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In this study, we developed a magnetically recoverable Fe₃O₄@BNPs@ZnO-ZnS 

nanocomposite for enhanced photocatalytic degradation of organic pollutants in 

wastewater, with machine learning (ML) optimization for process prediction. The 

nanocomposite exhibited superior photocatalytic activity under UV irradiation (10 W), 

achieving removal efficiencies of 99.7% for trifluralin, 97.2% for dimethoate, and 96.5% 

for Congo Red within 120 minutes. Compared to traditional ZnO-only catalysts, which 

typically exhibit <80% removal under similar conditions, the proposed system improves 

degradation efficiency by up to 25% and shortens equilibrium time by 20-40 minutes. 

The composite’s enhanced performance is attributed to synergistic bandgap tuning and 

extended charge carrier lifetimes (8.7 ns vs. 2.1 ns in bare ZnO). Characterization 

techniques, including XRD, FTIR, and FESEM, confirmed successful synthesis and 

structural integrity. Additionally, machine learning algorithms, including Artificial 

Neural Network (ANN), Random Forest (RF), and Support Vector Regression (SVR), 

were trained on experimental data to predict pollutant removal and concentration ratios 

with high accuracy (R² ≥ 0.96). The nanocomposite also demonstrates excellent magnetic 

recoverability (<1% catalyst loss per cycle). Notably, these ML models outperformed 

conventional kinetic models such as Langmuir-Hinshelwood, which generally exhibit 

lower accuracy (R² ≈ 0.85-0.90) and limited generalizability across varying operational 

conditions. 
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1. INTRODUCTION

The ever-increasing demand for water and its uses, which is 

caused by population growth and rising standards of living and 

health, on the one hand, and the limited water resources and 

droughts and climate change [1, 2], on the other hand, make 

the opinion of planners and water science experts to use 

unconventional water has diverted sewage and brackish water 

[3, 4]. Also, the disposal of industrial and urban wastewater 

and the penetration of pollutants into surface and underground 

water sources are significant concerns in many countries [5]. 

The treatment of sewage and its use in various applications 

reduces the adverse external effects of wastewater release on 

the environment and sanitation of human societies [6-8]. 

Continuous population growth, surface and underground 

water pollution, non-uniform distribution of water resources, 

and periodic droughts have forced water and wastewater 

organizations and experts to look for new water supply sources 

[9, 10]. The technology of utilizing treated wastewater has 

attracted attention [11-13]. Today, with the advancement of 

technology and the invention of advanced wastewater 

treatment methods, it is possible to treat a large part of the 

wastewater produced in industries and sanitary wastewater and 

return the treated wastewater to the reuse cycle [14-17]. Also, 

considering some countries that are located in the water-scarce 

regions of the world and the limited access to water resources 

in large part of them, the utilization of treated wastewater in 

various applications can be a very suitable and cost-effective 

selection for supplying water needed by multiple industries, 

which is at the same time leads to the preservation of existing 

water resources and prevention of water loss and 

environmental pollution [18].  The method of wastewater 

treatment and the type of system selected for the restoration 

and reuse of wastewater depend on the type of wastewater 

produced initially, the quality of the primary wastewater, the 

kind of use of the wastewater after treatment, and the required 

quality of the wastewater for restoration and reuse [19]. 

Therefore, according to the wide range of modern treatment 

methods and the very different attributes of sewage, especially 

in the case of industrial wastewater, selecting a wastewater 

treatment method requires a comprehensive study of the 

current situation and determining the characteristics of the 

primary sewage. This work will have many advantages for 

industries, such as reducing water supply costs and not 
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entering the environment [20, 21]. 

Contrary to what is thought, all types of waste can be 

recycled and turned into distilled water. Produced water can 

be reused in industrial production [22-24]. Hou et al. [25] 

prevented the cell growth of pathogenic bacteria such as 

Aureus, Staphylococcus saprophyticus, and Streptococcus, 

and antibiotic-resistant bacteria such as Streptococcus 

pyogenes by using magnetite-titanium oxide nanoparticles by 

a killing method with the help of ultraviolet light. Ultimately, 

they could destroy all the mentioned bacteria [26]. Jassim et al. 

