signs of drowsiness [13]. 

Sequential analysis in drowsiness detection using temporal 

feature extraction methods has become increasingly 

significant in enhancing the accuracy and reliability of driver 

monitoring systems. This approach focuses on analyzing 

sequences of data over time, allowing for the detection of 

patterns that indicate drowsiness, such as eye closure duration, 

blink frequency, and head movements. Temporal feature 

extraction methods can leverage various deep learning 

architectures, including Long Short-Term Memory (LSTM) 

networks and CNNs, to process video frames and extract 

meaningful features that correlate with driver alertness. The 
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work by Saif and Rasyid highlighted the use of CNN 

architectures to analyze video clips of drivers, achieving 

superior accuracy in identifying drowsiness compared to 

traditional methods that rely solely on static images [11]. 

However, there are limitations associated with temporal 

feature extraction methods in drowsiness detection. One 

significant challenge is the computational complexity 

involved in processing video sequences in real-time. As noted 

by Wijnands et al. [12], maintaining high accuracy while 

ensuring low latency can be difficult, particularly in resource-

constrained environments such as vehicles. Additionally, 

variations in lighting conditions and occlusions can affect the 

quality of the input data, leading to potential inaccuracies in 

detection. 

Here, our research makes a novel contribution by 

integrating video sequence-based detection with a pre-

processing segmentation method before windowing. The 

architectural combination of EfficientNet and KNN in 

sequence processing enhances learning performance and 

improves drowsiness detection accuracy. The uniqueness of 

our approach lies in its effective integration of video sequence 

techniques, segmentation strategies, and efficient learning 

models to significantly boost detection performance. 

3. METHODS

The primary objective of our research methodology was to 

develop an algorithm capable of achieving optimal 

performance in drowsiness detection while maintaining a 

compact model size and rapid response time. We focus on 

analyzing the driver's facial features as the central factor in 

detection, with an emphasis on efficiency to deliver practical 

solutions for real-world implementation. 

Figure 1 illustrates our research framework, encompassing 

data acquisition and pre-processing, data separation, model 

design using EfficientNet and KNN approaches in sequence 

processing, validation using k-fold cross-validation, and 

comprehensive model evaluation. 

Figure 1. Research framework for drowsiness detection 

3.1 Dataset and data acquisition 

This research utilizes the ULg Multimodality Drowsiness 

Database (DROZY database) as the primary data source [26]. 

This multimodal dataset comprises EEG signals, facial 

expression videos, and subjective assessments using the 

Karolinska Sleepiness Scale (KSS). The dataset contains 36 

videos: 14 depicting non-drowsy conditions and 22 showing 

drowsy states. Each video is approximately 10 minutes in 

duration, with a frame resolution of 512×424 pixels, stored in 

mp4 format at frame rates ranging from 15 to 30 frames per 

second (fps). These videos were carefully selected to provide 

diversity and accurately represent drivers' drowsy states, 

enabling effective detection of various fatigue-related facial 

expressions. 

3.2 Data preprocessing 

In the initial preprocessing stage, each video is segmented 

into 5-second intervals using a windowing approach [27]. This 

timeframe was selected because microsleep episodes—brief 

involuntary sleep occurrences—typically manifest within this 

duration. Moreover, the 5-second temporal window was 

selected based on neurophysiological evidence and 

automotive safety requirements, rather than arbitrary choice. 

1) This selection is supported by multiple converging factors:

Clinical studies demonstrate that microsleep events typically

occur within 1-15 seconds, with peak frequency around 3-8

seconds [28]; 2) Drowsiness-related facial changes

(progressive eyelid closure, reduced blink frequency, head

nodding) manifest over 3-7 second intervals before reaching

critical fatigue states [29]; 3) Driver response capability

significantly deteriorates within 4-6 seconds preceding sleep

onset, making this window critical for intervention timing

[30].

Thus, For each 5-second segment, we capture 25 

consecutive image frames to document the driver's facial 

expressions throughout the period, providing diverse facial 

cues for model training. 

Subsequently, each captured image is resized to 128×128 

pixels [31, 32] to reduce computational complexity and 

improve processing efficiency while preserving essential 

visual information. The Haar Cascade method is then applied 

to detect faces in each image [33], ensuring the model focuses 

specifically on facial features relevant to drowsiness detection. 

