
Towards a Security Model for Dynamic Access Control in Graph Databases

Samira Telghamti* , Lakhdar Derdouri , Abdelhabib Bourouis

Rela(cs)2 Laboratory, Math and Computer Science Department, Larbi Ben M’hidi University, Oum El Bouaghi, P.O. Box 358,

Algeria

Corresponding Author Email: samira.telghamti@univ-constantine2.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150703 ABSTRACT

Received: 3 June 2025

Revised: 10 July 2025

Accepted: 20 July 2025

Available online: 31 July 2025

Since databases were created and distributed, privacy and security have gained a lot of

attention in the computer community. With the advancement of networks and the arrival of

Cloud computing, most of the databases are publicly and remotely accessible, so they

become exposed to several kinds of security threats. However, as far as we know, the

existing access control security models for NoSQL databases are static, meaning the

access policy remains unchanged for a given user, and does not consider his behavior

during the utilization of the database. This paper presents an innovative dynamic access

control model specifically designed for graph databases; the model dynamically adapts

user roles based on user interactions and monitors unexpected behavior to enhance

security. To handle the dynamicity aspect, we have opted for the trust concept, where we

compute a given user's reputation degree according to the role he has been assigned. For

every user, a trust level is computed and continually updated, according to the actions that

the user performs. Based on the current trust level, the roles of the user are changed.

Experimental results based on realistic scenarios show that the proposed model allows to

dynamically update user roles, thus guaranteeing the security of the database.

Keywords:

Big Data, dynamic role-based access

control, graph database security, NoSQL

database

1. INTRODUCTION

Relational databases were the most used and studied for

several decades [1, 2]. These databases amply met the needs

of information systems that were being designed several

years before. Indeed, factual data, often textual in nature, are

highly structured, providing them with well-formalized

access and query models, particularly via relational database

management systems DBMS [3, 4], and structured query

language (SQL) [5, 6]. Due to their structured data and their

access policies, security issues and protection procedures for

SQL databases are successfully formulated and implemented.

However, the advent of NoSQL databases that emerged as an

alternative solution for data and knowledge storage aiming to

ensure scalability and availability that are very suitable for

modern data storage, namely for Big Data [7, 8], has imposed

new approaches for database security and privacy. Indeed,

these new databases resolve several issues, such as high

volume of data, data variability, and data volatility. Also, and

among several advantages of NoSQL databases, is their

capacity for effectively processing and storing unstructured

data, including semi-structured data from social networks,

texts, and graphics [9, 10]. However, and despite that NoSQL

databases can deal with wide volumes of personnel and

sensitive data, up to now, such databases cannot be

effectively protected by using classical techniques, designed

for relational databases [11, 12]. Such a fact is mainly due to

the high variability of stored data that can include active

content and to the high level of openness in such databases

and freedom that should be accorded to the users to guarantee

high operational efficiency. Moreover, and in addition to

conventional vulnerabilities associated to databases, such as

SQL injection attacks, where authors continue to propose

efficient solutions, even for NoSQL databases [13], access

control in databases is one of the most important techniques

which help to protect data and ensure confidentiality,

including user’s privacy and database security [1, 14]. In

order to successfully prevent and halt attacks and handle

them when they happen, the database's access control model

must offer a high level of security. The latter part of database

security is crucial, especially when the databases are going to

be openly and remotely accessed, such as in cloud computing

and web applications. Our study presents a novel dynamic

model, to deal with NoSQL database security and privacy. To

design the security model, the proposed method proceeds by

natively integrating the security metadata into graph-oriented

databases. Based on the issues related to the traditional

access control paradigm, this new model seeks to:

• Establish a trust-based dynamic control to access the

graph databases: the access control is based on trust and is

distinguished by its dynamic aspect, in contrast to the

classical access control models, which are static.