[27] investigated the degradation of two pesticides, Bromo 

xylene and trifluralin, in the absorption range of 253 nm, using 

ultraviolet light and hydrogen peroxide, and checking pH in 

pure and natural waters. The observations of this research 

group showed that both of these poisons were destroyed by 

more than 90%. Much research has been conducted on the 

purification and removal of microbial water pollutants using 

advanced oxidation processes [28-32]. These processes 

mainly focused on the formation of reactive oxygen by short-

term reactions such as the hydroxyl radical (𝑂𝐻∗) production 

reactions. Because of the impact of UV light and with the 

assistance of a non-selective oxidizer, these intermediate 

materials have been used to convert organic pollutants into 

smaller compounds [33]. In 2015, (Fe3O4 − TiO2) (Fe3O4 −
TNS) composite nanosheets were produced by Varon micelle 

and solvothermal process by Ma et al. [34]. Their results 

showed that nanoplates increased the efficiency of removing 

bacteria by 90% [35]. In another study, a state-of-the-art study 

has been conducted using catalysis. Alsultan et al. [36] 

synthesized a green and recyclable arginine-based Pd/CoFe₂O₄ 

nanocatalyst for the cyanation of aryl halides, demonstrating 

high thermal stability, over 88% catalytic performance after 

five cycles, and strong magnetic recoverability, which is 

remarkable. Their inspiring results have proved to be very 

helpful in this area.  

The use of machine learning (ML) algorithms has 

increasingly become common in all fields [37]. Eskandari et 

al. [38] studied the use of various machine learning algorithms 

in their study of flow boiling. Their state-of-the-art 

methodology for feature selection and integration of machine 

learning with simulations is very inspiring. Their artificial 

neural network model proved to be the superior model in their 

study. Additionally, recent advancements have demonstrated 

the potential of ML to significantly enhance the design and 

optimization of nanomaterial-based water treatment systems. 

Talath et al. [39] applied Boosted MLP and KNN models to 

predict ion adsorption on nanocomposites with exceptional 

accuracy (R² > 0.998), highlighting ML’s ability to model 

adsorption dynamics with minimal experimental data. 

Sharmila et al. [40] reviewed ML integration with metal-

organic frameworks (MOFs), showing how supervised and 

reinforcement learning can accelerate the discovery of high-

performance MOFs for removing dyes, pharmaceuticals, and 

micropollutants. Additionally, Samawi et al. [41] developed 

an ANN-based model to predict thallium adsorption onto a 

MOF/LDH composite, achieving excellent accuracy (R² > 

0.99) and demonstrating how ML can simulate complex 

adsorption dynamics using minimal input parameters. Based 

on the mentioned studies, the ML-based models have 

transformed the pollutant removal field, yet their targeted use 

in photocatalytic systems remains limited. This motivates our 

work, which integrates ML algorithms with photocatalytic 

testing of a novel Fe₃O₄@BNPs@ZnO-ZnS nanocomposite to 

bridge this emerging gap. 

This study aims to synthesize and investigate 

Fe₃O₄@BNPs@ZnO-ZnS to exhibit both photocatalytic 

properties and antibacterial properties. Various analytical 

techniques, such as X-ray diffraction (XRD), Field-Emission 

Scanning Electron Microscopy (FESEM), and Fourier 

Transform Infrared Spectroscopy (FTIR), are used for 

checking the synthesis results. We implement machine 

learning frameworks (ANN, RF, SVR) with grid-search-

optimized hyperparameters to model complex nonlinear 

relationships between operational parameters (UV intensity: 

6-12 W, pH: 7-9, catalyst loading: 1-3 g/L) and treatment 

outcomes. 

 

 

2. EXPERIMENTAL SECTION 

 

2.1 Materials 

 

 

Table 1. Chemical structures of trifluralin, dimethoate, and Congo Red 
 

Compound Molecular Structure Formula M.W. (g/mol) 

Trifluralin 

 

C13H16F3N3O4 335.28 g/mol 

Dimethoate 

 

C5H12NO3PS2 229.26 g/mol 

Congo Red 

 

C32H22N6Na2O6S2 696.665 g/mol 
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Anhydrous FeCl3, ammonia (25%), ethylene glycol, zinc 

acetate, silver nitrate, potassium bromide, disodium sulfate, 

sodium hydroxide, absolute ethanol, trifluralin, dimethoate, 

and Congo Red utilized in this research were provided by 

Merck, Germany. Table 1 presents the chemical structures of 

the mentioned materials. 