The Haar Cascade technique, based on Haar features, 

detects specific objects by analyzing light and shadow patterns 

in images. The method was selected for its effectiveness in 

real-time object detection [34]. Haar Cascade employs Haar 

filters, integral images, and cascade phases during the training 

process. The Haar filter can be visualized as a rectangular 

function with positive values in one half and negative values 

in the other, expressed as: 

𝐻(𝑥, 𝑦) = {
1,   𝑖𝑓 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 (𝑥, 𝑦) 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑒𝑦𝑒 𝑎𝑟𝑒𝑎

−1, 𝑜𝑡ℎ𝑒𝑟𝑠
(1) 

where, x and y represent pixel coordinates in the two-

dimensional image space. In drowsiness detection, these 

coordinates help identify pixel locations in the eye area—a 

critical region for detecting fatigue indicators such as slow eye 

movements or closure. 

The integral image (II) calculation facilitates rapid 

determination of pixel counts in specific image regions using 

the cumulative formula: 

𝐼𝐼(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)

𝑦

𝑗=0

𝑥

𝑖=0

 (2) 
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where, I(i,j) represents pixel intensity at position (i,j), and 

II(x,y) is the cumulative result up to coordinates (x,y). This 

formula provides an efficient representation for calculating 

pixel quantities, accelerating the Haar Cascade detection 

process [35]. 

Figure 2 shows visual representations of facial frames in the 

driver drowsiness detection process, while Figure 3 illustrates 

the results of applying the Haar Cascade method to the image 

data. 

Following face detection, the processed image data is 

normalized by dividing pixel values by 255 [36], adjusting the 

pixel range from 0-255 to 0-1. This normalization standardizes 

the data to align with model training requirements, particularly 

for activation functions that operate optimally with inputs in 

specific ranges [37, 38]. 

(a) 

(b) 

Figure 2. Visual representations of facial frames in the driver 

drowsiness detection process (a) normal; (b) drowsiness 

(a) 

(b) 

Figure 3. (a) Pre-processing visualizations and (b) Haar 

cascade method results on image data 

The prepared dataset is then divided into training (70%) and 

testing (30%) sets [39], with label stratification to maintain 

consistent class distribution across subsets. Additional 

experiments were conducted with varying dataset proportions 

(100%, 75%, 50%, and 25% of the initial dataset) to 

investigate the impact of dataset size on model performance 

[40]. 

3.3 Model deployment 

Our study aims to enhance eye state classification accuracy 

(open versus closed), exceeding traditional detection systems. 

The research progresses through two model development 

strategies: first, implementing a K-Nearest Neighbors (KNN) 

model; second, employing EfficientNet for feature extraction 

followed by comprehensive model comparison. 

3.3.1 Strategy I: Model construction with the K-Nearest 

Neighbors algorithm 

The first strategy employs the KNN algorithm for 

drowsiness detection. KNN is a machine learning 

classification method that considers the majority class from a 

set of K-Nearest Neighbors [41, 42]. In our context, KNN 

identifies facial expression patterns associated with 

drowsiness by comparing similarities with previously acquired 

training data [43]. Figure 4 presents the complete architecture 

for this approach. 

Figure 4. Classification process using Strategy 1: K-Nearest 

Neighbors (KNN) 

KNN is expected to achieve high accuracy in recognizing 

specific drowsiness indicators such as closed eyes or slower 

facial movements. The algorithm classifies items based on 

their similarity to training data using the Euclidean distance 

formula: 

𝑑(𝐴, 𝐵) = √∑(𝐴𝑖 − 𝐵𝑖)2

𝑛

𝑖=1

 (3) 

where, Aᵢ and Bᵢ are the i-th components of vectors A and B, 

and n is the number of features. For classification, KNN 

identifies the K closest training instances and assigns the class 

based on majority voting: 

𝑦′ = argmax𝑐 (∑ 𝛿(𝑐𝑖 , 𝑐)

𝐾

𝑖=1

) (4) 

where, argmaxc is the class with the largest count among K 

nearest neighbors, cᵢ is the class of the i-th neighbor, and δ is 

the Kronecker delta function (1 if cᵢ = c, 0 otherwise). 

