
Evolution of Automated Penetration Testing: Toolchains, Integration Strategies, and

Operational Challenges

Vijaykumar Bidve1 , Kiran Kakade2 , Priyanka Paygude3 , Ranjeet Vasant Bidwe4* , Sunil Sangve5 ,

Aryani Gangadhara6

1 School of CSIT, Symbiosis Skills and Professional University, Pune 412101, India
2 Faculty of Management, Symbiosis Institute of Management Studies, Symbiosis International (Deemed University), Pune

411020, India
3 Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune 411043, India
4 Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune 412115, India
5 Vishwakarma Institute of Technology, Pune 411037, India
6 D. Y. Patil College of Engineering, Pune 411044, India

Corresponding Author Email: ranjeet.bidwe@sitpune.edu.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150720 ABSTRACT

Received: 9 June 2025

Revised: 10 July 2025

Accepted: 20 July 2025

Available online: 31 July 2025

As organizations become increasingly reliant on digital infrastructure, their exposure to

cyber threats escalates. Penetration testing (PT) is vital for identifying vulnerabilities and

strengthening security frameworks. This study explores the evolution of automated

penetration testing (APT), analyzing its advantages over traditional manual methods in

terms of scalability, efficiency, and consistency. The core contribution of this work is the

development of a Python-based graphical user interface (GUI) platform that seamlessly

integrates leading APT tools—such as OWASP ZAP, Burp Suite, Vega, and FOCA—into

a unified, customizable environment. This integrated approach improves detection

accuracy, optimizes multi-tool workflows, and enhances user experience. The system also

includes robust vulnerability classification, live scanning feedback, and advanced

reporting features. A comprehensive taxonomy of 75+ web-based vulnerabilities is

curated and used to evaluate tool capabilities, highlighting strengths in automated

detection and limitations in logic-driven exploits. The findings emphasize that such

integrated platforms can empower cybersecurity teams by automating routine testing,

reducing manual load, and supporting continuous security validation. This research

presents a significant step toward scalable, user-centric cybersecurity solutions suitable

for evolving digital landscapes.

Keywords:

automated penetration testing, GUI

integration, vulnerability detection

automation, Python security tools,

cybersecurity frameworks, web application

security, toolchain integration

1. INTRODUCTION

In the fast-changing digital era, cybersecurity has emerged

as a cornerstone of organizational resilience and reliability.

Ensuring strong defences against cyber threats has never been

more vital given the proliferation of linked systems and the

complexity of contemporary IT infrastructures. A proactive

cybersecurity tool, penetration testing mimics actual

cyberattacks to find and reduce information system and

network weaknesses. Traditionally, penetration testing has

depended mostly on manual work by skilled, ethical hackers

[1, 2]. These experts carefully examine systems, evaluate

weaknesses, and suggest mitigating measures. The limitations

of manual penetration testing, like a lack of scalability, human

error, have led to a growing trend in automation as IT

ecosystems scale, becoming fibrous and leveraging advanced

tools and technologies for efficiency and efficacy. Software

programs and scripts that replicate antivirus and malicious

access are called penetration testing (or pen-testing) software

tools. In other words, software tools and scripts simulate hacks

to detect weaknesses, provide evidence of cyberattacks, and

measure resilience [3, 4]. Automation is associated with many

different tasks that would otherwise be done by hand, such as

vulnerability management, fraud detection, and reporting.

Burp Suite and OWASP ZAP are such valuable assets in this

scenario as they provide several features to ease scanning,

vulnerability discovery, and analysis.

The emergence of technologies that satisfy the increasing

demand for cybersecurity measures that are quicker, more

scalable, and more dependable [5, 6] has taken place. ence,

have significantly modified automated penetration testing.

These tools can analyse large volumes of information to detect

anomalies and learn from their predecessors, selecting

vulnerabilities for security teams. By integrating multiple

technologies into a single platform, automated testing has

become dramatically better [7, 8]. All the modern GUI updates

in the tool, like OWASP ZAP, Burp Suite, FOCA, and Vega,

allow for full security testing. These things can manage SQL

injection, cross-site scripting, server-side template injection,

etc. As cyber threats evolve, so do the methods and tools used.

International Journal of Safety and Security Engineering
Vol. 15, No. 7, July, 2025, pp. 1527-1539

Journal homepage: http://iieta.org/journals/ijsse

1527

https://orcid.org/0000-0001-6490-9262
https://orcid.org/0000-0003-0556-3390
https://orcid.org/0000-0002-3162-8453
https://orcid.org/0000-0002-6801-3102
https://orcid.org/0000-0002-6140-0134
https://orcid.org/0009-0007-8398-8729
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150720&domain=pdf

Automated penetration testing will use advanced technology

in the future, for example, they will make use of AI modelling

and predictive techniques [9, 10]. As companies increasingly

rely on automated solutions, it will be necessary to build a

culture that prevents cybercrimes. This requires funding

training programs, raising awareness about cybersecurity

practices, and promoting collaboration between automated

systems and human testers. Cybersecurity decision-making for

businesses can be less overwhelming when a balance is struck

between automated technology and human input. Automated

penetration testing has so many obvious benefits. Automated

systems have the edge against humans in testing complex

systems and scanning large networks [11]. In situations where

thoroughness and speed are crucial, this ability is particularly

important. Automation removes variability associated with

human testers by offering a consistent and repeatable testing

methodology. Using automated tools can help with the

execution of extensive testing with a higher cost-effectiveness

as compared to manual testing. With constant testing and

retesting, automation ensures that things are tested as you

change them. This ability is a must-have in agile development

settings because software is always changing, and so should

the security assessments [12, 13]. An automated penetration

testing tool can be utilized in a CI/CD pipeline as it enables

continuous testing during development and deployment.

Automated penetration has advantages as well as

disadvantages. One of the biggest challenges is that the

automated tools cannot replicate the creativity and intuition of

a good ethical hacker. While automated analyses can easily

locate obvious vulnerabilities and research patterns, they are

often blind to security problems that require judgment and

interpretation [14]. Also, false positive results from the

automated system require human validation. You won't be

able to foresee everything. If you automate, you will not be

able to adapt to things that lead to an unforeseen situation.

Its reliance on pre-existing scripts and algorithms limits its

capacity to respond to novel threats or intricate attack vectors.

As the uploaded paper emphasizes, ensuring robust

synchronization mechanisms and fault tolerance in distributed

automated testing systems remains a challenge that requires

further research and development.

Despite rapid advancements in the field of automated

penetration testing, a significant research gap persists in the

integration, usability, and operational coherence of existing

tools. Most automated testing solutions currently available on

the market operate as standalone utilities with minimal

interoperability. Security professionals are required to

manually coordinate multiple tools—each with its own

interface, configuration schema, and output formats—which

leads to redundant efforts, inconsistent findings, and

heightened operational complexity. This tool fragmentation

often results in incomplete vulnerability assessments, poor

remediation prioritization, and an increased risk of false

positives or negatives due to contextual loss between tools.

The central research problem addressed in this study is the

absence of a consolidated, extensible, and GUI-based

framework that integrates commonly used penetration testing

tools into a single, cohesive automation platform. Furthermore,

while some tools provide scripting support or API-level

automation, they often lack visual oversight, concurrent

execution, or the ability to customize vulnerability scans in

real-time through a user-friendly interface. These limitations

pose a considerable barrier, especially for small- and mid-

sized enterprises that lack dedicated security teams or

advanced technical resources.

In response to this problem, the primary objective of this

research is to design and develop a Python-powered graphical

user interface (GUI) platform that seamlessly integrates

widely adopted penetration testing tools—namely OWASP

ZAP, Burp Suite Professional, FOCA, and Vega—into a

unified dashboard. This platform is designed to automate

routine vulnerability detection tasks, enhance tool

orchestration through robust RESTful API communication,

and provide centralized control over scan parameters, tool

configurations, and report generation. Additionally, the

system emphasizes secure coding practices and leverages

advanced Python capabilities such as multi-threading and

multiprocessing to optimize performance and reduce latency

during concurrent scans.