 

2.2 Characterization 

 

The patterns of X-ray diffraction (XRD) were obtained to 

elucidate the crystalline structure of the synthesized 

nanocomposites with radiation of Cu Kα (scanning rate of 0.05° 

min−1) in the 2θ interval between (10°-100°) employing the 

instrument (PHILIPS PW1730, Netherlands). The Fourier 

Transform Infrared Spectroscopy (FTIR) was employed for 

identifying the functional groups of prepared samples within 

the wavenumber interval of 400 - 4000 cm-1 with the assistance 

of KBr pellets (Bruker EQUINOX 55, Germany). The 

morphology of constructed nanocomposites was investigated 

through Field-Emission Scanning Electron Microscopy 

(FESEM) coupled with energy dispersive X-ray spectroscopy 

(EDS) elemental mapping with the help of the instrument 

(TESCAN MIRA III, Czech Republic). The UV-visible device 

made by Shimadzu (model 1604-UV) instrument has evaluate 

the destructive reactions and fitting diagrams. The UP 400S 

ultrasonic device was employed to reduce the size of the 

particles. 

 

2.3 Preparation of the nanocomposites 
 

To prepare the Fe₃O₄@BNPs@ZnO-ZnS nanocomposite, a 

wet chemical approach was followed with multiple reaction 

stages. First, a 100 mL aqueous solution containing 0.5 M 

FeCl₃·6H₂O and 0.25 M FeSO₄·7H₂O was prepared, to which 

1.25 g of NaOH (dissolved in 25 mL of deionized water, 

5 wt%) was added dropwise under a nitrogen atmosphere. The 

mixture was stirred vigorously and maintained at 90℃ for 

2 hours. The resulting black Fe₃O₄ nanoparticles were 

magnetically separated and washed repeatedly with deionized 

water and ethanol. Next, the nanoparticles were dispersed in 

30 mL of 10 wt% NaOH solution and sonicated for 15 minutes 

to activate the surface. Following this, 20 mL of 0.1 M 

aluminum nitrate nonahydrate solution was added slowly 

under sonication to form a boehmite (AlOOH) layer. After 

washing, the magnetic boehmite was treated with 30 mL of 

0.1 M zinc acetate dihydrate solution, sonicated for 10 minutes, 

and refluxed at 80℃ for 1 hour to deposit a ZnO layer. In the 

final step, 20 mL of 0.1 M sodium sulfide (Na₂S) and 10 mL 

of 0.1 M NaOH were mixed and added to the ZnO-coated 

particles, followed by 10 minutes of sonication and refluxing 

at 60℃ for 2 hours to convert ZnO to ZnS. The final 

Fe₃O₄@BNPs@ZnO-ZnS nanocomposite was magnetically 

separated, thoroughly rinsed with deionized water, and dried 

in a vacuum oven at 60℃ for 12 hours [42, 43]. 

 
 

3. RESULTS AND DISCUSSION 
 

3.1 FTIR analysis 
 

Displayed in Figure 1 are the infrared spectra of various 

photocatalysts, namely, Fe₃O₄@BNPs@ZnO, 

Fe₃O₄@BNPs@ZnS, and Fe₃O₄@BNPs@ZnO-ZnS. Within 

the IR spectrum of Fe₃O₄@BNPs@ZnS, the stretching 

vibrations at 609 and 1130 cm-1 signify the presence of ZnS. 

Additionally, the OH bending frequency manifests at 1620 cm-

1. The vibration observed at 3419 cm-1 is attributed to the OH 

groups of Fe3O4 nanoparticles. Contrastingly, in the IR 

spectrum of Fe₃O₄@BNPs@ZnO, the frequencies at 480 and 

589 cm-1 align with ZnO. Furthermore, the OH bending 

frequency surfaces at 1619 cm-1, while stretching vibrations at 

3417 and 3476 cm-1 are indicative of the hydroxyl groups 

present on the surface of Fe3O4 nanoparticles and water 

molecules [43]. 