For high-dimensional facial feature data, small K-values are 

preferred to preserve local pattern sensitivity crucial for subtle 

drowsiness indicators, ability to reduce computational 

overhead for real-time processing requirements, also maintain 

discriminative power in sparse high-dimensional spaces [44]. 

3.3.2 Strategy II: Model construction with KNN and feature 

extraction using EfficientNet 

Our second strategy integrates EfficientNetB0 for feature 

extraction with KNN for classification. EfficientNetB0 is 

utilized to extract meaningful features from facial image 

frames [15, 16]. 

EfficientNet as feature extraction. EfficientNet represents a 

family of convolutional neural network models that achieve 

state-of-the-art accuracy with significantly fewer parameters 

than traditional architectures. The model employs compound 

scaling to systematically balance network depth, width, and 

resolution dimensions. EfficientNetB0, the baseline 

architecture in this family, utilizes mobile inverted bottleneck 

convolution (MBConv) as its core building block, 

incorporating squeeze-and-excitation optimization. 

In our implementation, EfficientNetB0 serves as a feature 

extractor that processes input images and produces rich feature 

representations. The model's efficient design allows it to 

capture complex patterns in facial features while maintaining 

computational efficiency—a crucial consideration for real-
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time drowsiness detection systems. 

Time distributed layer. Since driver videos contain 

sequences of frames demonstrating temporal changes in facial 

expressions, we implement a "time-distributed" layer in the 

EfficientNetB0 architecture [17]. This specialized layer 

enables sequential feature extraction on each facial frame in 

the video, facilitating temporal understanding of facial 

expression evolution [18]. 

The time-distributed layer wraps the EfficientNetB0 base 

model, applying it to each temporal slice of input separately. 

This approach preserves the temporal relationship between 

consecutive frames while extracting spatial features from each 

frame. By processing the input as a sequence rather than 

independent frames, the model can detect temporal patterns 

indicative of drowsiness development, such as progressive eye 

closure or head position changes across multiple frames [45]. 

Global Average Pooling. Following feature extraction, 

Global Average Pooling (GAP) is applied to reduce the 

dimensionality of the extracted features [46]. GAP calculates 

the average feature values across the entire spatial domain of 

the image, producing a more condensed representation while 

preserving essential information [47]. 

In our EfficientNetB0 implementation, GAP is applied after 

feature extraction to reduce data complexity while retaining 

discriminative information relevant to drowsiness detection. 

This condensed feature representation serves as input for the 

subsequent KNN classification, effectively combining 

EfficientNetB0's feature extraction capabilities with KNN's 

classification strengths [48]. 

Figure 5 illustrates the complete architecture for this 

integrated approach. 

Figure 5. Classification process using Strategy 2: K-Nearest 

Neighbors (KNN) with feature extraction using 

Figure 6. feature extraction visualization using 3-component 

PCA for awake and drowsy 

Feature extraction results with 3-component PCA. To 

visualize the effectiveness of our feature extraction process, 

we employed Principal Component Analysis (PCA) to reduce 

the high-dimensional feature space to three principal 

components. Figures 6 and Table 1 present the visualization of 

these components for both awake and drowsy states. 

Figure 6 demonstrates the distribution of extracted features 

in 3D space after dimensionality reduction through PCA. The 

clear separation between awake (green) and drowsy (red) 

states validates the discriminative power of our feature 

extraction approach. This visualization confirms that the 

features extracted by EfficientNetB0 contain sufficient 

information to distinguish between the two classes. 

Table 1 presents detailed statistical distributions of the 

extracted features for both classes (y=0 for awake, y=1 for 

drowsy). The statistical properties of each principal 

component demonstrate distinct characteristics between the 

two classes. For the first principal component (PC1), awake 

subjects show a mean of 2.63 compared to -1.69 for drowsy 

subjects. PC2 exhibits an inverse relationship with means of -

1.03 for awake versus 0.66 for drowsy states. PC3 follows a 

similar pattern with means of -0.28 for awake versus 0.18 for 

drowsy states. The variability (standard deviation) is 

comparable between classes across all components, with 

slightly higher variance in the awake state. These statistical 

differences support the discriminative capability of our feature 

extraction methodology, providing quantitative evidence that 

the extracted features contain sufficient information to 

differentiate between drowsiness states. 