Another critical aspect of the proposed solution is its

modular and extensible architecture, which enables users to

add, update, or replace integrated tools without disrupting the

overall workflow. This adaptability ensures that the platform

remains future-proof and capable of incorporating newer

vulnerability categories, evolving threat models, and

customized scanning policies. Importantly, the system is

designed with a focus on accessibility and scalability—

making it equally viable for cybersecurity experts and system

administrators with minimal prior experience in offensive

security testing.

By achieving these objectives, the proposed research

contributes a practical and technically robust solution that

addresses key limitations of current penetration testing

workflows. The resulting platform not only streamlines the

vulnerability assessment process but also bridges the gap

between manual and automated testing paradigms. This paper

presents a detailed account of the platform’s design

architecture, implementation strategy, experimental validation,

and performance benchmarking, along with specific future

directions aimed at improving real-time detection accuracy,

GUI-based customization, and adaptive threat modeling in

dynamic web application environments.

2. LITERATURE SURVEY

An essential component of cybersecurity is penetration

testing, which finds flaws in systems or networks before

attackers take advantage of them. It involves modelling

cyberattacks to evaluate the effectiveness of security measures.

It targets individuals, offices, buildings, and computer systems

to ensure proper setup and prevent illegal access. Penetration

testing is a common practice in organisations to strengthen

cybersecurity defences. McDermott's [15] paper "Attack Net

Penetration Testing" discusses methods to detect, approach,

and eliminate system errors using the "error scheduling

method.". This thesis focuses on the sixth step in the MiTM

attack process, enhancing and applying errors. McDermott's

attack network structure is used, with intermediate and final

goals identified as nodes on a map and commands. Input is a

token used to determine the current position on the map. Under

ideal circumstances, finding an easier route to the target or

using this route in a secondary attack can open the route for

further use. Mirjalili et al. [16] proposed designing and

developing a distributed framework for automated web

graphics testing. Its main components are an executor

executing an attack and a control unit called an orchestrator

that organizes it in a series of layers. Besides providing an

1528

integrated method, they defined a flexible method for

integrating external tools to achieve desired hacking goals by

mapping vulnerabilities of framework-integrated tools to

realize the full potential of this distributed framework, such as

scalability, distributed nature, and ease of use, enabling users

to create and deploy applications that leverage the resources

available quickly. This framework provides a comprehensive

solution for building a distributed hacking system, allowing

users to access, edit, and add tools to the system with minimal

user-friendly effort, making their attacks more efficient and

respond quickly to changing circumstances to exploit

vulnerabilities before they are patched. As a result, the system

enables users to be nimble and agile when exploiting

vulnerabilities, allowing them to stay ahead of their opponents.

This gives users unprecedented power and flexibility in their

hacking activities.

Consumers looking to improve their cybersecurity can get

help through a multi-pronged hacking system. Although

distributed hacking has its advantages, there is a problem,

which is the process synchronization. Nonetheless, it is

hampered or limited by its need for global expertise and

resources, as well as global security awareness, fault tolerance,

and error recovery. Fredz et al. [1] described ten major attacks

related to web apps based on the famous web vulnerabilities

of the Open Web Application Security Project (OWASP)

project. Recommended edge web threats and associated

countermeasures were discussed and covered in this paper.

The authors of this paper provided a summary of the OWASP

Top 10 Web Application Security Risks as well as full

explanations and graphical details that show how each risk has

evolved through time. The report talked about web security

and how different types of threats affect various businesses,

and how different security initiatives affect different

businesses. They talked about the best ways to handle security

risks and policies. The Study will help businesses understand

web application security and implement the right

countermeasures. With this summary of the OWASP Top 10,

this report hopes to aid businesses in proactively preventing

issues with their web applications. In a bid to strengthen their

web applications, firms adopted risk reduction methods,

acknowledged OWASP’s Top 10 security concerns and

understood the current threat landscape. The study also

revealed the need to educate web application developers about

the Top 10 vulnerabilities identified by OWASP and the use

of safe coding practices. They also discussed how to stop them

and how to test web application vulnerabilities via automated

security scans. Neha [17]’s thesis, Automated Penetration

Testing, examines the necessity of having an automated

penetration testing in order to reduce the time and cost

involved in manual penetration analysis. Doing penetration

testing early and often during network or software

development stages is easier and cheaper. It takes time to

identify or resolve issues instead of waiting until the end of the

process. The paper developed a web-based system that

launched various vulnerable exploitation (DoS) attacks. The

application was able to handle basic DoS attacks using three

protocols: Hypertext Transfer Protocol (HTTP), Session

Initiation Protocol (SIP), and Message Control

Protocol/Internet Protocol (TCP/IP). There were up to two to

twenty attacks for each protocol. The rich man, a friendly

interface, accepts the input of an IP address for an attack and

the port number that identifies that attack. The application

completed this attack with one user-friendly interface, making

penetration testing easier than manual attacks. The weakness

of this approach is that it will be scaled up in the future, and

there is a need to continue using external systems to gather

information before attacking. It wasn't his first architecture

that was established; application development is limited and

possibly inefficient. The lack of integration of a port or IP

discovery program is reduced. The intelligent and dynamic

nature of the system. This thesis aims to build a framework

that can be established before developing a web application to

ensure long-term viability and integrate systems for full

system functionality. Roy et al. [18] offer a taxonomy-based

survey in their comprehensive analysis of adversarial

reconnaissance strategies. Reconnoitering tactics such as

target footprinting, social engineering, network scanning, and

local discovery are categorized by the taxonomy according to

their technological approach. Doupé et al. [2] evaluated ten

web application evaluation tools: Acunetix, AppScan,

BurpSuite, Arachni, Hailstorm, NTOSpider, Paros, N-Stalker,

Webinspect, and W3af. These resources were chosen with

consideration for both commercial and open-source scanners.

Hu et al. [19] provided a thorough analysis of the state-of-the-

art security vulnerability detection technology and the process

of developing machine learning technology. A cross-site

scripting security vulnerability detection model for web

applications is designed and implemented, and the

requirements of the security vulnerability detection model are

fully analyzed. By adding the verification code identification

function, the issue of data submission to the server requiring

the verification code only to be entered is resolved. This

function is based on the current network vulnerability

detection technology and tools. Li [20] coordinated industry

norms. Development teams can review and address code

vulnerabilities to reduce false positives found in static scans

and penetration tests, aiming for increased accuracy of the

findings. This application security framework combines the

top 10 OWASP vulnerabilities and 25 dangerous CWE/SANS

software errors in a matrix with Checkmarx vulnerability

queries. Using Checkmarx vulnerabilities queries to map

OWASP/SANS, defects, and vulnerabilities are shown to be

managed more effectively. Noman et al. [21] provided a

literature assessment summarizing security solutions and

significant flaws to stimulate more study by constructing a

system of the current approaches on a larger horizon. They

stated that more research on digital information security is

needed because there is no way to mitigate all online

vulnerabilities fully. Additionally, they spoke about how

complicated the procedures in the survey were and offered

some advice on how to use them. Luo et al. [22] OWASP

identifies the most important network vulnerabilities

according to the Top 10, including their associated attacks and

countermeasures. They also proposed an application that

provides protection against the most severe attacks by web

applications and prevents some zero-day exploits. Amankwah

et al. [10] used two insecure online apps, WebGoat, and Damn

insecure online Application, to compare the vulnerability

detection skills of eight web vulnerability scanners (both open

and commercial). OWASP ZAP, IBM AppScan, Acunetix, HP

WebInspect, Vega, Iron WASP, Skipfish, and Arachni were

the eight WVSs examined. Multiple assessment metrics were

used to assess the performance, including the web application

security scanner evaluation criteria, Youden index, precision,

recall, and OWASP web benchmark evaluation. The

experiment's findings demonstrate that, although commercial

scanners are effective in identifying security flaws, some

open-source scanners (like ZAP and Skipfish) can also

1529

succeed.