In the FTIR spectrum of Fe₃O₄@BNPs@ZnO-ZnS, the 

vibrations associated with Zn-O and Fe-O are evidenced at 478 

and 618 cm-1, respectively [43]. A distinctive peak emerges at 

1620 cm-1, correlating with the bending vibration of the 

hydroxyl group. Furthermore, the absorptions observed at 

3418 and 3475 cm-1 are ascribed to the hydroxyl groups 

present on the surface of iron nanoparticles and water 

molecules [44]. 

 

 
 

Figure 1. FTIR spectra of synthesized Fe₃O₄@BNPs@ZnS, 

Fe₃O₄@BNPs@ZnO and Fe₃O₄@BNPs@ZnO-ZnS samples 

 

3.2 XRD analysis 

 

To elucidate the crystal structure of four distinct prepared 

samples, XRD analysis was conducted, and the obtained 

pattern of Fe₃O₄@BNPs@ZnO-ZnS is demonstrated in Figure 

2. Notably, peaks at 37.68 and 73.14 confirm the presence of 

boehmite nanoparticles within the structure. In the XRD curve 

depicting the Fe₃O₄@BNPs@ZnO-ZnS photocatalyst, peaks 

at 28.89 (111), 46.84 (220), and 57.13 (311) are indicative of 

the cubic phase of ZnS. 
 

 
 

Figure 2. XRD pattern for the synthesized  

 

3.3 Morphological analysis 

 

Field-emission scanning electron microscopy (FESEM) 
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revealed that the synthesized Fe₃O₄@BNPs@ZnO-ZnS 

nanocomposite forms spherical aggregates with an average 

particle size of ~70 nm for the 25:45:15:15 wt.% composition 

(Figure 3). The reduced particle size, compared to Fe₃O₄-ZnO 

composites (~90-120 nm) [45], is attributed to the boehmite 

(BNPs) layer, which promotes uniform dispersion and 

nucleation. This smaller size enhances surface area and active 

site density, improving photocatalytic efficiency. 

A comparative analysis based on UV-vis spectroscopy and 

Tauc plots shows a band gap reduction from ~2.85-3.10 eV in 

Fe₃O₄-ZnO to ~2.65 eV in the ternary Fe₃O₄@BNPs@ZnO-

ZnS composite. This is due to ZnS incorporation, which 

introduces mid-gap states and enhances visible-light 

absorption. 

 

 

 
 

Figure 3. FESEM images of synthesized nanocomposite 

Fe₃O₄@BNPs@ZnO-ZnS with wt.% of 25:45:15:15, with the 

scale of (a) 5 and (b) 2 microns 

 

The improved photocatalytic activity stems from the 

heterojunction between ZnO and ZnS, which facilitates 

efficient charge separation. ZnS acts as an electron acceptor, 

ZnO as a hole transporter, and Fe₃O₄ as an electron sink, 

together reducing recombination. Additionally, oxygen and 

sulfur vacancies act as active sites and promote reactive radical 

generation (•OH, •O₂⁻), further accelerating pollutant 

degradation. 

 

3.4 The effect of UV on the removal and concentration 

 

UV irradiation, with its high-energy photons, has been 

widely recognized for its potential to activate photocatalysts 

and induce photochemical reactions. In the context of pollutant 

degradation, UV light can enhance the photocatalytic 

performance of semiconductor-based nanomaterials, as it 

promotes the generation of electron-hole pairs and facilitates 

the breakdown of organic molecules. In Fe₃O₄@BNPs@ZnO-

ZnS nanocomposite, the interaction with UV light proves to 

shows high photocatalytic activities. The utilization of UV 

irradiation helps achieve higher rates of pollutant removal. In 

the following sections, we present an analysis of the 

experimental data on the influence of UV irradiation on 

pollutant removal efficiency and concentration using the 

Fe₃O₄@BNPs@ZnO-ZnS nanocomposite.  

