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The rapid increase in the transmission and storage of digital images has intensified the 

need for encryption algorithms that ensure visual confidentiality and resilience against 

statistical and differential attacks. Conventional encryption approaches often struggle to 

eliminate residual structural information, particularly when handling highly correlated 

image data. To overcome these limitations, this study proposes a hybrid symmetric image 

encryption method that combines the unpredictability of chaotic logistic map operations 

with the deep representational capabilities of convolutional autoencoders. The encryption 

process consists of a two-stage mechanism: first, the image undergoes chaotic pixel 

permutation, substitution, and XOR masking; second, the result is passed through a deep 

convolutional network for feature-level obfuscation, further diminishing any remaining 

visual patterns. The proposed method was evaluated on multiple standard grayscale 

images using four key metrics: MSE, PSNR, UACI, and NPCR. The averaged results 

across all test images show an MSE of 36.23, a PSNR of 7.46 dB, a UACI of 33.50%, and 

an NPCR of 99.60%. These values indicate strong encryption quality and high sensitivity 

to plaintext variations. The integration of chaotic systems with deep learning effectively 

enhances security while maintaining computational efficiency, providing a robust solution 

for secure visual data protection in modern applications. 
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1. INTRODUCTION

In the modern digital environment characterized by large-

scale visual data exchange, either through social media, cloud 

services, or surveillance systems, protection of visual content 

such as images has become crucial [1-3]. Digital images have 

special features such as high spatial correlation between pixels 

and predictable intensity distributions. This makes them 

vulnerable to various forms of cryptanalysis attacks, especially 

on conventional encryption systems [4-6]. A major challenge 

in this domain is how to design encryption algorithms that are 

not only capable of destroying the internal statistical 

regularities of the image but also have a high degree of 

sensitivity to small changes in the plaintext to ensure optimal 

diffusion and confusion [7, 8]. 

In response to these challenges, this paper proposes a hybrid 

approach that integrates a logistic map-based chaotic system 

with the feature abstraction capabilities of a deep 

convolutional neural network (CNN) [9-12]. The chaotic 

system acts as a random sequence generator that is used for 

pixel permutation, bit substitution, and XOR-based masking 

to produce the initial encrypted image [13-15]. The image is 

then processed through a CNN in the form of an autoencoder, 

which exhaustively extracts non-linear feature representations 

and masks any spatial patterns that may still be detected [16]. 

Thus, this two-layer approach combines the deterministic 

randomness of chaotic systems with the structural non-

linearity power of deep learning to enhance the resistance of 

cipher-images to various visual and statistical attack 

techniques [17]. 

The main motivation of this research comes from the 

observation that although chaotic systems are characterized by 

high sensitivity to initial conditions and good pseudo-random 

properties, pure chaos-based encryption still leaves structural 

traces that can be exploited in visual attacks [8, 18, 19]. On the 

other hand, deep learning, especially CNN architecture, has 

the extraordinary ability to abstract semantic and spatial 

information through hierarchical convolution processes [20]. 

This study combines these two techniques with the aim to 

create a symmetric encryption system that is not only 

mathematically complex but also visually and statistically 

uninterpretable, even against increasingly advanced machine 

learning-based analysis. 

Several previous studies have explored the use of chaotic 

systems in image encryption schemes, especially to increase 

the complexity of cryptography and make the decryption 

process difficult without a key. One of the most prominent 

methods was developed by Arif et al. [21], which combines 

chaotic logistic maps with random substitution techniques to 

form a symmetric encryption scheme. This approach uses a 
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random S-Box-based pixel permutation and substitution 

process controlled by chaotic sequences, resulting in a cipher-

image with a uniform histogram distribution and near-

maximum entropy. Although this method has been proven to 

be resistant to brute-force attacks and statistical attacks, their 

approach still relies heavily on the strength of a single-layer 

chaotic system, without any further obfuscation stages on the 

feature representation level. As a result, in some cases with 

finely textured images or regular patterns, latent information 

can still be detected through differential analysis or local 

spatial correlation.  