2.1 Summary of literature review

This section provides a details summary of the literature

review. As shown in Table 1, the focus of the summary is to

find gaps in the literature and possible solutions to overcome

the gaps. A total of eleven papers from the literature are

reviewed, and a summary is provided.

Table 1. Gap analysis between the research papers

Sr.

No.
Source GAP Analysis Suggested Solution

1

McDermott [15]'s paper

"Attack Net Penetration

Testing"

Lacks a detailed description of

leveraging automated tools and

frameworks for efficient and scalable

testing.

Include automated penetration testing tools and frameworks in

McDermott's process. Apply machine learning methods to

find and give priority to weaknesses for improved scalability

and production.

2

Mirjalili et al. [16]'s

Framework for Automated

Web Graphics Testing

Lacks robust synchronization

mechanisms and fault tolerance

capabilities in its distributed

approach.

Strengthen the system by means of better process

synchronization methods and fault tolerance mechanisms.

Include sophisticated error recovery techniques to guarantee

the stability and dependability of the distributed hacking

system.

3

Fredz et al. [1]'s Report on

Web Application Security

Risks and Countermeasures

Provides an overview of security

risks and countermeasures but lacks

detailed guidance on implementing

secure coding practices and

educating developers.

Create thorough training courses for web developers on

OWASP Top 10 vulnerabilities and secure coding techniques.

Include automated security scanning tools in the development

process for early vulnerability detection.

4

Neha [17]'s Thesis on

Automated Penetration

Testing

Introduces a web-based system for

automated penetration testing, but

lacks scalability and integration with

external systems for information

gathering.

By means of resource use and parallel processing strategies,

improve the scalability of the system. Include outside systems

for information collecting and reconnaissance to improve

efficiency.

10

Evaluation of adversarial

reconnaissance techniques

by Roy et al. [18]

Classifies analytical methods but

lacks practical application guidelines

and real-world case studies.

Create realistic case studies and useful recommendations for

applying adversary survey methods in actual scenarios. Give

security experts hands-on training for improved knowledge

and application.

11

Doupé et al. [2]'s

Assessment of Web

Application Assessment

Tools

It provides insight into various web

application analysis tools but lacks a

comparative analysis of their

effectiveness in detecting specific

vulnerabilities.

Perform a detailed comparative analysis of web application

analysis tools based on their ability to detect particular

vulnerabilities. Develop and incorporate a scoring system for

evaluating the effectiveness of the tools.

12

Research by Hu et al. [19]

and colleagues on Security

Vulnerability Detection

Technology

Identifies a model for detecting

security vulnerabilities but lacks a

demonstration of effectiveness

through a real-world application.

Conduct comprehensive testing and deployment in varied

environments—partner with industry stakeholders to collect

feedback and enhance the model according to real-world

utility.

13
Li [20]'s Application

Security Framework

It focuses on elevating the precision

of identifying vulnerabilities but

falls short in aligning with current

development methodologies and

tools.

Assimilate Li's framework into existing software development

practices and create supplementary tools such as plugins for

widely used Integrated Development Environments (IDEs)

and CI/CD systems. This facilitates automatic vulnerability

assessments during development phases.

14
The literature survey by

Noman et al. [21]

Catalogs prevalent web security

measures and vulnerabilities but do

not provide tailored strategies to

combat nascent security threats.

Carry on research to identify and reduce new web security

risks. Create a cooperative network with academic and

business organizations to guarantee a constant update on

innovative security technologies.

15
The initiative by Luo et al.

[22]

Proposes a system to safeguard web

applications but overlooks the

necessity for ongoing surveillance

and periodic updates to keep pace

with new threats.

Maintain strong defense mechanisms against changing threats

by using real-time threat detection systems and setting a

schedule for consistent software updates and patches.

16
The study by Amankwah et

al. [10]

It analyzes the efficacy of web

vulnerability scanners but lacks an

exhaustive evaluation of their user-

friendliness and integration features.

Expand the evaluation criteria to include elements such as

user-friendliness, integration flexibility, and support for

customization. Provide thorough instructions for selecting and

configuring web vulnerability scanners designed to fit the

particular requirements of various companies to improve their

usefulness and efficacy.

Though still with room for development in several areas, the

evolution of automated penetration testing (APT) has solved

many conventional security issues. McDermott's work on

attack network penetration testing emphasizes the need for a

thorough method to include automated tools and frameworks

for scalable and efficient testing. In order to fill this gap, output

and efficiency will be significantly increased by employing

machine learning techniques to identify and prioritize

weaknesses. Similarly, the automated web graphics testing

system developed by Mirjalili et al. [16] is deficient in

synchronization and fault tolerance features. These

capabilities would include enhancing the framework's

scalability and reliability through the use of robust

synchronization techniques and advanced error recovery

1530

strategies. The web application security risk studies by Fredz

et al. [1] point out flaws but don't provide any helpful guidance

on secure coding practices or developer education. Developers

could receive OWASP training. Their development processes

can incorporate automated scanning tools and the top ten

vulnerabilities to offer a solution. Although Neha Samantha's

APT thesis provides a web-based solution, it ignores

scalability and integration with external systems. By

maximizing resource utilization, utilizing parallel processing

techniques, and permitting seamless integration with

reconnaissance systems, these limitations can be addressed.

The classification of adversarial reconnaissance techniques by

Roy et al. [18] and other studies emphasizes the necessity of

real-world case studies and practical application guidelines.

The gap between theoretical models and their implementation

will be reduced with practical training and the development of

practical guidelines for these techniques. Similarly, Doupé et

al. [2]'s assessment of web vulnerability tools offers useful

analysis but no efficacy comparison. Businesses would be

better guided in their tool selection if these tools were scored

based on specific vulnerabilities. Hu et al. [19]'s work on

security vulnerability detection technology provides a model,

despite the lack of practical testing. The effectiveness of the

same can be checked and made better by working with the

industry players for extensive testing and collection of

feedback. Jinfeng Li's method may accurately identify flaws,

but it is not consistent with contemporary development

procedures. To make sure it gets adopted by development

cycles, we will integrate it with CI/CD systems and create IDE

plugins. Noman et al. [21] literature review missed the

emerging issues and talked about current web security

practices. To keep up with the changing threat landscape,

research projects and collaborations with academic and

commercial organizations are necessary. Just like before, Luo

et al. [22] thinks the web application security project doesn’t

require updates or monitoring. To defend against evolving

threats, real-time threat detection systems are implemented

that are regularly updated. Amankwah et al. [10] compared

web vulnerability scanners, and while they had no user-

centered assessment standards, it is useful. If integration's

customization and usability are incorporated into the study, the

organization will choose tools to meet operational

requirements. By promoting a proactive and vigorous digital

defense ecosystem, these advances in automated penetration

testing research have the potential to significantly advance

cybersecurity endeavors.

Despite the considerable advancements made in the field of

automated penetration testing (APT), a critical gap remains

unaddressed in the literature—the lack of an integrated,

scalable, and user-friendly solution that consolidates the

strengths of multiple APT tools into a unified platform. Most

existing frameworks and tools either operate in isolation or

provide limited support for orchestrating multi-tool workflows.

Studies such as those by Mirjalili et al. [16] and Neha [17]

have proposed distributed or web-based architectures, but they

often fall short in areas like process synchronization,

centralized reporting, scalability, and real-time configurability.

Similarly, comparative analyses of vulnerability scanners tend

to emphasize detection accuracy or coverage but rarely assess

usability, interoperability, or support for continuous

integration pipelines.