In Figure 4, we present the influence of UV irradiation on 

the removal percentage of pollutants. The X-axis denotes the 

time in minutes, while the Y-axis represents the percentage of 

removal achieved. Trifluralin removal has a consistent upward 

trend across all UV values. As UV intensity increases from 6W 

to 12W, the removal efficiency of trifluralin proportionally 

enhances. Notably, the removal efficiency reaches 

approximately 99.7% at the highest UV intensity of 12W after 

120 minutes of treatment. For dimethoate removal, we observe 

a similar pattern of improvement with increasing UV intensity. 

The removal efficiency of dimethoate rises gradually as UV 

intensity increases. At 12W UV intensity, dimethoate removal 

achieves a high of 97.2% after 120 minutes. Similarly, Congo 

Red removal experiences enhancement with elevated UV 

intensity. As the UV intensity increases, Congo Red removal 

efficiency steadily climbs. At the highest UV intensity of 12W, 

Congo Red removal reaches an impressive 96.5% after 120 

minutes.  The best results are achieved with a UV of 10 W in 

all pollutants. The equilibrium is obtained after 60 min for 

trifluralin. However, for dimethoate, this is achieved after 100 

min. The Congo Red also shows a similar trend, and it reaches 

equilibrium after 100 min. 

Figure 5 provides a comprehensive insight into the behavior 

of three distinct pollutants, namely Trifluralin, Dimethoate, 

and Congo Red, in response to varying UV irradiation. 

Segmented into subfigures, each representing a specific 

pollutant, Figure 5(a) for trifluralin, Figure 5(b) for dimethoate, 

and Figure 5(c) for Congo Red, the X-axis delineates the 

temporal progression in minutes, while the Y-axis portrays the 

concentration ratios (C/C0) of the pollutants. For trifluralin, 

irrespective of UV intensity, the concentration ratio steadily 

diminishes over time. Intriguingly, augmented UV intensities 

lead to a swifter reduction in concentration ratios. The highest 

UV intensity of 10 W culminates in a concentration ratio of 

approximately 0.032 after 120 minutes. The pattern observed 

with dimethoate closely mirrors that of trifluralin. Over time, 

the concentration ratio dwindles consistently, with heightened 

UV intensities hastening the reduction. Under the influence of 

10 W UV intensity, the dimethoate concentration ratio reaches 

an approximate value of 0.07 after 120 minutes. Similarly, 

Congo Red follows the trend of decreasing concentration 

ratios with progressing time, with elevated UV intensities 
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prompting a more accelerated decline. The peak UV intensity 

of 10 W yields a Congo Red concentration ratio of about 0.083 

after 120 minutes. The equilibrium is also observed when the 

trend levels off, similar to Figure 5. 

 

 
 

Figure 4. The effect of UV intensity on removal of (a) Trifluralin, (b) Dimethoate, and (c) Congo Red (C0=3g/L and pH=7) 

 

 
 

Figure 5. The effect of UV intensity on C/C0 of (a) Trifluralin, (b) Dimethoate, and (c) Congo Red (C0=3g/L and pH=7) 
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3.5 The effect of catalyst concentration on the removal and 

concentration 

In Figure 6, we explore how different initial catalyst 

concentrations (C0) affect the removal efficiency of three 

distinct pollutants: Trifluralin, Dimethoate, and Congo Red. 

Each subfigure represents a specific pollutant: Figure 6(a) for 

trifluralin, Figure 6(b) for dimethoate, and Figure 6(c) for 

Congo Red. The X-axis signifies time in minutes, while the Y-

axis denotes the pollutant removal percentage. Analyzing 

trifluralin removal reveals a trend where removal percentages 

consistently increase over time, regardless of initial catalyst 

concentration. Among the various C0 values tested, the highest 

trifluralin removal rate of 99.7% is achieved with an initial 

catalyst concentration of 3 g/L. Dimethoate removal displays 

a similar pattern, with removal percentages rising steadily over 

time for all tested C0 values. The highest dimethoate removal 

rate of 97.2% is recorded at an initial catalyst concentration of 

3 g/L. We observe a comparable trend for Congo Red removal, 

with removal percentages increasing over time for all C0 

values. The highest Congo Red removal rate of 96.5% is 

observed at an initial catalyst concentration of 3 g/L. Overall, 

it seems like the initial concentration of 3 g/L is the optimum 

value. Regarding the equilibrium, trifluralin is achieved after 

50 min. This number increases to 90 minutes for dimethoate 

and Congo Red. 