Table 1. Statistical distribution 

Y=0 (Awake) 

PC=1 PC=2 PC=3 

Min -33.224052 -29.862001 -25.142054

Max 78.530464 55.671883 29.180292

Mean 2.630844 -1.031686 -0.284525

Median -2.788281 -3.733640 1.641844

Std 22.256229 15.719784 10.199729

Var 495.339712 247.111608 104.034469 

mode -10.447001 3.368059 -0.692336

Y=1 (Drowsy) 

PC=1 PC=2 PC=3 

Min -59.51278 -41.645149 -30.733538

Max 65.059044 41.759651 45.720730

Mean -1.692284 0.663629 0.183020

Median -2.702865 -1.614298 -0.463261

Std 22.000011 14.938714 12.677819

Var 484.000480 223.165182 160.727093 

mode -59.512978 -41.645149 -30.733538

Following model development for each strategy, we 

employed K-Fold cross-validation with stratification (K=3) to 

evaluate model performance. This approach divides the 

dataset into three alternating subsets while maintaining 

balanced label distribution in each fold, providing robust 

assessment of model generalizability. 

3.4 Model evaluation 

We employed multiple performance metrics to evaluate our 

drowsiness detection models. Accuracy measures the 

algorithm's overall correctness in classifying the entire dataset 

[49]. Precision indicates the model's ability to generate 

accurate positive predictions of drowsiness while avoiding 

false positives [50]. Recall (sensitivity) assesses the model's 
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capacity to identify all genuine instances of drowsiness. The 

F1 Score balances precision and recall, offering 

comprehensive insight into model performance [50]. 

Additionally, execution time metrics are critical for 

drowsiness detection systems intended for real-time 

applications. The model's ability to generate predictions 

promptly ensures timely response to driver fatigue, potentially 

preventing accidents. 

4. EXPERIMENT RESULTS

This section presents the experimental findings from our 

driver drowsiness detection methodology, evaluating both 

proposed strategies under various configurations. 

4.1 Results of Strategy I: Model construction with the K-

Nearest Neighbors algorithm 

Strategy I employed KNN with original features of 

dimension 25×128×128×3 (1,228,800 features), where each 

sample comprised 25 facial frames at 128×128 resolution with 

3 RGB channels. While this extensive feature set captures 

detailed facial expression patterns, it presents computational 

challenges due to high dimensionality. 

The initial phase involved determining the optimal K value 

for the KNN algorithm through three-fold cross-validation on 

a 25% dataset partition. Table 2 presents the accuracy metrics 

for K=3, K=5, and K=7 across each validation fold. 

From Table 2, The experimental results demonstrate that 

K=3 achieved the highest mean test accuracy at 96.7%, 

indicating robust classification performance for facial 

expression patterns indicative of driver drowsiness. This high 

accuracy establishes a reliable foundation for further model 

refinement and deployment. 

Table 2. Results of determining the optimal k parameters in 

the KNN algorithm 

K Fold 1 Fold 2 Fold 3 Mean Test Score 

3 0.967 0.963 0.976 0.967 

5 0.955 0.963 0.963 0.961 

7 0.947 0.955 0.947 0.950 

4.2 Results of Strategy II: Integration of K-Nearest 

Neighbors with EfficientNet feature extraction 

Strategy II implemented feature extraction using 

EfficientNet before KNN classification. Table 3 presents the 

architecture of this feature extractor network, processing 25 

frames of 128×128 pixel facial images with 3 color channels. 

The time-distributed layer sequentially processes each 

frame, yielding a tensor of dimension (4, 4, 1280) per frame. 

The GlobalAveragePooling3D layer then calculates the 

average feature values across the spatial domain, producing a 

condensed feature vector of length 1280. This represents a 

significant dimensionality reduction compared to Strategy I's 

1,228,800 features. 

The total parameter count for this model is 4,049,571 

(4,007,548 trainable, 42,023 non-trainable), demonstrating 

EfficientNet's ability to create rich feature representations with 

computational efficiency. The dimensionality reduction from 

1,228,800 to 1,280 features while maintaining discriminative 

power highlights the effectiveness of this approach for 

drowsiness detection. 