This study positions itself as a distinct contribution by

addressing these shortcomings through the development of a

Python-based graphical user interface (GUI) platform that

brings together widely-used APT tools—including OWASP

ZAP, Burp Suite, FOCA, and Vega—within a single, cohesive

environment. The platform supports multi-threaded

vulnerability scanning, real-time result visualization,

customizable scanning parameters, and a robust reporting

module that classifies vulnerabilities by severity and

recommends mitigation strategies. Importantly, the system is

designed with accessibility and extensibility in mind, allowing

both novice and experienced cybersecurity professionals to

perform comprehensive assessments without needing to

manually operate or switch between tools. Furthermore, the

proposed framework introduces a curated taxonomy of over

75 security vulnerabilities, offering a systematic evaluation of

how integrated tools perform across diverse attack vectors,

including advanced threats such as GraphQL injection,

insecure CORS configurations, and cross-site WebSocket

hijacking.

By unifying toolchains and abstracting complex security

operations through a modular, GUI-driven platform, this

research bridges the gap between academic exploration and

practical application. It not only enhances efficiency and

scalability in penetration testing workflows but also

democratizes access to advanced security assessments—

marking a significant advancement in the field of automated

cybersecurity solutions.

3. METHODOLOGY

The aim of this project is to develop an advanced graphical

user interface (GUI) that integrates a number of leading

automated penetration testing tools within one consolidated

platform. This platform raises the level as well as the accuracy

in detecting and managing vulnerabilities on websites through

advanced Python programming. The GUI leverages the

capabilities of popular security tools like Vega, Burp Suite

Professional, FOCA, and OWASP ZAP. Individually, each

tool is greatly competent; comprehensively scanning web

applications-FOCA-discovering hidden information in

documents-Burp Suite, performing vulnerability assessments

with numerous options for customization, and enhancing

scanning and crawling capabilities-Vega-. The strategic

integration offered through a single interface provides for both

a comprehensive security assessment and user experience.

Python is used in the GUI backend because it is flexible and

has great libraries for complex security operations. The Python

framework has been carefully designed to make scanning

easier and improve data management and error handling by

automating APIs between tools. Further, the system

performance can be improved with actual complex

programming styles such as multi-threading and

multiprocessing to run multiple scans at once without

compromising on accuracy or speed. Secure coding practices

are emphasized to keep data confidential and ensure its

integrity during the life cycle of the platform. The GUI has

been designed to be as simple and functionally efficient as

possible, offering users a central dashboard with up-to-the-

moment progress details during scans and full analyses of

discovered vulnerabilities. Users may change the settings of

each integrated tool directly from here to customize their scans

according to their specific security needs and corporate

guidelines. An overview tool in the GUI performs a thorough

vulnerability assessment, classifies them by severity level, and

gives helpful remediation recommendations. Furthermore, the

1531

system has very strong reporting features for compliance and

other documentation needs. The GUI possesses an active

updating and improvement system that helps in managing

ever-changing cybersecurity threats. This system makes sure

that the methodologies for scanning, as well as all the

integrated tools, keep getting updated regularly based on new

security research and feedback from users. It enables the

platform to be proactive and to continuously stay ahead of the

rapidly developing technology landscape, which enables it to

effectively address emerging security threats. At the end, I'm

striving to take penetration testing to the masses with the help

of a proposed Web-GUI-based Automated Penetration Testing.

The project's goal is to make analyzing security accessible to

users at all levels, from system administrators to security

experts. This approach is designed to substantially increase the

organization's capacity to defend against sophisticated web-

based threats by leveraging the functionality provided by a

number of purposely tailored tools, deploying them in a single

and easy-to-use solution, and supporting them with top-notch

Python programming focused on the best user experience and

data security. This user-first focus means the platform remains

scalable and versatile, up to date with the latest cybersecurity

requirements, and relevant in a continually changing digital

environment. Types of vulnerabilities are listed in Table 2, and

Table 3 compares BurpSuite Professional to OWASP Zap.

Table 2. Types of vulnerabilities used for advanced coding

Vulnerability Description Types

1 SQL Injection

(SQLi)

One common vulnerability out there is SQL injection. This

happens when someone sneaks insert malicious SQL code into

the input fields of a web application.

- In-band SQLi: Error-Based, Union-Based-

Inferential SQLi (Blind SQLi): Time-Based

Blind, Boolean-Based Blind- Time-Based

SQLi- Out-of-band SQLi

2 Cross-Site

Scripting (XSS)

XSS occurs when an attacker injects harmful scripts into

webpages that are later viewed by other users. Such scripts can

hijack websites, exfiltrate session cookies, or redirect users to

malicious websites.

- Stored XSS- Reflected XSS- DOM-based XSS

3 Cross-Site

Request Forgery

(CSRF)

A CSRF attack tricks the user’s browser into making arbitrary

requests to the web application, and hence potentially initiate

unauthorised actions on behalf of the user.

- Send two cookies to CSRF- Token-based

CSRF- Origin Check CSRF

4 Server-Side

Request Forgery

(SSRF)

SSRF is a hacker asking the server for something on their

behalf and using that to gain access to your internal systems or

to cause damage.

- Blind SSRF- Semi-blind SSRF

5 Broken Access

Control

This flaw allows unauthorized users to access certain features

or data.

- Insecure Direct Object References (IDOR)-

Access control for lack of work levels-

Excessive privileges

6 CRLF Injection When an attacker puts certain characters into input fields to

change HTTP replies, CRLF injection happens.

- HTTP Response Fragmentation- Log Injection

7 PHP Object

Injection

When attackers tamper with serialized PHP objects, PHP

Object Injection happens and allows them to run arbitrary code

or carry out illegal activities.

- PHP Code Injection via Serialization

8 Cross-Site

WebSocket

Hijacking

WebSocket across websites. Attackers are said to be hijacking

WebSocket connections when they use them to access private

data or engage in illicit activity.

- WebSocket Secure Flag Bypass

9 GraphQL

Injection

The technique of injecting malicious GraphQL queries to

exploit GraphQL API flaws is known as GraphQL Injection.

- Batch GraphQL Injection- GraphQL Query

Injection

10 XML External

Entity (XXE)

GraphQL Injection is the process of inserting malicious

GraphQL queries to take advantage of GraphQL API

vulnerabilities.

- Blind XXE- Error-based XXE

11 Insecure Storage

of JWT

Weaknesses related to the handling and storage of JSON Web

Tokens (JWT) are referred to as "insecure storage of JWT"

and may lead to session manipulation or unauthorized access.

- None Algorithm JWT- Weak Secret Key

12 Web Cache

Poisoning

Web Cache Poisoning is the result of attackers manipulating

web cache systems to expose users to dangerous content or get

around security measures.

- Header Cache Poisoning- Parameter Cache

Poisoning

13 Security

Misconfigurations

Safety Improper setup of servers, frameworks, or applications

causes misconfigurations that produce weaknesses and

possible attacker exploitation.

- Misconfigured HTTP Headers- Misconfigured

Error Handling- Exposed Sensitive Files

14 Cross-Site Script

Inclusion (XSSI)

Cross-site scripting Inclusion means adding JSONP endpoints

or external JavaScript files to web applications, which causes

XSS flaws.

- XSSI in JSONP Endpoints- XSSI in

JavaScript Files

15 HTML Injection When attackers insert harmful HTML code into web

applications, HTML Injection results in XSS vulnerabilities or

other security issues.

- POST-based HTML Injection- GET-based

HTML Injection

16 Server-Side

JavaScript

Injection

Server-side JavaScript Injection is the process of inserting

harmful JavaScript code into server-side components,

therefore causing remote code execution or other security

breaches.

- Node.js Route Injection- Template Engine

Injection

17 Insecure Direct

Object Reference

(IDOR)

Insecure Direct Object Reference happens when attackers can

change object references in an application to obtain

unapproved resources or carry out unapproved activities.

- Enumeration via IDOR- Unauthorized Data

Access via IDOR

18 OS Command When attackers run arbitrary operating system commands on a - Blind OS Command Injection- Interactive OS

1532

Injection server, OS Command Injection results in unauthorised access

or data leakage.

Command Injection

19 Client-Side

JavaScript

Injection

Client-side JavaScript Injection is the process of inserting

harmful JavaScript code into client-side components, therefore

causing XSS vulnerabilities or other security problems.