• The enhancement of the access restriction in graph-

oriented databases: This objective is guaranteed by

considering the user's past behavior. Consequently, a user's

rights and permissions may alter based on his actions when

accessing the database and using it. It should be noted that

the primary objective of our work is to offer designers the

International Journal of Safety and Security Engineering
Vol. 15, No. 7, July, 2025, pp. 1361-1368

Journal homepage: http://iieta.org/journals/ijsse

1361

https://orcid.org/0009-0000-0389-9873
https://orcid.org/0009-0000-2665-1408
https://orcid.org/0000-0002-4592-4042
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150703&domain=pdf

best guidelines to implement dynamic access control

mechanisms for graph-oriented databases.

The remainder of the paper is organized as follows:

Section 2 reviews some recent related work from the

literature. Section 3 is devoted to the proposed access control

model in graph databases. Section 4 exposed the results of

experimentation and their discussion. Finally, in Section 5,

we conclude our paper and highlight some future

perspectives.

2. RELATED WORK

In informatics, access control to network resources,

including local and remote databases, is an important and

critical issue for both administrators and users. This topic has

gained even more relevance in recent years due to the

exponential growth of data and the increasing complexity of

IT infrastructures. Since databases first came into existence,

access control has been widely discussed, and several models

were proposed for classical databases—especially relational

ones, given their dominance over the past half-century. These

traditional models, however, were not designed to address the

unique challenges posed by modern non-relational systems.

First of all, it should be noted that access control to NoSQL

databases strongly depends on the NoSQL database model

itself, as each type offers distinct structural and operational

characteristics. We identify four families of NoSQL database

models, each catering to specific data storage and retrieval

needs in contemporary applications.

1) Associative model, where data is stored in the form of

keys, usually hash codes, and the data values corresponding

to these keys [15]. Redis and Oracles databases are examples

of databases that are based on the associative model.

2) Column-based model, where keys in this case are

obtained by combining several columns, rows and time

stamps [16]. It has been reported by several authors that this

model allows faster querying of the database [17].

3) Document-based model, where data is stored as

documents and where access to them is provided by a set of

keys. This type of model supports different types of data,

ranging from structured data to unstructured data (Text) and

passing by semi-structured data (XML) [16].

4) Graph-based models, where data is stored in a graph

structure, involving vertices and edges [18]. This model is

well suited to social networks, recommendation applications.

However, the model is known for its relatively high

complexity compared to the other models [19].

SQL databases are appropriate to integrate traditional

access control mechanisms due to their structural

characteristics [20]. In NoSQL databases, only few works

have integrated native access control [21]. As a case of

access control model in NoSQL databases, a security model

for a Graph-Oriented database has been proposed in

reference [22], wherein the Management System incorporates

the model. To do that, they used metadata with authorization

rules to control access in applications that use a graph

database. However, they only consider protection at the

vertex level. Although authors have dealt with the dynamic

aspect of NoSQL Database (Neo4j), the proposed role-based

mechanism cannot be considered as dynamic. In reference

[23], a general framework has been proposed for building

document-based databases with the incorporation of security

mechanisms as native aspects of the database. The work is

based on a novel approach for enhancing the Mongo DB

RBAC purpose-based access control model. The authors

have focused and have been limited to document-oriented

NoSQL databases and without considering user behavior and

trust in their work. In reference [24], the access control

paradigm allows access control policies to be specified and

enforced at various resource hierarchy levels, including a

column, row, or column family. The latter was designed to

operate with HBase and Cassandra, where authors focus on

the different access policies at every level of resource

hierarchy, rather than focusing on user behavior. So, the

dynamicity aspect of the proposed model was not addressed

and resolved. Finally, in reference [25], the authors describe

the unified framework and formal language ReLOG for

encoding ReBAC rules, which are basically graph queries. In

this work, role-based access control and dynamicity concepts

were not addressed. Ahmadi and Derek [26] have proposed

an Attribute Based Access Control (ABAC) model and its

implementation on a graph database. They experimented

their model with a sample use-case, where they were able to

evaluate several access policies according to paths in the

graph representation. In this work, dynamicity is ensured by

policy matching at runtime. However, the user behavior is

not addressed. Recently, data and machine-learning

techniques start to be used for dynamical access control in

advanced databases, including graph ones. Magomedov et al.