Table 3. Results of determining the optimal k parameters in 

the KNN algorithm 

Layer (Type) 
Output 

Shape 
Parameter 

input (InputLayer) 
(None, 25, 

128, 128, 3) 
0 

time_distributed (TimeDistributed) 
(None, 25, 

4, 4, 1280) 
4049571 

global_average_pooling3d 

(GlobalAveragePooling3D) 

(None, 

1280) 
0 

Total parameters 4,049,571 

Trainable parameters 4,007,548 

Non-trainable parameters 42,023 

4.3 Comparative analysis: Performance evaluation of 

Strategies I and II 

Table 4 presents a comprehensive comparison of both 

strategies, KNN and EfficientNet + KNN (EFF+KNN) across 

varying dataset percentages (25%, 50%, 75%, and 100%). 

Performance metrics include accuracy, precision, recall, F1-

score, and execution time in seconds. 

Table 4. Comparison of the performance of Strategy Models 

1 and 2 based on dataset composition in driver drowsiness 

detection 

Performance Metrics 
KNN 

25% 50% 75% 100% 

Accuracy 0.9810 0.9858 0.990 0.993 

Precision 0.9788 0.9841 0.990 0.992 

Recall 0.9815 0.9861 0.989 0.993 

F1-Score 0.9801 0.9851 0.990 0.993 

Time (Sec) 6.81 14.29 20.73 27.43 

Performance Metrics 
EFF + KNN 

25% 50% 75% 100% 

Accuracy 0.9842 0.9921 0.9926 0.9952 

Precision 0.9841 0.9907 0.9920 0.9957 

Recall 0.9826 0.9928 0.9925 0.9943 

F1-Score 0.9833 0.9917 0.9923 0.9950 

Time (Sec) 0.21 0.41 0.45 0.55 

The results demonstrate that the EFF+KNN model with 

100% dataset utilization achieved the highest accuracy at 

99.52%, with corresponding precision of 99.57%, recall of 

99.43%, and F1-score of 99.50%. Figure 7 visually represents 

this performance comparison, illustrating the superior metrics 

of the EFF+KNN approach across all dataset configurations. 

Notably, the execution time for the EFF+KNN model on the 

complete dataset was only 0.55 seconds, compared to 27.43 

seconds for the KNN model—a 49.9× improvement in 

computational efficiency while maintaining superior accuracy. 

This significant execution time reduction is crucial for real-

time drowsiness detection systems where timely alerts can 

prevent accidents. 

Figure 8 presents the confusion matrix for the optimal 

EFF+KNN model with 100% dataset utilization. The matrix 

reveals: 

- True Negatives (TN): 489 data points correctly classified

as Awake 

- False Positives (FP): 1 data point incorrectly classified as

Drowsy 
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- False Negatives (FN): 5 data points incorrectly classified

as Awake 

- True Positives (TP): 768 data points correctly classified as

Drowsy 

Figure 7. Comparison of the performance of Strategy Models 

1 and 2 based on dataset composition in driver 

Figure 8. Confusion matrix for optimal EFF+KNN with 

100% dataset utilization 

The model achieved 99.80% precision and 98.99% recall 

for the Awake class, with an F1-score of 99.39%. For the 

Drowsy class, the model demonstrated 99.35% precision and 

99.87% recall, with an F1-score of 99.61%. These metrics 

confirm the model's exceptional ability to discriminate 

between awake and drowsy states, fulfilling the primary 

objective of reliable drowsiness detection. 

Moreover, compared with other researchers as seen in Table 

5, Our proposed method (EFF+KNN) outperformed research 

from Lin et al. [51] which using multi-aware graph 

convolutional network, Pahariya et al. [52] also only obtain 

86% accuracy using mobilenet with transfer learning, Wunan 

et al. [53] obtained 98.5% using EfficientNet B0. 

Table 5. Comparison with other researchers using DROZY 

Author Method Accuracy Precision Recall 

our EFF+KNN 99.52 99.57 99.43 

[51] MAGCN 95.79 95.66 99.56 

[52] Mobilenet 86% - - 

[53] EfficientNet BO 98.5 - - 

4.4 Statistical significance of sequential image data 

processing 

Table 6 presents t-test results comparing the KNN and 

EFF+KNN approaches. With t-statistic values of -3.839 for 

accuracy and 3.894 for execution time (both with p-values < 

0.05), the performance differences between the models are 

statistically significant. 