Another approach was developed by Anees et al. [19], 

which specifically targets encryption weaknesses in handling 

data with high levels of autocorrelation. They proposed a 

chaos-based substitution scheme that adaptively replaces data 

bits in an image using a pseudo-random sequence of 

complexly initialized logistic maps. By focusing on 

randomizing the internal structure of pixels, this method shows 

significant improvements in reducing correlations between 

neighbouring pixels and increasing the diversity of encrypted 

bits. However, the power of this method is limited to the 

spatial domain and has not touched on the aspect of non-linear 

feature transformations that can disguise semantic information 

more deeply. In addition, the absence of a multi-layered 

obfuscation mechanism makes the resulting cipher-image 

vulnerable to advanced forms of attacks that exploit the 

statistical imperfections of a single encryption result. 

For instance, in the method proposed by Arif et al. [21], 

although the use of chaotic permutation and substitution 

achieves a uniform histogram, the encrypted images of highly 

textured patterns such as the “Baboon” image still exhibit 

residual local correlations that can be exploited through 

statistical or entropy-based analysis. Similarly, Anees et al. [19] 

showed improvement in decorrelating adjacent pixels, but 

their approach struggles with complex spatial patterns like 

those in satellite or medical images, where the single-layer 

chaotic masking is insufficient to completely disrupt semantic 

structures. These limitations underscore the need for a more 

robust, multi-layered encryption mechanism that operates not 

only on pixel-level transformation but also on deeper feature 

abstractions. 

The main contribution of this research is the design of a 

symmetric encryption system based on a hybrid model that 

combines chaos logistic map with deep convolutional 

autoencoder. Different from previous approaches, this scheme 

can perform permutation and substitution based on chaotic 

sequence, and also project the initial encrypted image into a 

high-dimensional feature space using CNN. The result is a 

cipher-image that has non-deterministic characteristics, a 

uniform histogram distribution, and does not show any spatial 

structure that can be re-analyzed. This model is tested on 

various image datasets and quantitatively compared with 

previous approaches based on MSE, PSNR, NPCR, and UACI 

metrics. The evaluation results show significant improvements 

in information diffusion and resistance to differential attacks, 

while maintaining process efficiency that can be applied to 

large-scale real-time systems.  

2. PRELIMINARIES

Before examining the proposed hybrid model, this section 

outlines the fundamental concepts that underpin the system 

architecture. These include the principles of chaotic 

encryption using logistic maps and the essential components 

of deep learning, especially convolutional neural networks. A 

clear understanding of these preliminaries is important for 

understanding the mechanisms and motivations behind the 

hybrid symmetric image encryption framework. 

2.1 Logistic map encryption 

The novelty of this study is the utilization of a finely tuned 

configuration of the logistic map parameters to maximize the 

chaotic behaviour essential for robust symmetric image 

encryption [22]. The control parameter 𝑟 is carefully selected 

within the narrow chaotic interval, specifically in the interval 

from 3.89 to 4 [23]. This selection ensures high entropy and 

unpredictability of the generated pseudo-random sequences 

[24]. The sensitivity to initial conditions 𝑥0 is intensified by

treating 𝑥0  as a high-precision key parameter constrained

strictly within the interval between 0 and 1, while avoiding 

values close to the boundaries to prevent periodicity. 

The number of iterations 𝑁 is dynamically adapted based on 

image size and encryption complexity. This approach balances 

computational efficiency with cryptographic strength. The 

adaptive iteration count is incorporated into the key schedule. 

This is to enhance the key space and increase resistance to 

brute-force and statistical attacks. This chaotic method based 

logistic map is shown in Eq. (1). 

𝑥𝑛+1 = 𝑟 ∙  𝑥𝑛 ∙ (1 − 𝑥𝑛), 𝑛 = 0,1,2,3, … , 𝑁 − 1 (1) 

Based on Eq. (1), 𝑥𝑛 is the initial condition or secret key

seed, chosen within the interval (0, 1) , 𝑟  is the control 

parameter ranging from 3.89 to 4, which ensures chaotic 

dynamics, 𝑁  represents the total number of iterations to 

generate the pseudo-random sequence. Iterating the map from 

𝑛 = 0 up to 𝑛 = 𝑁 − 1, the chaotic sequence {𝑥1, 𝑥2, . . . , 𝑥𝑁} 

is produced. This sequence is then normalized and quantized 

as needed to generate the encryption key stream or to control 

pixel permutation during image encryption. 