[27] have dealt with anomaly detection in graph databases,

aiming at detecting frauds, by mining sub-graph patterns

using a machine learning algorithm, the access control can be

considered as dynamic; however, it is not role-based and has

not considered the user behavior. Several authors continue to

propose novel secure design and implementation of graph-

based databases [28]. At design level, Paneque et al. [29]

introduced in their paper a knowledge based framework for

secured graph-based databases, assuming that the most

proposed frameworks consider security issues in such

databases at implementation level. The authors of this work

used ontologies to simultaneously take into account database

modeling and security requirements. However, they have not

discussed the dynamicity aspect of their framework. A role-

based access control model for graph databases was proposed

by Chabin et al. [30], which supports schema constraints and

constraint rules aiming to protect data. Authors claim that the

proposed model allows rewriting, planning and executing

queries in parallel while respecting the access constraints.

Like previous reviewed work, the latter cannot be considered

as dynamic, given that the constraints are predefined and

seem that cannot be updated at runtime. The reviewed

models can be classified as static, which involves that the

users’ privileges are predefined and remain the same across

database access sessions, unless they are set manually by the

database security administrator. Indeed, data in graph-

oriented databases are described as dynamic because they do

not require a predefined schema and can accommodate

evolving data structures. This flexibility allows for different

records to have varying attributes and enables easy schema

changes without disrupting existing data. Enforcing access

control policies in static models may pose challenges in

ensuring compliance with security requirements and

preventing unauthorized access or privilege escalation.

Without mechanisms for real-time monitoring and adaptive

enforcement, static models may struggle to address emerging

security threats or policy violations effectively. To deal with

this issue, we introduce in this paper a new role-based model

1362

for dynamic access to graph databases.

3. PROPOSED APPROACH

3.1 Principle

We detail a novel approach based on graph-oriented

databases. This approach is suitable for any control

mechanism, ensuring that only trusted and authorized users

can access and process data stored in a graph-oriented

database. However, our model is designed to be dynamic

contrary to the models having been proposed before, so,

user’s privileges are updated dynamically after revising some

security aspects including the behavior of the user. Thus, the

proposed model allows to define and to represent inherent

security and structural aspects for graph-oriented databases.

In Figure 1, we introduce an informational architecture of the

proposed meta-model, via a UML class diagram. The entity

“Graph DB” has a name attribute. It exclusively owns all the

edges and vertices through the classes, “Vertex” and “Edge”.

Figure 1. Trust-based access control model

Head and tail associations associate Vertex and Edge.

They express the fact that an edge has one tail vertex and one

head vertex. In addition, a vertex has incoming edges and

outgoing edges. Obviously, “Vertex” and “Edge” are both

subtypes of “Graph Element”. The class “Graph Element”

defines a set of labels describing the element type, in addition

to a set of “Properties”. The Class” Properties” has a key

(property’s name). The attribute “sensitivity degree”

expresses the recorded data sensitivity degree. Three

different degrees are defined: the lowest security degree

(SD=1), a sensitive data degree (SD=2), and a very sensitive

data degree (SD=3).

The proposed model is based on trust role-based access

control policy. Based on this policy, users are hierarchically

clustered according to their roles and regarding some

considered security aspects. The classes “User” and “Role”

represent, respectively, the authorized users and the roles to

which they are assigned. According to their functions, users

have specific rights and operations that can be performed by

a given role. The attribute “TrustLevel” define the reputation

degree of a given user. The security level attribute in the

class role is calculated by the max value of sensitivity level

of protected objects defined for a given role. The class

“Rights” is an association that specifies the permission or

access rights granted to a user to perform specific actions on

protected objects (vertex or edge) according to a given role.

The access control is a fine-grained access control data that

protect vertices and edges at the attribute level. So, it will be

possible to also define restrictions on properties. At the first

time, a user must introduce his identifiers to register if he

applies to access the database. Thus, the system affects to this

user an initial reputation value. Later, the system decides if a

user can be allowed to access the database after the value of

his reputation has been updated. The system continuously

updates the user's reputation value, after the user has

accessed and used the database. Reputation value updates of

a user rely on his behavior, his histories, and his operations.