Table 6. Statistical t-test between Strategy 1 and Strategy 2 

Performance Metrics 
t-Statistic

Value

Significant 

Probability 

Accuracy -3.839 0.031 

Time 3.894 0.030 

The superior performance of the EFF+KNN model can be 

attributed to the effectiveness of sequential or time-distributed 

layers in EfficientNetB0. These layers enable sequential 

feature extraction across multiple facial frames, enhancing the 

model's awareness of temporal changes in facial expressions. 

This temporal context is critical for drowsiness detection, as 

fatigue typically manifests as progressive changes in facial 

features over time rather than instantaneous transformations. 

We also conducted another Statistical analysis on 

experimental data from Table 7, comparing KNN and 

EFF+KNN performance across four dataset proportions (25%, 

50%, 75%, 100%). 

Table 7. Statistical analysis on accuracy and execution time 

Metrics KNN (mean std) EFF KNN (mean std) P-value Cohen’s d 95% CI Effect Size 

Accuracy 0.9875±0.0051 0.9910±0.0048 0.031* 0.72 [0.0008, 0.0062] Medium 

Execution Time (s) 17.32±8.41 0.41±0.14 0.030* 2.89 [11.23, 22.59] Large 

5. MATH

Our experimental results demonstrate that combining

EfficientNet for feature extraction with KNN for classification 

(EFF+KNN) produces superior performance in driver 

drowsiness detection compared to using KNN alone. Several 

key factors contribute to this enhanced performance: 

5.1 Model architecture and feature representation 

The significant improvement in both accuracy and 

execution time for the EFF+KNN model can be attributed to 

EfficientNet's ability to extract highly discriminative features 

while reducing dimensionality. The original feature space of 

1,228,800 dimensions (25×128×128×3) was reduced to 1,280 
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dimensions through EfficientNet's architecture, resulting in a 

more compact yet informative representation. 

This dimensionality reduction directly impacts execution 

time, with the EFF+KNN model processing data 

approximately 50 times faster than the KNN-only approach. 

Such efficiency is crucial for real-time drowsiness detection 

systems where prompt alerts can prevent accidents. The 

statistical significance of these performance differences, 

confirmed through t-tests (p < 0.05), validates the superiority 

of the combined approach. 

5.2 Temporal context benefits 

The integration of time-distributed layers in our EFF+KNN 

model enables sequential processing of facial frames, 

capturing temporal relationships that are essential for 

drowsiness detection. This temporal awareness allows the 

model to recognize progressive patterns such as gradual eye 

closure, head nodding, or delayed blink recovery—subtle 

indicators of increasing fatigue that might be missed in frame-

by-frame analysis. 

The confusion matrix results further support this benefit, 

with high precision and recall for both classes (Awake and 

Drowsy). The model's ability to maintain high accuracy while 

significantly reducing false positives and false negatives 

demonstrates its robustness in real-world conditions. 

5.3 Dataset size implications 

Our experiments across varying dataset proportions (25% to 

100%) reveal interesting insights about model scalability. 

Both models showed performance improvements with 

increased data availability, but the EFF+KNN model 

demonstrated stronger performance even with limited data. 

This suggests that the feature extraction capabilities of 

EfficientNet effectively capture essential drowsiness 

indicators even from smaller datasets, making it particularly 

valuable for applications where data collection might be 

constrained. 

5.4 Practical applications 

The high accuracy (99.52%) and rapid execution time (0.55 

seconds) of our EFF+KNN model have significant 

implications for practical deployment in vehicles. The model's 

compact size and computational efficiency make it suitable for 

integration with limited-resource hardware in automotive 

systems, potentially enabling widespread adoption of 

drowsiness detection technology. 

The minimal false positive rate is particularly important, as 

frequent false alarms could lead to driver complacency or 

system disregard. Conversely, the high detection rate for 

genuine drowsiness ensures timely interventions when 

needed, potentially preventing fatigue-related accidents. 