2.2 Image encryption based on deep convolutional feature 

learning 

For the purposes of amplifying the non-linearity and 

strength of the encrypted image obtained from the chaotic 

logistic map [25, 26], a deep convolutional neural network 

(CNN) is utilized in this research for processing and mapping 

the encrypted image in a complex and secure way [11, 12]. 

The suggested method harnesses the capacity of the CNN for 

abstracting high-dimensional features in a way that effectively 

hides any residual statistical features that might remain after 

the chaos-based encryption phase. 

The essence of using deep convolutional feature learning 

lies in its ability to take advantage of local spatial correlations 

to learn hierarchical features from input images, even when 

these inputs are pre-transformed by chaotic encryption [27, 28]. 

Using the learned convolutional filters, the network can 

project the encrypted image into a space in which any 

structural information gained from the encrypted image will 

be effectively concealed thus enhancing the resistance of the 

ciphertext to cryptanalysis. 

In this model, the encrypted image 𝐼𝑒  ∈ 𝑅𝐻∙𝑊∙𝐶  (with

height 𝐻, width 𝑊, and channel count 𝐶) is input to a CNN 

module consisting of multiple convolutional layers. Each 

convolutional layer performs using Eq. (2). 
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𝐹(𝑙) = 𝜎(𝑊(𝑙) ∙ 𝐹(𝑙−1) + 𝐵(𝑙)) (2) 

Based on Eq. (2), 𝐹(𝑙) is the output feature map at layer 𝑙,
𝐹(0) = 𝐼𝑒  is the encrypted input image, 𝑊𝑙  ∈  𝑅𝑘×𝑘×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡

is the set of learnable convolutional kernels with size 𝑘 × 𝑘, 

𝐵(𝑙)  is the bias term, 𝜎  is a non-linear activation function,

typically ReLU of 𝜎(𝑥) = 𝑚𝑎𝑥(0, 𝑥). 

The successive application of convolution, non-linear 

activation, and pooling layers transforms the encrypted image 

into a compact, high-dimensional feature space that exhibits 

minimal correlation to the original content. To further reduce 

redundancy and control spatial dimensions, pooling operations 

such as max-pooling are applied. The operation is defined in 

Eq. (3). 

𝑝𝑖,𝑗
𝑙 = max 𝐹𝑖+𝑚,𝑗+𝑛

(𝑙)
(3) 

This step contributes to obfuscating localized patterns while 

reducing sensitivity to small perturbations, thereby making it 

more difficult to reverse-engineer the encrypted image. After 

multiple layers of convolution and pooling, the network 

concludes with a final encoding layer as calculated in Eq. (4). 

𝐸 = 𝑓(𝐹(𝑙)) (4) 

Based on Eq. (4), 𝐹(𝑙) is the output of the last convolutional

block, and 𝑓  is either a flattening operation followed by a 

dense layer (for generating key vectors or secure hashes), or 

an upsampling+convolutional path (if aiming to reconstruct an 

encrypted form). The result 𝐸  becomes the final encrypted 

output, a representation that has passed through both chaotic 

dynamics and deep feature transformation. This layered 

security makes the scheme highly resistant to known-plaintext 

and chosen-ciphertext attacks, while also eliminating visual 

cues that may leak structural hints about the original image.  

Figure 1 shows the complete design for this hybrid encryption 

scheme. It involves chaotic logistic map encryption, deep 

convolutional feature learning, and deep encryption layers. 

The figure outlines, sequentially, the end-to-end processing 

starting from taking encrypted image input (host) through 

convolutional feature learning layers which finally leads to the 

last deep learning-based encryption module. 

2.3 Performance measurement 

To measure the effectiveness and stability of security 

provided by the suggested deep learning image encryption 

model, statistical and quantitative metrics are utilized [29]. 

The performance assessment focuses on quantifying distortion, 

imperceptibility, and sensitivity of the encryption algorithm to 

small changes in the plaintext. The key metrics used are MSE, 

PSNR, UACI, and NPCR [29, 30]. These metrics provide 

critical information about visual degradation, quality of 

encryption, and sensitivity of the implemented cryptosystem. 