- DOM XSS via JavaScript Injection-

JavaScript URL Redirection

20 Content Security

Policy (CSP)

Bypass

Content Security Policy Bypass involves bypassing CSP

restrictions to execute malicious scripts or access unauthorized

resources.

- Unsafe Inline Policy Bypass- Untrusted

Source Allowlist Bypass

21 XPath Injection XPath Injection occurs when attackers can manipulate XPath

queries to exploit vulnerabilities in XML-based applications.

- Blind XPath Injection- Error-based XPath

Injection

22 LDAP Injection LDAP Injection involves injecting malicious LDAP queries to

exploit vulnerabilities in LDAP-based applications.

- Blind LDAP Injection- Error-based LDAP

Injection

23 Remote Code

Execution (RCE)

Remote Code Execution occurs when attackers can execute

arbitrary code on a server, leading to unauthorized access, data

leakage, or system compromise.

- Remote Shell Upload- Remote Code

Evaluation

24 Server-Side

Template

Injection (SSTI)

Template on the server side Injection is the process of putting

harmful code into server-side templates, therefore causing

remote code execution or other security breaches.

- Basic SSTI- Advanced SSTI in Template

Engines

25 Clickjacking Clickjacking is the practice of deceiving people into clicking

on concealed or disguised parts of a website, therefore causing

unauthorised activity or information leaking.

- Frame Busting Bypass- UI Redressing Attack

26 HTTP Parameter

Pollution (HPP)

When attackers alter HTTP parameters to circumvent security

controls, access illegal resources, or carry out other harmful

activities, they cause HTTP Parameter Pollution.

- HPP in Web Forms- HPP in URL Parameters

27 Frame Injection

Hijacking

Injection Framing Hijacking is the act of putting harmful

material into frames on a web page, therefore causing

unauthorised activity or information leaking.

- Frame Injection Through Man-in-the-Middle

(also known as Cross-Frame Scripting)

28 Insecure

Cryptographic

Storage

Unsafe storage of sensitive information in Insecure

Cryptographic Storage results in data being released or

accessed by unauthorized parties.

- Weak Encryption Algorithms- Insecure Key

Management

29 Subdomain

Takeover

Subdomain Takeover means threat actors taking possession of

a subdomain of their target’s domain, which could let them do

something illicit or gain access.

- CNAME Record Subdomain Takeover-

Forgotten DNS Record Subdomain Takeover

30 File Path

Traversal

The act of modifying a file path of a server to gain access to

unauthorized folders or files is commonly referred to as file

path traversal.

- Local File Path Traversal- Remote File Path

Traversal

31 Cross-Site

Tracing (XST)

The method of using the HTTP TRACE method in an attack

that involves stealing cookies or scanning the network is called

cross-site tracing.

- XST with Cookie Capturing- XST with

Network Internal Probing

32 Remote File

Inclusion (RFI)

By abusing remote files, attackers can execute arbitrary code

or access files. This is what is referred to as file inclusion.

- Local RFI- Remote RFI

34 Unprotected APIs Embedding Bad CSS CSS Injection is the process of

introducing toxic CSS content to web pages to purposefully

change layout, create XSS opportunities, or otherwise damage

the visitor experience.

- Unauthenticated API Access- API Key

Leakage

35 Weak Password

Policies

Unprotected APIs reveal sensitive data or functionality lack of

proper authorization and authentication controls.

- Vulnerability to brute force- Weak Validation

for Password Recovery

36 XML-RPC

Vulnerability

Weak password policies are the root of problems, such as brute

forcing and password guessing, because they do little to secure

the user's password.

- Exploitation of Multicall in XML-RPC-

External Entity Injection for XML-RPC

37 Insecure CORS

(Cross-Origin

Resource

Sharing)

Vulnerabilities and threats of using XML-RPC services.

Potential unauthorized access or data leakage from the

organisation can occur by abusing XML-RPC services.

- Misconfigured CORS Feature Exploit- Origin

Bypass for CORS

38 User and Email

Enumeration

Improper configuration of Cross-Origin Resource Sharing

policies is a possible example of insecure CORS that could

allow access to confidential data and resources.

- Username Counting via Error Messages-

Email List Enumeration via Forgot Password

39 HTML5

Vulnerability

Attackers can leverage user and email enumeration to discover

valid usernames and email addresses with error warnings, or

use other techniques.

- Misuse of HTML5 Cross-Origin Resource

Sharing- Storage Security Vulnerability in

HTML5

40 Dependency

Confusion

This involves exploiting the cracks within HTML5

specifications or its functionalities that could expose to XSS

attacks or other security flaws.

- Attack Using Namespace Confusion- False

Packaging

41 Captcha Security

Bypass

Attackers could instill vulnerabilities by tricking computers

into accepting unsafe or illegal dependencies.

- OCR-based Captcha

42 Weak Login

Function

The process of bypassing CAPTCHA systems intended to

avoid misuse or spam from computer agents is called "captcha

security bypass".

- Credential Stuffing- Login Rate Limiting

Bypass

43 Weak TLS

Configuration

Flawed login procedures refer to a flaw in the system that

manages the authentication by which users can identify

themselves to the system, including the entry of login

- SSL/TLS Downgrade Attacks- Use of Weak

Cipher Suites

1533

credentials.

44 Lack of Password

Confirmation

The set of insecure TLS configurations that are vulnerable to

weak cipher suites or downgrade attacks is referred to as a

poor TLS configuration.

- Password Reset without Confirmation-

Password Change without Current Password

Verification

45 Privilege

Escalation

A lack of password confirmation is something like flaws in

resetting or changing passwords that lead to unauthorized

users either getting into accounts or even taking them over.

- Vertical Privilege Escalation- Horizontal

Privilege Escalation

46 Tab Nabbing When bad actors get more access or rights than they should

have, it’s called privilege escalation and is an enabler of

wrongdoing or data loss.

- Rel Attribute Misconfiguration- Reverse Tab

nabbing- Review Target="_blank" Links

47 Rosetta Flash Tab Nabbing is tricking users into focusing on a page for a

moment (perhaps it looks like they’ve been logged out and

need to log in again, yay social engineering!), which then

serves up malicious content that the attacked user would trust

otherwise.

- JSONP Callback Attack- Cross-domain Flash

Injection

48 Open Redirects Rosetta Flash uses security weaknesses in Flash objects

(applications/content) to potentially violate the security model

or launch attacks.

- Parameter-based Redirection- Whitelist

Bypass Open Redirect

49 CSV Injection They lead users to random web addresses, so-called “open

redirect” or “open redirection”, which can be used for phishing

or similar malicious actions.

- Spreadsheet Formula Injection- CSV Macro

Injection

50 WAF Bypass CSV injection is a type of attack where data from an external

source is directly used in a comma-separated value (CSV) file,

with which the code could be executed or other data could be

unintentionally accessed when the file is exported by the end

user.

- Encoded Payload Bypass- Obfuscation

Techniques Bypass

51 Local File

Inclusion (LFI)

WAF Bypassing Web Application Firewalls (WAFs) is the

basics of WAF Bypassing. learn how to use any ATS to

bypass WAF It's very important to learn, and as we are

promoting from the last few years, we have added many

External Article Links to learn more.

- Local File Read via Path Traversal- Local File

Execution via File Inclusion

52 Lack of 2FA

Bypass

Code execution or unauthorized access may occur when files

from a local file system are included on a server using Local

File Inclusion.

- 2FA Token Intercept- 2FA Implementation

Flaw Exploit

53 Cookie Poisoning Cookie Poisoning is the practice of tampering with cookies to

carry out illegal activities, obtain illegal access, or take control

of user sessions.

- Cookie Manipulation for Session Hijacking-

Cookie Replay Attacks

54 Buffer Overflow Buffer Overflow is the practice of using software flaws to

overwrite neighboring memory areas, therefore possibly

causing system compromise or code execution.

- Stack Buffer Overflow- Heap Buffer Overflow

55 Reverse Tab

Nabbing

Tab in Reverse Nabbing is when assailants change links to

purposely move from one open tab to another, therefore

possibly causing phishing or other attacks.