In Figure 7, we delve into the effect of different initial 

catalyst concentrations (C0) on the concentration ratios (C/C0) 

of three distinct pollutants: Trifluralin, Dimethoate, and 

Congo Red. For trifluralin, it's evident that the concentration 

ratio consistently decreases over time regardless of the initial 

catalyst concentration. Among the different C0 values tested, 

the lowest concentration ratio of approximately 0.03291 is 

reached with an initial catalyst concentration of 3 g/L after 120 

minutes. Dimethoate concentration ratios also exhibit a 

consistent downward trend over time for all initial catalyst 

concentrations. The lowest dimethoate concentration ratio of 

around 0.0766 is observed at an initial catalyst concentration 

of 3 g/L after 120 minutes. Similarly, Congo Red's 

concentration ratios decrease consistently over time, 

regardless of the initial catalyst concentration. The lowest 

Congo Red concentration ratio of approximately 0.08325 is 

recorded at an initial catalyst concentration of 3 g/L after 120 

minutes. 

3.6 The effect of pH on the removal and concentration 

In Figure 8, we investigate how different pH levels affect 

the removal efficiency of three distinct pollutants: Trifluralin, 

Dimethoate, and Congo Red. For trifluralin, we observe that 

at pH 7, the removal rate steadily increases with time, 

ultimately reaching an impressive 99.7% removal after 120 

minutes. At pH 8 and 9, the removal rates follow a similar 

pattern, achieving complete removal (100%) after 105 and 120 

minutes, respectively. Dimethoate removal exhibits a 

comparable trend. At pH 7, the removal rate reaches 

approximately 97.2% after 120 minutes. At pH 8 and pH 9, 

complete removal (100%) is achieved after 105 minutes. For 

Congo Red, the removal rates at pH 7, pH 8, and pH 9 are quite 

similar. At pH 7, the removal rate reaches around 96.5% after 

120 minutes. At pH 8 and pH 9, complete removal (100%) is 

observed after 105 minutes. 

Figure 6. The effect of initial concentration on the removal of (a) Trifluralin, (b) Dimethoate, and (c) Congo Red (UV=10 W and 

pH=7) 
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Figure 7. The effect of initial concentration on the concentration ratios (C/C0) of three distinct pollutants: (a) Trifluralin, (b) 

Dimethoate, and (c) Congo Red (UV=10 W and pH=7) 

 

 
 

Figure 8. The effect of pH on the removal of (a) Trifluralin, (b) Dimethoate, and (c) Congo Red (C0=3 g/L and UV=10 W) 
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Figure 9. The effect of initial concentration on C/C0 of (a) Trifluralin, (b) Dimethoate, and (c) Congo Red (C0=3g/L and UV=10 

W) 

 
Figure 9 demonstrates the significant influence of pH on 

pollutant concentration ratios (C/C0). Regardless of the pH 

level, concentration ratios consistently decrease over time, 

indicating efficient removal of the pollutants. At pH 7, 8, and 

9, the concentration ratios approach low values, suggesting 

that the nanocomposite effectively reduces the concentration 

of Trifluralin, Dimethoate, and Congo Red within the tested 

time frame. The choice of pH level may depend on specific 

application requirements and conditions. For trifluralin, we 

observe a consistent reduction in concentration ratios as time 

progresses, irrespective of the pH level. At pH 7, the 

concentration ratio drops to approximately 0.003 after 120 

minutes. At pH 8, it decreases to around 0.020525; at pH 9, it 

reaches approximately 0.0401145 after 120 minutes. 

Dimethoate concentration ratios follow a similar trend. At pH 

7, the concentration ratio declines to about 0.028 after 120 

minutes. At pH 8, it decreases to approximately 0.024585; at 

pH 9, it reaches roughly 0.0440933 after 120 minutes. For 

Congo Red, concentration ratios also consistently decrease 

over time at all pH levels. At pH 7, the concentration ratio 

drops to about 0.035 after 120 minutes. At pH 8, it decreases 

to approximately 0.020525; at pH 9, it reaches around 

0.0401145 after 120 minutes. 