After each update, if the reputation credit is less than the

sensitivity degree associated to the current role, the user loses

the previous role to which he was assigned. Hence, he will be

1363

required to request a role with lower privileges. However, if

the trust value is above the sensitivity degree of given role,

the user will be permitted to obtain the requested role, or to

maintain it if it was the previous one for which he is assigned.

Figure 2 shows a flow chart of how a user is checked before

accessing the database.

Figure 2. User access process flow chart

3.2 Trust level update

According to the graph meta-model and the flow chart

introduced respectively in Figures 1 and 2. A score is

affected to each performed operation that depends on the role

that the user currently has, and on the type of the operation

itself. So, the user’s trust level under a given role can be

calculated according to the Score attribute on Right class.

During his connection session to the database, if the user’s

trust level falls under a predefined role’s sensitivity level, the

user is immediately denied access to the database, and

therefor asked to reconnect with a role that the privileges are

lower than the previous one, or he should contact the

database manager to deal with the occurred incident. At the

logging to the database, a requested role can be assigned to

the user if only his trust level is above the sensitivity level of

the requested role. According to our model the user’s trust

degree is computed as follows:

𝑇𝐿(𝑢) = 𝑇𝐿(𝑢) +∑ 𝑆𝑐𝑜𝑟𝑒(𝑅, 𝑜𝑝)
𝑜𝑝∈𝑠𝑒𝑠𝑠𝑖𝑜𝑛

 (1)

During or at the end of a given session, the new trust level

of a given user u is updated by adding the sum of scores

corresponding to the operations that he has performed during

his last session.

“Score(R,op)” expresses the criticality of an operation “op”

when the user has the role R, that is defined according to the

data integrity and protection policy. Indeed, in any database,

deleting and updating items are more critical than operations

that allow browsing or displaying data from a database.

3.3 Computation

The algorithm "Periodical_Check", introduced below,

allows user checking for all users that are currently connected

to the database. Namely, a user can be allowed to maintain

his connection to the database with his current role. However,

a user can be disconnected and then asked to reconnect with a

role that has lower privileges, or he is invited to contact the

database manager to handle the encountered security issue.

Algorithm 1: Periodical_Check

1). for any connected user u do

2). NewTL= u.TrustLevel+∑opsession Score(R,op)

3). If R.Securitylevel  NewTL then

4). SendMessage (u, " Access denied");

5). u.Disconnect

6). end if

7). end for

1364

In the algorithm described above, all the connected users

are periodically checked to verify if each one can remain

connected, it should be disconnected and asked to be

reconnected using a new role with low privileges

(instructions 4 and 5). It can be noticed that the security level

is assigned to the role and not to the user.

The algorithm "Access_Check" shows how history of

operations of a user is used to assign them the role they

require.

Algorithm 2: Access_Check (u: user, R: role)

1). if R.Securitylevel NewTL then

2). SendMessage (u, " Access denied");

3). else

4). u.role =R;

5). u.Connect;

6). Endif

The instructions 1 to 2 test and decline access to the user u,

given that his current trust level is below the threshold of the

security level of the required role R. The instructions from 3

to 6, are executed if the current trust value of the user is

above the threshold of the current role security level, then the

user will be connected with the required role R.

4. EXPERIMENTATION

As far as we know, there is no work having dealt with

automatic trust evaluation and used to dynamically allow role

assignment of users according to their behavior. So, we aim

via the current comprehensive experimental protocol to

introduce a proof of concept (PoC) of the proposed model,

and show that it allows to dynamically controlling access in

graph-oriented database. Obviously, there are no sufficiently

similar experiments that allow us to proceed to any

comparative study.