2.3.1 Mean Squared Error (MSE) 

MSE measures the average squared difference between the 

original image and its encrypted counterpart. A higher MSE 

value indicates a greater level of distortion, which is desirable 

in image encryption. The MSE calculation process is seen in 

Eq. (5). 

1

𝑀𝑁
∑ ∑ (𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗))𝑁

𝑗=1
𝑀
𝑖=1

2
(5) 

2.3.2 Peak Signal-to-Noise Ratio (PSNR) 

PSNR is computed from the MSE and reflects the 

encryption strength in terms of pixel-wise similarity. Lower 

PSNR indicates better encryption strength, as the encrypted 

image should be dissimilar to the original. The PSNR 

calculation process is seen in Eq. (6). 

10 log 10 (
max _𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒2

𝑀𝑆𝐸
) (6) 

2.3.3 Unified Average Changing Intensity (UACI) 

UACI evaluates the average intensity difference between 

two ciphered images generated from slightly different 

plaintexts as seen in Eq. (7). This metric measures differential 

attack resistance. 

1

𝑀𝑁
∑ ∑ |

𝐼(𝑖,𝑗) ⊕ 𝐾(𝑖,𝑗)

𝐿
|𝑁

𝑗=1
𝑀
𝑖=1  (7) 

2.3.4 Number of Pixels Change Rate (NPCR) 

NPCR measures the percentage of differing pixels between 

two cipher images when the original image has a slight 

variation as indicated in Eq. (8). High NPCR values indicate 

strong diffusion properties. 

1

𝑀𝑁
∑ ∑ |

𝐼(𝑖,𝑗)−𝐾(𝑖,𝑗)

𝐼(𝑖,𝑗)
|𝑁

𝑗=1
𝑀
𝑖=1  (8) 

Based on Eqs. (5)-(8), the effectiveness and security level 

of the proposed encryption model are supported by the 

methodology detailed in the next section and further validated 

by the experimental results presented thereafter. 

Figure 1. Improvement hiding networks 
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3. METHODOLOGY

As illustrates in Figure 1, the proposed image encryption 

framework is organized into three main stages: chaotic 

encryption, deep learning-based improvement, and decoding. 

In the first stage, the logistic map drives pixel permutation, bit 

substitution, and XOR operations to produce the first 

encrypted image. This encrypted output is then passed to a 

deep learning autoencoder in the second stage for feature-level 

encryption refinement. Finally, a decoder network 

reconstructs the ciphered image, which is later decrypted 

through inverse logistic operations to restore the original 

image. 

As seen in Figure 2, the encryption process begins with a 

plain image 𝐼 and a predefined secret key, set as "𝑎𝑡𝑖𝑘𝑎_𝑠𝑎𝑟𝑖". 

To ensure secure and unpredictable key generation for the 

chaotic system, the SHA-512 hashing algorithm is applied to 

this secret key. The secret key is processed using SHA-512 to 

generate a 512-bit hash value as calculated in Eq. (9). 

𝐻 = 𝑆𝐻𝐴 − 512("𝑎𝑡𝑖𝑘𝑎_𝑠𝑎𝑟𝑖") (9) 

This hash 𝐻 is then segmented and mapped to initialize the 

logistic map parameters. For instance: Initial value 𝑥0  and 

Control parameter 𝑟 ∈ (3.57,4.0] are derived from selected 

segments of the hash by normalizing them into the range 

required for chaotic behavior. 

Subsequently, encryption uses a chaos logistic map system 

to perform three main processes: pixel permutation, bit 

substitution, and XOR masking. The main formula for the 

logistic map can be found in Eq. (1), and to convert this 

sequence to a usable form (integer array), Eq. (10) is used. 

𝐾[𝑖] = ⌊(𝑆[𝑖] × 106) 𝑚𝑜𝑑256⌋, 𝑖 = 1,2, … , 𝑀 × 𝑁 (10) 

The arrangement of pixel positions is randomized based on 

the ascending index order of 𝐼 = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝑆), then perform a 

permutation of the 𝑀 × 𝑁  dimensional image 𝑃 , and the 

calculation is seen in Eq. (11). 