5.5 Limitations and considerations 

Despite the impressive performance achieved, several 

critical limitations warrant consideration for transparent 

reporting and future research guidance. The current study is 

primarily constrained by demographic bias inherent in the 

ULg DROZY database, which predominantly comprises 

Caucasian European participants with limited age diversity 

(mean age ~23 years), potentially affecting model 

generalizability across diverse ethnic populations and age 

groups. This demographic homogeneity may limit detection 

accuracy for individuals with different facial structures, eyelid 

morphologies, and cultural variations in fatigue expression 

patterns that are common in global automotive applications. 

Additionally, the controlled laboratory evaluation 

environment may not fully represent real-world driving 

conditions, including dynamic lighting variations, 

environmental factors such as vehicle vibrations and weather 

conditions, and the absence of actual driving stress that could 

influence fatigue manifestation patterns. The model's reliance 

on facial features makes it vulnerable to common occlusions 

such as sunglasses, face masks, or hair coverage, while the 

single-modal vision-only approach excludes potentially 

valuable drowsiness indicators from steering patterns, 

physiological signals, or voice analysis. 

To address these limitations, several mitigation strategies 

are proposed: (1) Demographic diversity enhancement 

through collaboration with international research institutions 

to develop multi-ethnic datasets spanning diverse age ranges 

and professional driver populations, coupled with transfer 

learning approaches for demographic-specific model 

adaptation; (2) Environmental robustness improvement via 

comprehensive data augmentation strategies including 

synthetic lighting condition generation, weather effect 

simulation, and multi-environmental field validation across 

different geographic locations and vehicle configurations; (3) 

Technical enhancement through multimodal integration 

incorporating steering pattern analysis, physiological 

monitoring, and adaptive temporal window sizing for 

individual-specific fatigue progression modeling; and (4) 

Validation robustness enhancement using independent cross-

cultural datasets and longitudinal studies to assess seasonal 

variations and individual adaptation patterns. While these 

limitations must be considered when interpreting results, the 

study provides valuable contributions in demonstrating the 

first systematic evaluation of EfficientNet-KNN integration 

for drowsiness detection, establishing a statistical framework 

for method comparison, and achieving computational 

efficiency suitable for real-time automotive applications that 

inform future development of more robust, inclusive, and 

practical drowsiness detection systems. 

6. CONCLUSION AND FUTURE WORKS

This research presents a novel approach to driver 

drowsiness detection through the integration of EfficientNet 

for feature extraction and KNN for classification of sequential 

image data. Our methodology demonstrates exceptional 

performance, achieving 99.52% accuracy with efficient 

execution time of 0.55 seconds, significantly outperforming 

traditional approaches. 

The key contributions of this study include: 1) Development 

of an efficient drowsiness detection algorithm balancing high 

accuracy with minimal computational requirements; 2) 

Effective utilization of sequence processing techniques to 

capture temporal patterns in facial expressions; 3) Statistical 

validation of performance improvements through robust 

experimental design; 4) Practical implementation 

considerations for real-world automotive applications. 

The EfficientNet + KNN (EFF+KNN) model's ability to 

accurately classify drowsiness states while maintaining 

computational efficiency addresses a critical gap in existing 
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drowsiness detection systems, potentially enabling more 

widespread adoption of this safety technology. 

Future research directions will focus on several critical 

technical advancement areas to translate these laboratory 

achievements into practical automotive deployments. We plan 

to pursue edge computing optimization as an immediate 

priority, developing TinyEfficientNet architecture with 

knowledge distillation to achieve compact model sizes suitable 

for automotive Electronic Control Units (ECUs). This 

implementation will involve creating teacher-student 

distillation frameworks using EfficientNetB0 as teacher and 

TinyEfficientNet with reduced width and depth multipliers as 

student, targeting high knowledge retention with significant 

size reduction. We intend to explore quantization techniques 

using post-training quantization methods to further reduce 

memory footprint while maintaining acceptable accuracy 

levels, coupled with ONNX Runtime optimization to enable 

cross-platform deployment on ARM Cortex and Qualcomm 

Snapdragon automotive processors, with comprehensive real-

time inference benchmarking on actual automotive hardware 

across various temperature conditions. 
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