- Reverse Tab Nabbing via External Links-

Reverse Tab Nabbing via Fake Navigation

56 Code Injection Code Injection is the process of inserting and running arbitrary

code in a vulnerable application, therefore possibly causing

system compromise or illegal access.

- Dynamic Code Evaluation (e.g., eval

Injection)- Library Code Injection

57 X-Debug Token

Leak

X-Debugger Token Leak is the unauthorised execution of

debugging commands or the leaking of private debugging data.

- X-Debug Information Disclosure-

Unauthorized X-Debug Command Execution

58 WSDL File

Detection

WSDL File Detection is the process of finding Web Service

Description Language (WSDL) files, which could hold private

data on web services and APIs.

- WSDL File Disclosure- Sensitive Information

Extraction via WSDL

59 JS Library

Vulnerability

JS Library Vulnerability refers to the XSS or other security

vulnerabilities caused by the cracking of JavaScript libraries

used by web applications.

- Vulnerable JavaScript Library Exploitation-

Cross-site Scripting via Outdated Libraries

60 SOAP XML

Injection

SOAP XML Injection refers to inserting rogue XML data in a

Simple Object Access Protocol (SOAP) request or response,

which threatens security.

- SOAP Action Injection- XML Structure

Injection in SOAP

61 XSLT Injection XSLT Injection: Malicious XSLT can be injected into web

applications, leading to XSS or other attacks.

- XSLT Processing Errors- Malicious XSLT

Execution

62 Hidden Files These files and folders are not designed to be publicly

accessible and are therefore considered hidden.

- Dot File Disclosure- Hidden File and

Directory Discovery

64 SSTI Injection Data exposure, or potential access, is the direct result of

leveraging the endpoint vulnerabilities facilitated by Spring

Actuator.

- Template Injection with Code Execution-

Remote Code Execution via Template Injection

65 Directory

Browsing

The technique to place malicious code inside server-side

templates in order to perform remote code execution or

something that may cause security issues is SSTI (Server-Side

Template Injection).

- Directory Listing and Enumeration-

Information Leak via Directory Listing

66 MITM (Man-In-

The-Middle)

Attack

Directory browsing is the process of viewing the contents of a

directory on a web server and its tree structure, The web page

will display the list of contents of the web directory without

- ARP Poisoning- SSL Stripping

1534

displaying the actual content.

67 Format String MITM attack: An attack that may allow illicit access or data

eavesdropping by intercepting and optionally modifying

communication between two people.

- Format String Exploit in Log Files- Arbitrary

Code Execution via Format Strings

68 Parameter

Tamper

Format String vulnerabilities are due to errors in string

formatting functions that can result in data exposure or code

execution.

- Parameter Injection- Query String

Manipulation

69 Error Logging

Modules

Handlers

Parameter tampering is the process of modifying the

parameters of a web request in order to bypass secure

measures, accessibility to unauthorized resources, or perform

malicious activities.

- Error Information Leakage- Logging

Configuration Manipulation

70 Application DoS

(Denial of

Service)

An error logging handler module implies potential errors in

error logging systems to manipulate and/or leak the data.

- Application-Level Flood- Slow HTTP Attacks

71 Crypto-jacking An application DoS is what happens when cybercriminals

exploit weaknesses or inundate a web application with

requests designed to prevent its availability or functionality.

- Subresource Integrity Bypass - Cache

Poisoning using a Stale or Compromised

Subresource

72 Digital Certificate

Tampering

This use of vulnerabilities by hackers to steal computer power

so that they could mine bitcoin with a user’s consent is called

crypto-jacking.

- Certificate Forgery‐ Man‐in‐the‐Middle using

false Certificates

73 Web Driver

Exploitation

Digital certificate tampering refers to the modification of

digital certificates for the purpose of eavesdropping on

encrypted communications or impersonating reputable

establishments.

- Command Execution (Unauthorized) with

Web Driver – Taking over Selenium Grid

74 SOAP Action

Spoofing

Web driver attack is the process of taking advantage of the

vulnerabilities of web driver technology, controlling web

applications, or executing arbitrary commands.

- SOAP Envelope Manipulation- Unauthorized

SOAP Action Execution

75 Path Traversal SOAP Action Spoofing: Spoofing or replacing the SOAP

Action to perform illicit functions or access confidential data.

- Path Traversal to System Files- Remote Code

Execution via Path Traversal

76 Source Code

Disclosure

Using vulnerabilities to access files or navigate to directories

outside of the intended directory structure is known as path

traversal.

- Source Code Leak via Misconfigured Servers-

Accidental Source Code Exposure in Web

Pages

77 External

Redirects

Source Code Disclosure is the practice of making web

application source code files publicly available, which may

expose vulnerabilities or sensitive data.

- Unvalidated Redirects and Forwards –

Phishing through leading the user to an external

site, without the OpenID server verification of

the authenticity of that site.

78 Cache Deception

Attack

Cache Deception Attack involves manipulating web cache

mechanisms to serve deceptive content or bypass security

controls.

- Web Cache Poisoning via Deceptive Content -

A Simple Guide to Attacking (and Defending)

Web Caches - How to cache it: The web

developer's guide to caching images - Cache

Deception by Misusing HTTPS Cache headers.

Matcher – Cache Deception through response

manipulation.

Table 3. Comparison of vulnerabilities between OWASP Zap and BurpSuite Professional

Issue Category OWASP ZAP Specific Issues

Injection Flaws - SQL Injection- Command Injection- LDAP Injection- XPath Injection- Remote File Inclusion

Broken Authentication and Session

Management

- Session Fixation- Absence of Anti-CSRF Tokens- Username Enumeration

Sensitive Data Exposure messages- HTTPS content detected on HTTP page (the page is not secure)

XML External Entities (XXE) - Detection of XXE in XML uploads

Broken Access Control - Path Traversal- Missing Authorization Checks

Security Misconfiguration - Misconfigured CORS- Directory Listing- Exposed Git and SVN Directories

Cross-Site Scripting (XSS) - Reflected XSS- Stored XSS- DOM-based XSS- AJAX XSS

Insecure Deserialization - Identification of insecure deserialization in multiple applications

Using Components with Known

Vulnerabilities

- Out-of-date or sedimented web server software Out-of-date common libraries with known

vulnerabilities

Cross-Site Request Forgery (CSRF) - Cross-Site Request Forgery are frequently stumbled across the wayward forms not employing

anti-CSRF tokens

API Security - REST API and SOAP Testing- GraphQL API Misconfiguration Detection

WebSockets - WebSocket Testing- Detection of insecure WebSocket communications

Outdated Components - Detection of outdated or insecure JavaScript libraries such as jQuery, React, AngularJS

Additional Checks - AJAX Spidering- Parameter Manipulation- Passive Scan for Suspicious Content

To operationalize the integration, the backend of the GUI is

built using Python due to its modular design, extensive library

ecosystem, and support for subprocess management. Each

tool—Burp Suite, OWASP ZAP, FOCA, and Vega—is

encapsulated within its own controller module that can be

invoked via Python's subprocess or os.system() interfaces,

enabling seamless execution across platforms. For instance,

OWASP ZAP is triggered through its API client using

RESTful calls via python-owasp-zap-v2.4, while Burp Suite is

configured using Java-based command line arguments passed

1535

through Python. The GUI allows users to dynamically select

the tools for execution, define scope (target URLs or domains),

and adjust scan parameters. Upon execution, results from all

tools are parsed and standardized into a common structure

using JSON parsing and regex-based data cleaning to ensure

consistency across diverse tool output formats.