𝑃′(𝑖, 𝑗) = 𝑃(𝑟𝑜𝑤(𝐼𝑘), 𝑐𝑜𝑙(𝐼𝑘)), 𝑘 = (𝑖 − 1) × 𝑁 + 𝑗 (11)

With 𝑟𝑜𝑤(𝑘) =
𝑘

𝑁
, 𝑐𝑜𝑙(𝑘) = 𝑘 𝑚𝑜𝑑 𝑁 , Each pixel 𝑝 ∈

[0,255]  is represented as 8-bit and undergoes chaotic key 

based substitution 𝐾 as calculated in Eq. (12). 

𝑝𝑖′ = 𝑆𝐵𝑜𝑥(𝑝𝑖 ⊕ 𝐾𝑖) (12) 

SBox can be defined statically or dynamically from a 

chaotic sequence as calculated in Eq. (13), so that the 

substitution result for the 𝑖th pixel is calculated in Eq. (14). 

𝑆𝐵𝑜𝑥[𝑖] = (𝐾[𝑖] + 𝑚𝑜𝑑(𝑖, 256))𝑚𝑜𝑑256 (13) 

𝑝1
′′ = 𝑆𝐵𝑜𝑥 (𝑝𝑖

′) (14) 

The final step of this phase is the XOR operation to provide 

additional complexity as calculated in Eq. (15). The final 

image resulting from this stage is called the First Encrypted 

Image. 

𝐶(𝑖, 𝑗) = 𝑃′′(𝑖, 𝑗) ⊕ 𝐾(𝑖, 𝑗) (15) 

In the last phase of proposed methods, the first encrypted 

image is fed into a convolutional autoencoder network. The 

encoder conceals the image structure by transforming it into 

deep feature representations through convolutional layers. 

This enhances security by disrupting visual patterns in the 

image. The output from the autoencoder is then processed by 

the neural network decoder to restore the ciphered structure. 

Although it does not directly recover the original image, this 

intermediate form is now ready for final decryption through 

reverse logistic map operations. Here, the reverse logistic map 

operations in question include Inverse XOR, inverse 

substitution, and inverse permutation using the same logistic 

map sequence. 

Figure 2. Research methodology 
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4. RESULTS AND DISCUSSION

In this section, all experiments and metric evaluations were 

implemented using Python programming, and executed on a 

system with the following specifications: AMD Ryzen 5 7600 

processor, NVIDIA RTX 4060 Ti GPU, 32 GB RAM, and 2 

TB ROM. The computational power of this system ensures 

efficient execution of chaotic sequence generation and deep 

neural network operations, supporting rapid encryption and 

decryption processes. The dataset used consists of standard 

grayscale images commonly adopted in image encryption 

literature, including Lena, Baboon, Cameraman, and Zelda. 

These images were selected to ensure diversity in texture, 

structure, and complexity from highly detailed and textured 

images (e.g., Baboon) to smoother images with clearer edges 

(e.g., Cameraman). All images were resized to 256 × 256 

pixels to maintain uniformity during the encryption process.  

4.1 Visual experiment 

Figure 3 provides the result of the encryption using the 

proposed approach. Precisely, the original 256 × 256 grayscale 

plaintext image is the one given in Figure 3(a), while the 

encrypted image, with a visually arbitrary pattern lacking any 

recognizable structure, is given in Figure 3(b). Also, the 

histogram of the encrypted image is shown in Figure 3(c), 

where the horizontal axis represents the grayscale values 

ranging from 0 to 250 and the vertical axis indicates the 

corresponding frequencies. As a note, the first row is the image 

of Lena, the second row is the image of the Baboon, row 3 is 

the image of the Cameraman, and row 4 is the image of Zelda. 

4.2 Quality of visual measurement 

Four quantitative metrics were utilized in the evaluation: 

MSE, PSNR, UACI, and NPCR metrics. Each of the metrics 

was calculated according to its respective formula. MSE as 

defined in Eq. (5), PSNR as specified in Eq. (6), UACI as 

defined in Eq. (7), and NPCR as defined in Eq. (8). The 

resulting values, which describe the level of distortion, the 

strength of the encryption, and the sensitivity to slight changes 

in the input, are presented in Tables 1 and 2. 