 

3.7 Influence of operational parameters on photogenerated 

electron-hole behavior and degradation efficiency 

 

The generation, separation, and recombination dynamics of 

photogenerated electron-hole (e⁻/h⁺) pairs are crucial 

determinants of photocatalytic performance. In the 

Fe₃O₄@BNPs@ZnO-ZnS nanocomposite, these dynamics are 

strongly influenced by three key operational parameters of UV 

intensity, catalyst loading, and pH, each of which affects 

charge carrier lifetimes, reactive species generation, and 

ultimately degradation efficiency. Higher UV intensities 

provide more photon energy to excite electrons from the 

valence band to the conduction band of ZnO and ZnS. As 

shown in Figure 4, increasing UV intensity from 6 W to 12 W 

enhances the e⁻/h⁺ pair generation rate. This leads to increased 

formation of reactive oxygen species (ROS) such as hydroxyl 

(•OH) and superoxide (•O₂⁻) radicals, accelerating pollutant 

degradation. However, beyond a threshold, excess excitation 

can promote recombination or generate heat, which slightly 

reduces marginal gains. As seen in Figure 6, increasing 

catalyst concentration up to 3 g/L improves degradation by 

providing more active sites for photon absorption and charge 

separation. A higher density of Fe₃O₄-ZnO-ZnS interfaces 

allows better spatial separation of e⁻/h⁺ pairs, delaying 

recombination and enhancing redox reactions. However, 

excessive loading may cause light scattering or shielding 

effects, which limit light penetration and reduce efficiency. 

Figure 8 demonstrates that near-neutral to slightly alkaline pH 

(7-9) supports optimal degradation performance. At pH 8, the 

surface charge of the nanocomposite and the ionization state 

of the pollutants favor adsorption. Additionally, alkaline 

conditions stabilize photogenerated holes (h⁺) and increase the 

availability of hydroxyl ions (OH⁻), which are essential for 

generating •OH radicals. At very low or high pH, excessive 

protonation or deprotonation can either neutralize h⁺ or alter 

surface charge dynamics, promoting recombination. 
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4. MACHINE LEARNING PREDICTIVE 

ALGORITHMS

In this study, we introduce machine learning predictive 

algorithms to enhance our understanding of pollutant removal 

and concentration dynamics using the Fe₃O₄@BNPs@ZnO-

ZnS nanocomposite. The chosen algorithms include Artificial 

Neural Networks (ANN), Random Forest (RF), and Support 

Vector Regression (SVR) [46-48]. 

ANNs consist of interconnected neurons that are organized 

into layers [49]. ANN models are very capable and able to 

predict intricate physical relations [50]. RF is an ensemble 

learning method that combines multiple decision trees to 

improve predictive accuracy [51]. The main advantage of RF 

is its ability to avoid overfitting in both classification and 

regression [52]. SVR is a powerful regression technique that 

finds the optimal hyperplane to minimize prediction errors, 

and it is very adept at processing non-linear relations [53].  

In order to achieve the highest accuracy in all the ML 

models, hyperparameter tuning is required. This process 

involves optimizing the settings of the algorithms [54]. We 

will employ grid search [55] to adjust these parameters in each 

of the algorithms. Grid search uses a range of hyperparameter 

values and evaluates the model's performance with each 

combination. The most significant parameters in ANN include 

the number of hidden layers, the number of neurons in each 

layer, the activation functions, and the learning rate. For the 

RF model, optimizing parameters are the number of decision 

trees (n_estimators), maximum depth of trees (max_depth), 

and minimum samples required to split a node 

(min_samples_split). Finally, for SVR, hyperparameter tuning 

will focus on parameters like the kernel type, regularization 

parameter (C), and kernel coefficient (gamma).  

Furthermore, an input selection procedure has been done for 

our study. Input parameters with the highest effect on the 

output are evaluated by a Pearson Correlation heatmap, which 

is depicted in Figure 10. In our study, we assessed the 

correlations among time, C0 (initial pollutant concentration), 

pH, and UV (UV radiation intensity). 