The system architecture also incorporates multi-threading

and multi-processing mechanisms using Python’s threading

and multiprocessing libraries to support concurrent scans,

enhance speed, and reduce latency. This is crucial when tools

such as Vega and FOCA, which are resource-intensive,

operate simultaneously. Additionally, each module is

equipped with robust error-handling mechanisms to gracefully

capture and report execution failures, timeouts, and false

positives. The GUI backend implements a scheduling engine

that queues scans, manages job priorities, and displays

execution progress using asynchronous callbacks. Security

measures such as encrypted API keys, access logging, and

session management are built in. Furthermore, the GUI

classifies vulnerabilities by CVSS score and severity and

offers actionable remediation insights based on a continuously

updated vulnerability database. The system is further designed

to be extensible, allowing future integrations with advanced

modules like AI-based exploit prediction or real-time threat

modeling.

The architectural layout of the proposed system is shown in

Figure 1. The diagram illustrates the flow from the GUI

dashboard through the Python backend to the integrated tools

(OWASP ZAP, Burp Suite, FOCA, Vega), each encapsulated

as modules. The backend manages tool execution, result

parsing, multithreading, and report generation. Outputs are fed

into a centralized reporting system that classifies

vulnerabilities and provides remediation recommendations.

This modular structure ensures scalability, extensibility, and

efficiency across different testing environments.

To improve performance and minimize scan duration, the

proposed system implements parallel execution of penetration

testing tools using Python’s threading mechanism. As shown

in Algorithm 1, each tool (e.g., OWASP ZAP and Burp Suite)

runs in an independent thread, allowing scans to execute

simultaneously without blocking the main process. This

approach significantly reduces runtime, especially in large-

scale or time-sensitive testing scenarios. It also ensures that

users can initiate and monitor multiple security scans

efficiently through the centralized GUI.

Algorithm 1: Parallel Execution of ZAP and Burp Suite Scans

Input: Target URL (target_url)

1. Define a function run_zap_scan(target_url)

→ Executes ZAP CLI scan using subprocess

2. Define a function run_burp_scan(target_url)

→ Executes Burp Suite using Java subprocess

3. Initialize Thread_1 with run_zap_scan(target_url)

4. Initialize Thread_2 with run_burp_scan(target_url)

5. Start Thread_1 and Thread_2 concurrently

Output: Parallel execution of vulnerability scans with real-

time response

Figure 1. Architecture of the integrated GUI-based automated penetration testing platform

4. RESULTS AND DISCUSSION

Research concerning vulnerabilities in cybersecurity has

unmasked a plethora of complex threats that place the safety

of contemporary systems and structures at risk. Manipulation

of input fields and code insertion by hackers is made easier

using two of the most common flaws, SQL Injection (SQLi)

and Cross-Site Scripting (XSS). Unauthorized access to

databases through error-based or time-based injections is

known as SQLi, while execution of scripts inside the victim

browser is known as XSS. These myriad forms of fundamental

errors highlight slack adaptational policies concerning input

validation and sanitization on systems of a network. Attacks

such as Cross-Site Request Forgery (CSRF) and Server-Side

Request Forgery (SSRF) are some of the most common. The

illegal actions using a user’s authenticated session are what the

fair use policy, CSRF, contravenes. In contrast, SSRF takes

advantage of flaws made by a server’s configuration to breach

internal networks or perform other unpermitted operations.

Addressing such issues requires stringent policies on

1536

tokenization and origin-checking. As has been discussed

before, underlying problems like these require attention.

Insecure Direct Object References (IDOR) and Broken Access

Control demonstrate how hackers can get around permissions

to access restricted resources. Similarly, vulnerabilities such

as Remote Code Execution (RCE) and XML External Entity

(XXE) expose the risks associated with improper management

of external data inputs and system-level access controls. More

complex attacks include Content Security Policy (CSP)

Bypass, which gets around regulated areas of access, and

permissions are set. The same goes for vulnerabilities like

Remote Code Execution (RCE) and XML External Entity

(XXE) that showcase the danger of bad handling of external

data interfacing. Other, more advanced attacks are Content

Security Policy (CSP) Bypass, which circumvents security

settings selected by the browser, and GraphQL Injection,

which enables hackers to manipulate API calls. Creative with

regard to contemporary technological resources, construction

methods, and aggression, with dependency confusion and

crypto-jacking, demonstrates how contemporary attackers

with modern computers have become. Once new

vulnerabilities such as Cross-Site WebSocket Hijacking, CSS

Injection, and HTML Injection have been identified, the

ongoing attack surface in web application development

operations grows. The lack of Cryptographic Storage policies

and Weak TLS Configurations points towards weak data

encryption techniques, which may compromise critical

information. This research points out the lack of validation,

misconfiguration, outdated security policies, or a single

security policy approach as the root cause of many of the listed

vulnerabilities. CRLF Injection, for example, is a form of

HTTP response modification hacking, where special

characters are added to specific fields in a form. Changing the

value of a field meant to be protected by security measures is

also referred to as parameter masking. Directory Browsing

allows navigational access to server files and structures

otherwise barred, while Path Traversal takes directory

navigation a notch further by enabling unrestricted access.

Many of these vulnerabilities have already been mapped out

with the use of automated penetration testing tools. They are

particularly good at spotting configurable injections, obsolete

configurations, and unsecured storage frameworks. Logic-

based complications that rely on intuition, like some scripting

attacks and subtle privilege elevation, are found to be the gaps

in these automated systems. To address these flaws, we must

use security best practices, do active manual validation, and

regularly run automated tests to ensure reliability. Lesser risks

and better resilience of systems can be achieved by means of

advanced technology, continual supervision, and intelligence.

In order to create proactive and flexible cybersecurity tools of

the future, there needs to be research into other advanced tools

to keep up with complex and evolving threats.

In our experiments, the integrated GUI-based platform was

tested on a simulated enterprise web environment consisting

of typical modules such as login forms, search bars, and

document upload features. Using Burp Suite Professional and

OWASP ZAP through the GUI, the platform successfully

detected over 80% of injected SQLi and XSS payloads during

initial scans. For example, in one test case, the system

identified a time-based blind SQLi vulnerability within the

search field of a document repository module, which manual

inspection had overlooked. Similarly, a stored XSS

vulnerability embedded in the feedback form was accurately

flagged with a risk severity of "High" and linked to insecure

JavaScript sanitization. These findings support the strength of

toolchain integration in capturing common web vulnerabilities

in real-time.

However, certain logic-based vulnerabilities like IDOR and

privilege escalation were inconsistently detected. For instance,

the platform did not raise an alert when a low-privileged user

accessed another user's invoice via manipulated URLs — a

typical IDOR case. Manual validation complemented

automated detection by uncovering such flaws, reinforcing the

need for hybrid testing strategies. Figure 1, previously

described in the methodology, showcases how the integration

of tools, multi-threaded scanning, and live dashboard

reporting support a comprehensive vulnerability mapping

process. By comparing vulnerability detection performance

across different tools, we found that Burp Suite had a higher

success rate for CSRF detection, while Vega outperformed in

identifying outdated libraries. These comparative insights

highlight the importance of tool specialization and provide a

rationale for their inclusion in a unified GUI-driven

environment.

Table 4 presents a comparative analysis of the vulnerability

detection capabilities of the integrated tools. Burp Suite

Professional demonstrated high efficacy in detecting SQL

Injection (95%), XSS (90%), and CSRF vulnerabilities (92%),

whereas OWASP ZAP performed moderately well for XSS

and Directory Traversal. Vega proved particularly effective in

identifying deprecated libraries, while FOCA excelled in

extracting sensitive metadata. However, critical vulnerabilities

such as Insecure Direct Object Reference (IDOR) and Server-

Side Request Forgery (SSRF) were consistently missed by all

tools, necessitating manual validation. This underscores the

importance of hybrid testing strategies that combine

automated scanning with expert-driven analysis to achieve

complete security coverage.