(a) Plain image (b) Proposed encrypted (c) Histogram assessment

Figure 3. Results of visual encryption 
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Table 1. Quality assessment (MSE and PSNR) 

Plain Image 
Proposed Method Arif et al. [21] Anees et al. [19] 

MSE PSNR MSE PSNR MSE PSNR 

Lena 37.911 7.339 dB 39.374 9.237 dB 39.510 9.373 dB 

Baboon 38.436 7.615 dB 39.679 9.542 dB 39.634 9.497 dB 

Cameraman 30.557 7.166 dB 32.531 8.415 dB 31.796 7.68 dB 

Zelda 38.125 7.727 dB 39.023 8.886 dB 38.758 8.621 dB 

Table 2. Quality assessment (UACI and NPCR) 

Plain Image 
Proposed Method Arif et al. [21] Anees et al. [19] 

UACI NPCR UACI NPCR UACI NPCR 

Lena 33.50 99.60 33.48 99.61 0.00011 0.00038 

Baboon 33.50 99.60 33.43 99.60 0.00025 0.00152 

Cameraman 33.49 99.60 33.48 99.60 0.00105 0.00038 

Zelda 33.50 99.60 33.54 99.61 0.00013 0.00038 

Table 3. Autoencoder architecture 

Layer Name Type Kernel Size Stride Output Shape Activation 

Input Input layer - - (256,256,1) - 

Conv1 Conv2D 3×3 1 (256,256,32) ReLU 

Conv2 Conv2D 3×3 2 (128,128,64) ReLU 

Conv3 Conv2D 3×3 2 (64,64,128) ReLU 

Bottleneck (Latent) 3×3 2 (32, 32,256) ReLU 

Table 4. Dencoder architecture 

Layer Name Type Kernel Size Stride Output Shape Activation 

Deconv1 Conv2DTranspose 3×3 2 (64,64,128) ReLU 

Deconv2 Conv2DTranspose 3×3 2 (128,128,64) ReLU 

Deconv3 Conv2DTranspose 3×3 2 (256,256,32) ReLU 

Output Conv2D 3×3 1 (256,256,1) Sigmoid 

(a) Plain image (b) Our methods (c) Arif et al. [21]

(d) Anees et al. [19] (e) Decrypted

Figure 4. Visualization comparison 

UACI and NPCR are critical metrics in evaluating the 

sensitivity and security robustness of an encryption algorithm 

against differential attacks. A high UACI value, ideally around 

33%, indicates that even a minor change in the plaintext (e.g., 

flipping one pixel) leads to a significant average change in the 

encrypted image’s pixel intensities. Similarly, a high NPCR 

value, typically above 99%, signifies that most pixels in the 

cipher-image will change in response to slight variations in the 
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input. These characteristics demonstrate that the proposed 

method achieves strong diffusion and confusion properties, 

making it highly resistant to statistical or differential 

cryptanalysis. 

4.3 Deep learning parameter 

To improve the encryption process via deep feature 

transformation, a convolutional autoencoder model was 

utilized. This model consists of an encoder to obtain deep 

hierarchical features from the input encrypted image, and a 

decoder responsible for the generation of the transformed 

cipher form. The encoder compresses the spatial information 

hierarchically to a latent space, while the decoder expands it 

subsequently, maintaining the encrypted features. This 

structure ensures that the key patterns become masked at the 

feature level, and thus the security of the encryption system 

improves. The configurations of the encoder and decoder 

layers utilized in the proposed approach are described in detail 

in Tables 3 and 4, respectively.  

4.4 Visual comparison stages 

To confirm the effectiveness of the new hybrid encryption 

approach, a comparative illustration is given in Figure 4. This 

figure represents a chain of images giving different phases and 

encryption methodologies. Particularly, the original plain 

image is given in Figure 4(a) while the encrypted result 

obtained from the proposed chaotic-deep learning approach 

has been illustrated in Figure 4(b). To make the comparison 

easier, Figures 4(c) and 4(d) give the results of encryption 

achieved by the conventional schemes proposed by Arif et al. 