4.1 Use case

To show the feasibility and the interest of the proposed

model for adaptive database access control, we considered a

use case related to interactions in social networks, using

Noe4j NoSql database. Neo4j is an open source graph

database management system developed in Java by Neo

Technology Company. The product has been around since

2000, version 1.0 was released in February 2015. Neo4j

allows data to be represented as nodes connected by a set of

arcs, these objects having their own properties. Properties are

made up of a pair of key-values of a simple type such as

character strings or numeric which can be indexed. There is

no need to use keys in Neo4j, because relationships have

their own existence [31]. On a social network platform, a

user may be a “Creator of posts” (CR), a “Commentator of

posts” (CM), or “Deprived from Comments” (DP)

(respectively from “Creation of posts”). In order to

automatically assign roles to users of the platform, a

community rating system is set up, that is based on the

number of "likes", or "dislikes" that a user will receive on all

the posts he created or commented on. When creating its

account, a user is assigned the role of “Commentator of

posts”. Then, two scenarios are possible for this user: Over

time, if his "like" score is high enough, he is granted the role

of "Creator of posts". However, if the "dislike" score is high

enough, he is downgraded to the role of "Deprived of

comments", according to the current role of user, and the

feedback from readers. Table 1 describes the scoring scheme

used for updating user scores:

Table 1. Score table according to the role of the user and the

feedback of the readers

Feedback Role Like Dislike

Creator of posts +1 -1

Commentator of posts +0.5 -0.5

Deprived of comments +0.5 -0.5

At the creation of his account, a user u will have a score S

of 0 points. This variable S represents the trust level in our

model: TL(U,R):

If feedback== "like" then S S+Score(R,”like”).

If feedback== “dislike” then S S+Score (R, “dislike”).

The change of role according to the score of the user is done

according to the following rules:

If S≥T then R  “Creator of posts”.

If S[-T+1..T-1] then R  “Commentator of posts”.

If S≤-T then R  “Deprived of comments”.

where, T is a role conversion threshold. It will be defined

experimentally using expert user profiling, and based on

statistics on the number of users and the number of feedbacks

to posts and comments. For our case, we have set T=Number

of users / 10. This means that the difference in favor of the

user among his pairs is 10%. For our use case we consider

three users u1, u2, and u3. Each user has an identifier and a

user profile. The user profile contains, among several records,

the current role of the user and his score of points,

representing his level of trust on which the assignment of the

role is based. The following sub-graph in Figure 3 represents

a sample of the database subschema related to role

assignment based on TL trust level for the user u1.

Figure 3. Sub-graph in the database corresponding to the

user u1 (resp. users u2 and u3)

We consider the following feedback scenarios:

• u1 created a post P for which he had T ‘dislikes’.

• u2 posted a comment C1 on post P and got a total of T

'likes'.

• u3 posted a C2 comment on post P and got T/2 ‘likes’.

According to the considered scenario, the trust levels of

the three users changed as mentioned in Table 2.

1365

Table 2. Variation of the trust levels at the beginning and at

the end of the considered scenario

User Score: TL (U,R) Role R

Trust level at the creation of users

u1 0 Commentator

u2 0 Commentator

u3 0 Commentator

Trust level at the end of the considered scenario

u1 -T Deprived

u2 +T Creator

u3 T/2 Commentator

4.2 Adaptive role assignment

To show the adaptive power of the proposed access control

model, we have tested the scoring system by considering 50

users who interact for a period of 10 hours divided each one

into 20 epochs. We reported after every 30 minutes the

number of users per role. Obviously, at experimentation we

assume that some users should have Creator role, so posts

can be created, and then commented. Furthermore, the set of

users is divided into two categories: The first one is for the

users having good behavior, where they correctly post

messages or comments. The second category is composed of

users with bad behavior, which post or comment messages

incorrectly. In our experimentation, we have considered 20%

of the users (10 among 50) have bad behavior. So, at the end

of the experimentation, we expect that the users with bad

behavior will be deprived from interaction. Figures 4 and 5

show the overall result of the experiment, where one can

notice the variations of the populations of the different roles

that the users have.