Table 4. A comparative overview of detection effectiveness, highlighting the strengths and gaps across each tool for various

vulnerability types

Vulnerability Type Burp Suite Professional OWASP ZAP Vega FOCA Manual Validation Required

SQL Injection High Moderate Low No No

Cross-Site Scripting (XSS) High High Moderate No No

Cross-Site Request Forgery (CSRF) High Low No No No

Remote Code Execution (RCE) Moderate Low No No Yes

Insecure Direct Object Reference Low Low No No Yes

Server-Side Request Forgery (SSRF) Low No No No Yes

Directory Traversal Moderate High Low No No

Deprecated JavaScript Libraries Low Low High No No

Metadata Exposure No No Low High No

Token Mismanagement Low Low No No Yes

1537

5. CONCLUSION

Automated penetration testing represents a transformative

evolution in modern cybersecurity, offering systematic,

repeatable, and scalable solutions for detecting and mitigating

vulnerabilities in increasingly complex digital ecosystems.

This study demonstrates the viability and efficiency of

integrating multiple advanced penetration testing tools—such

as Burp Suite, OWASP ZAP, FOCA, and Vega—into a

unified Python-powered GUI platform. The integration not

only streamlines workflows and improves usability but also

enhances vulnerability detection coverage across multiple

categories, including input injection, access control

weaknesses, and configuration flaws.

Our analysis reveals that while automation is highly

effective for detecting standard vulnerabilities like SQL

Injection, XSS, and metadata exposure, limitations persist in

identifying logic-based and multi-step attack vectors such as

Business Logic Errors, Advanced Persistent Threats (APTs),

and Server-Side Request Forgery (SSRF). Furthermore,

although automated tools offer rapid analysis and reporting,

their susceptibility to false positives and limited contextual

awareness necessitate hybrid models that incorporate human

oversight and intelligent correlation mechanisms.

Future research should therefore focus on three primary

directions:

1. Detection of Complex and Context-Aware

Vulnerabilities – leveraging AI-driven reasoning and

Natural Language Processing (NLP) to detect semantic

anomalies in application flows and misconfigured

authentication logic.

2. Optimizing Tool Performance through

Parallelization and Lightweight Containerization –

enabling high-throughput scanning with reduced

computational overhead, suitable for integration in

CI/CD pipelines.

3. Automated False Positive Triage and Prioritization –

applying reinforcement learning to refine alert accuracy

based on feedback loops and historical remediation

outcomes.

Additionally, security tooling should evolve to better

integrate with modern DevSecOps frameworks, allowing for

dynamic risk-based testing and real-time vulnerability

intelligence integration. Such advancements will not only

extend the coverage of automated testing platforms but will

also ensure their adaptability in fast-evolving digital

environments. By promoting a culture of continuous

assessment and real-time threat detection, automated

penetration testing can become a core pillar of future-ready

cybersecurity strategy.

REFERENCES

[1] Fredj, O.B., Cheikhrouhou, O., Krichen, M., Hamam, H.,

Derhab, A. (2021). An OWASP top ten driven survey on

web application protection methods. In 15th

International Conference on Risks and Security of

Internet and Systems, Paris, France, pp. 235-252.

https://doi.org/10.1007/978-3-030-68887-5_14

[2] Doupé, A., Cova, M., Vigna, G. (2010). Why johnny

can’t pentest: An analysis of black-box web vulnerability

scanners. In: Kreibich, C., Jahnke, M. (eds) Detection of

Intrusions and Malware, and Vulnerability Assessment.

DIMVA 2010. Lecture Notes in Computer Science, vol

6201. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-14215-4_7

[3] Chu, G., Lisitsa, A. (2018). Penetration testing for

Internet of Things and its automation. In 2018 IEEE 20th

International Conference on High Performance

Computing and Communications; IEEE 16th

International Conference on Smart City; IEEE 4th

International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), Exeter, UK, pp. 1479-1484.

https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.002

44

[4] Abu-Dabaseh, F., Alshammari, E. (2018). Automated

penetration testing: An overview. In the 4th International

Conference on Natural Language Computing,

Copenhagen, Denmark, pp. 121-129.

https://doi.org/10.5121/csit.2018.80610

[5] Aksu, M.U., Altuncu, E., Bicakci, K. (2019). A first look

at the usability of OpenVAS vulnerability scanner. In

Workshop on Usable Security (USEC), San Diego, CA,

USA, pp. 1-11.

https://doi.org/10.14722/usec.2019.23026

[6] Raj, S., Walia, N.K. (2020). A study on Metasploit

framework: A pen-testing tool. In 2020 International

Conference on Computational Performance Evaluation

(ComPE), Shillong, India, pp. 296-302.

https://doi.org/10.1109/ComPE49325.2020.9200028

[7] Greenwald, L., Shanley, R. (2009). Automated planning

for remote penetration testing. In MILCOM 2009-2009

IEEE Military Communications Conference, Boston,

MA, USA, pp. 1-7.

https://doi.org/10.1109/MILCOM.2009.5379852

[8] Stuttard, D. Burp Suite's web vulnerability scanner.

PortSwigger. https://portswigger.net/burp.

[9] Pandit, P. (2021). Nessus: Study of a Tool to Assess

Network Vulnerabilities, Mumbai.

[10] Amankwah, R., Chen, J., Kudjo, P.K., Towey, D. (2020).

An empirical comparison of commercial and open-

source web vulnerability scanners. Software: Practice

and Experience, 50(9): 1842-1857.

https://doi.org/10.1002/spe.2870

[11] Abdulghaffar, K., Elmrabit, N., Yousefi, M. (2023).

Enhancing web application security through automated

penetration testing with multiple vulnerability scanners.

Computers, 12(11): 235.

https://doi.org/10.3390/computers12110235

[12] Jabr, I., Salman, Y., Shqair, M., Hawash, A. (2022).

Simulated penetration testing and attack automation

using deep reinforcement learning.

[13] Kadam, S.P., Mahajan, B., Patanwala, M., Sanas, P.,

Vidyarthi, S. (2016). Automated Wi-Fi penetration

testing. In 2016 International Conference on Electrical,

Electronics, and Optimization Techniques (ICEEOT),

Chennai, India, pp. 1092-1096.

https://doi.org/10.1109/ICEEOT.2016.7754855

[14] Mburano, B., Si, W. (2018). Evaluation of web

vulnerability scanners based on OWASP benchmark. In

2018 26th International Conference on Systems

Engineering (ICSEng), Sydney, NSW, Australia, pp. 1-6.

https://doi.org/10.1109/ICSENG.2018.8638176

[15] McDermott, J.P. (2001). Attack net penetration testing.

In Proceedings of the 2000 Workshop on New Security

Paradigms, Ballycotton, County Cork Ireland, pp. 15-21.

https://doi.org/10.1145/366173.366183

1538

[16] Mirjalili, M., Nowroozi, A., Alidoosti, M. (2014). A

survey on web penetration test. Advances in Computer

Science: An International Journal, 3(6): 107-121.

[17] Neha, N.S. (2011). Automated penetration testing.

Master's Projects, p. 180.

[18] Roy, S., Sharmin, N., Acosta, J.C., Kiekintveld, C.,

Laszka, A. (2022). Survey and taxonomy of adversarial

reconnaissance techniques. ACM Computing Surveys,

55(6): 1-38. https://doi.org/10.1145/3538704

[19] Hu, L., Chang, J., Chen, Z., Hou, B. (2021). Web

application vulnerability detection method based on

machine learning. Journal of Physics: Conference Series,

1827(1): 012061. https://doi.org/10.1088/1742-

6596/1827/1/012061

[20] Li, J. (2020). Vulnerabilities mapping based on OWASP-

SANS: A survey for static application security testing

(SAST). Annals of Emerging Technologies in

Computing (AETiC), 4(3): 1-8.

https://doi.org/10.33166/AETiC.2020.03.001

[21] Noman, M., Iqbal, M., Manzoor, A. (2020). A survey on

detection and prevention of web vulnerabilities.

International Journal of Advanced Computer Science and

Applications, 11(6): 521-540.

[22] Luo, B., Mosbah, M., Cuppens, F., Othmane, L.B.,

Cuppens, N., Kallel, S. (2022). Risks and Security of

Internet and Systems. Springer, Cham.

https://doi.org/10.1007/978-3-031-02067-4

1539