[21] and Anees et al. [19], respectively. Finally, the decrypted

image after applying the inverse logistic map and decoding

process is illustrated in Figure 4(e). This confirms the

successful reconstruction and validates the proposed method's

reversibility and integrity.

Experimental evaluation results presented through 

quantitative metrics such as MSE, PSNR, NPCR, and UACI 

show that the proposed encryption approach is capable of 

generating cipher-images with high distortion and low 

correlation to the plaintext. High MSE and low PSNR values 

indicate significant visual transformation success between the 

original and encrypted images, while NPCR values above 99% 

and UACI above 33% confirm the system's robustness against 

differential attacks, including attacks on slightly modified 

plaintexts. These advantages are further strengthened through 

histogram visualization and spatial comparison, where the 

encrypted images show even intensity distribution and loss of 

regular patterns. Compared with the methods of Arif et al. [21] 

and Anees et al. [19], the proposed system is able to maintain 

a better level of security, especially in terms of spatial 

randomization and resistance to visual analysis-based 

decryption. Further analysis shows that the application of 

convolutional autoencoders makes a significant contribution 

in obscuring the remaining spatial information from chaos-

based encryption results. CNN is able to extract non-linear 

features and project images into high-dimensional abstract 

representations, thus strengthening the second layer of 

protection that pure chaotic systems do not have. This can be 

seen from the visual comparison between the proposed method 

and previous approaches, where the encrypted images in this 

method are more random, do not display pattern structures, 

and are more resistant to segmentation or recovery processes 

based on machine learning. Thus, the use of deep learning as 

an additional obfuscation component is a crucial aspect that 

distinguishes this research from methods that only rely on 

chaos transformation. 

The main contribution of this research lies in the integration 

of two different but complementary approaches, namely 

logistic map-based chaotic systems and deep learning 

techniques through autoencoders. This hybrid scheme not only 

improves the quality of encryption from a statistical 

perspective, but also creates a model that is adaptive, scalable, 

and has high flexibility in handling various types of images, 

such as complex textured and highly correlated images. This 

combination produces a cipher-image that is difficult to 

reconstruct without a key, while enriching the key space and 

expanding the space of encryption possibilities. In addition, 

while maintaining computational efficiency and lightweight 

network structure, this model allows for application in real-

time systems, such as image transmission in IoT networks or 

video surveillance security in the public domain. 

5. CONCLUSIONS

This study proposes a symmetric image encryption scheme 

based on a hybrid approach that combines a chaotic logistic 

map system with a deep convolutional autoencoder. In the 

initial stage, the image is secured through permutation, 

substitution, and masking processes using pseudo-random 

sequences generated from the logistic map. Furthermore, the 

initial encrypted image is further processed by a convolutional 

autoencoder network to deepen the spatial structure 

obscuration and increase the complexity of the cipher-image. 

This two-stage approach effectively combines deterministic 

randomness with the non-linear capabilities of deep learning, 

creating an encryption system that is resilient to statistical and 

differential attacks. Experimental results show that the 

proposed method has superior performance compared to 

previous methods, both in terms of MSE and PSNR values that 

indicate the optimal distortion level, as well as in security 

metrics such as NPCR and UACI that are close to the ideal 

maximum value. Histogram visualization and correlation tests 

prove that the original image structure is successfully 

obfuscated completely, and the resulting cipher-image does 

not provide explicit information that can be exploited by 

attackers. In addition, the maintained processing efficiency 

indicates that this method has the potential to be implemented 

in real-time systems or applications with limited resources. 

For further research, model development can be focused on 

expanding the key space through a combination of multi-

chaotic systems or higher-dimensional chaos algorithms such 

as Chen or Lorenz. Additionally, the use of advanced deep 

learning models such as the Transformer architecture can be 

explored to further enhance semantic-level obfuscation 

beyond the spatial domain. Implementing Vision Transformer 

(ViT) or Swin Transformer could offer improved abstraction 

of image features and stronger resistance to deep 

reconstruction attacks. Furthermore, the extension of this 

approach to dynamic visual data such as encrypted video 

frames or real-time image streams in IoT edge devices is a 

promising direction to improve the practical security of 

intelligent surveillance systems and data-sensitive 

applications. 
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