Figure 4. Numbers of roles within a set of 50 users during 10

hours of experimentation

At the beginning, some of users are “Creators”, so the

messages start to be posted and then commented by

Commentators and also Creators. Moreover, no user was

initially “Deprived”, however, over time some of them

become “Deprived”, because they likely post or comment

incorrectly.

At the end, 22 users are with the role “Creator”, 20 with

the role “Commentator” and 8 with the role “Deprived”.

Indeed, in the conducted experimentation 12 users exhibiting

bad behavior. Thus, 8 of them which have initially “Creator”

or “Commentator” roles are converted to “Deprived” role.

Four users exhibiting bad behavior remained in the

“Commentator” role because they did not interact

sufficiently. No one with bad behavior has remained with

“Creator” role. Such statsitic show that the bahavior-based

trust computation and automatic role assignement allows to

correctrly discard bad users and maintain good ones

conencted to the database.

Figure 5. Variation curves of each role during

experimentation time

Figure 6 shows the average numbers of users at the

beginning of the session and at the end. At the beginning, no

user is considered deprived, and where 16% of users were

creators and 84% were commentators. At the end of the

session, 26% are creators, 64% are commentators, and 10%

were deprived. It can be noticed also from the various charts

that the number of users per role become likely stable at the

end of the session (22 creators, 20 commentators and 8

deprived), corresponding to the flat curves in Figures 4 and 5.

This fact indicates that, over time, user behavior can be

determined by the actions they perform within the system.

Figure 6. Average numbers of roles at the beginning (a) and

at the end (b) of the exploitation period

We conclude that the experiment conducted according to

the introduced use case has allowed us to validate that the

proposed model and its associated computations ensure

automatic and adaptive control access to the database.

Without administrator intervention the model was able to

automatically select the appropriate role of the users

according to their behavior. Furthermore, we can notice an

early convergence of the curves, which indicates that the

proposed model allows an accurate but also a fast trust-based

1366

access role assignment.

5. CONCLUSION

After Big Data has emerged in all the fields of information

and communication technologies, data become more

sensitive and should be so well protected. In the past,

database engineers and managers focus on functionality

aspects, aiming to provide first efficient databases. Despite

its importance, security and privacy in databases have

remained a secondary concern for several decades. To deal

with security and privacy in the new advanced databases, this

work has introduced a dynamic access control model in

graph-oriented databases. By representing operation security

and reputation of users, the model provides an effective

dynamic access control, so, the graph-oriented database

security is enhanced. The evaluation of the proposed model

was done by conducting realistic scenarios, where the results

show the effectiveness of the proposed model to

automatically and adaptively control access to the graph

database. The proposed model can be applied to graph

databases in order to automatically control the access to the

database by dynamically updating the trust level of the users.

This allows the prevention of malicious behaviors, therefore

enhancing database security. However, it should be noticed

that the approach we have adopted requires sophisticated

modeling of user behaviors, that we consider as a main

limitation. In future work we expect to introduce ground truth

data as learning datasets and use them with advanced

machine-learning models in order to boost the performance

of the proposed model, and better represent user behaviors.

REFERENCES

[1] Sahay, R. (2020). Relational databases. In Microsoft

Azure Architect Technologies Study Companion.

Apress, Berkeley, CA, USA, pp. 717-739.

https://doi.org/10.1007/978-1-4842-6200-9_21

[2] Elmasri, R., Navathe, S. (2016). Fundamentals of

Database Systems, Seventh Edition. Hoboken, NJ,

USA: Pearson.

[3] Desamsetti, H. (2020). Relational database management

systems in business and organization strategies. Global

Disclosure of Economics and Business, 9(2): 151-162.

https://doi.org/9.151-162.10.18034/gdeb.v9i2.700

[4] Sathiya Vadivoo, D.V., Shanthini, S., Vinora, A.,

Mohana Priya, G. (2017). An overview of database

management systems and their applications along with

the queries for processing the system. SSRG

International Journal of Computer Science and

Engineering, 4(3): 1-4.

https://doi.org/10.14445/23488387/IJCSE-V4I3P101

[5] Harrington, J.L. (2010). SQL Clearly Explained, Third

Edition. Morgan Kaufmann.