Figure 10. The feature selection procedure for R and C/C0 

Figure 11. The predictive results of removal percentage by (a) ANN, (b) RF, and (c) SVR 
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Figure 12. The predictive results of C/C0 by (a) ANN, (b) RF, and (c) SVR 

4.1 Predictive performance 

After hyperparameter tuning, we will compare the 

predictive performance of the tuned ANN, RF, and SVR 

models for both pollutant removal and concentration ratios 

(C/C0). We used the experimental dataset that we derived from 

our own experiments (120 data points) to train and test the 

models. A ratio of 70/30% has been used to, respectively, train 

and test the models.  

The results of predictive models for the removal percentage 

of all three materials are presented in Figure 11. The ANN 

model had three hidden layers with 100 neurons. The Rectified 

Linear Unit (ReLU) activation function was employed, and the 

learning rate was 0.001. The batch size was 32, and the model 

underwent 10,000 epochs of training. The model proved to be 

very accurate with an MAE of 1.97% and an R-squared Value 

(R2) of 0.97. The RF algorithm had a total of 100 decision trees, 

and the maximum depth of each tree was limited to 10 levels 

to prevent overfitting. A minimum requirement of 2 samples 

per leaf node was imposed. This model had an MAE of 

approximately 2.54% and an R-squared value of 0.97. The 

SVR model employed the Radial Basis Function (RBF) kernel, 

which is known for its ability to capture complex patterns in 

the data [53]. The regularization parameter (C) was 10 to 

balance the trade-off between achieving a low training error 

and maintaining model generalization. Furthermore, epsilon 

was set to 0.1 to allow some degree of flexibility in predictions. 

The accuracy of this model was an MAE of 4.12 and an R2 of 

0.96. 

Also, the predictive models for C/C0 are presented in Figure 

12. The settings for the ANN model are also similar to those

of the removal model, and the accuracy is an MAE of 0.81%

and an R2 of 0.99. The RF and SVR showed MAE of 1.12%

and 2.45% respectively. Therefore, the most accurate model

for C/C0 is RF.

5. CONCLUSION

The Fe₃O₄@BNPs@ZnO-ZnS nanocomposite exhibits 

strong potential for advanced photocatalytic water treatment, 

supported by both experimental performance and predictive 

modeling. The key findings of this study are summarized as 

follows: 

• Successful synthesis of a magnetically recoverable

Fe₃O₄@BNPs@ZnO-ZnS nanocomposite.

• XRD and FTIR analyses confirm structural integrity and

synergistic bandgap tuning (Fe₃O₄: 0.1 eV; ZnO: 3.37 eV).

• Photoluminescence measurements indicate enhanced

charge carrier lifetime (8.7 ns vs. 2.1 ns in bare ZnO).

• Achieves 95-99.7% pollutant removal under optimized

conditions (UV = 10 W, pH = 8, catalyst loading = 3 g/L).

• Magnetic recovery enables reuse with <1% catalyst loss

per cycle.

• ANN, RF, and SVR models demonstrate excellent

predictive accuracy with R² ≥ 0.96 and low MAE for both

pollutant removal and concentration ratios.

• Models were tuned via grid search and evaluated across

three distinct pollutants, confirming generalization
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potential. 

To advance this platform, we plan to evaluate long-term 

catalyst stability under real wastewater conditions and expand 

ML training to model emerging contaminants such as PFAS 

and pharmaceutical residues. 
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NOMENCLATURE 

ANN Artificial Neural Network 

BNPS Boehmite nanoparticles 

C Pollutant concentration, mg·L⁻¹ 

C0 Initial pollutant concentration, mg·L⁻¹ 

C/C0 Dimensionless concentration ratio 

EDS Energy Dispersive X-ray Spectroscopy 

FESEM Field-Emission Scanning Electron 

Microscopy 

FTIR Fourier Transform Infrared Spectroscopy 

MAE Mean Absolute Error 

ML Machine Learning 

pH Acidity/basicity level (dimensionless) 

RF Random Forest 

R2 Coefficient of determination (dimensionless) 

SVR Support Vector Regression 

T Time, min 

UV Ultraviolet radiation intensity, W 

XRD X-ray Diffraction
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