https://doi.org/10.1016/C2009-0-61592-0

[6] Chavan, H., Shaikh, S. (2022). Introduction to DBMS:

Designing and Implementing Databases from Scratch

for Absolute Beginners. BPB Publications.

https://doi.org/10.0000/9789355510266-001

[7] Husain, M.S., Khan, M.Z., Siddiqui, T. (2023). Big data

concepts, technologies, and applications. Auerbach

Publications. Auerbach Publications, New York.

https://doi.org/10.1201/9781003441595

[8] Balusamy, B., Kadry, S., Gandomi, A.H. (2021). Big

Data: Concepts, Technology, and Architecture. John

Wiley & Sons.

[9] Harrison, G. (2015). Next Generation Databases:

NoSQL, and Big Data. Apress, Berkeley, CA, USA.

https://doi.org/10.1007/978-1-4842-1329-2

[10] Meier, A., Kaufmann, M. (2019). SQL&NoSQL

Databases: Models, Languages, Consistency Options

and Architectures for Big Data Management. Springer

Vieweg Wiesbaden. https://doi.org/10.1007/978-3-658-

24549-8

[11] Kshetri, N. (2014). Big data׳s impact on privacy,

security and consumer welfare. Telecommunications

Policy, 38(11): 1134-1145.

https://doi.org/10.1016/j.telpol.2014.10.002

[12] Thuraisingham, B. (2015). Big data security and

privacy. In CODASPY '15: Proceedings of the 5th

ACM Conference on Data and Application Security and

Privacy, San Antonio, Texas, USA, pp. 279-280.

https://doi.org/10.1145/2699026.2699136

[13] Thamizhiniyan, C.S., Kapuluru, C.S., Balakiruthiga, B.

(2025). Mitigating NoSQL injection vulnerabilities:

Techniques, examples, and best practices. In 2025

International Conference on Emerging Systems and

Intelligent Computing (ESIC), Bhubaneswar, India, pp.

112-117.

https://doi.org/10.1109/ESIC64052.2025.10962645

[14] Diaz, C. (2022). Database Security: Problems and

Solutions. Mercury Learning & Information.

[15] Nayak, A., Poriya, A., Poojary, D. (2013). Type of

NOSQL databases and its comparison with relational

databases. International Journal of Applied Information

Systems, 5(4): 16-19.

[16] Pokorný, J. (2011). NoSQL Databases: A step to

database scalability in Web environment. International

Journal of Web Information Systems, 9(1): 278-283.

https://doi.org/10.1145/2095536.2095583

[17] Bhogal, J., Choksi, I. (2015). Handling big data using

NoSQL. In 2015 IEEE 29th International Conference on

Advanced Information Networking and Applications

Workshops, Gwangju, Korea (South), pp. 393-398.

https://doi.org/10.1109/WAINA.2015.19

[18] Aldwairi, M., Jarrah, M., Mahasneh, N., Al-khateeb, B.

(2023). Graph-based data management system for

efficient information storage, retrieval and processing.

Information Processing & Management, 60(2): 103165.

https://doi.org/10.1016/j.ipm.2022.103165

[19] Kotiranta, P., Junkkari, M., Nummenmaa, J. (2022).

Performance of graph and relational databases in

complex queries. Applied Sciences, 12(13): 6490.

https://doi.org/10.3390/app12136490

[20] Bertino, E., Ghinita, G., Kamra, A. (2011). Access

control for databases: Concepts and systems.

Foundations and Trends® in Databases, 3(1-2): 1-148.

https://doi.org/10.1561/1900000014

[21] Mohamed, A.K.Y.S., Auer, D., Hofer, D., Küng, J.

(2024). A systematic literature review of authorization

and access control requirements and current state of the

art for different database models. International Journal

of Web Information Systems, 20(1): 1-23.

https://doi.org/10.1108/IJWIS-04-2023-0072

[22] Morgado, C., Baioco, G.B., Basso, T., Moraes, R.

(2018). A security model for access control in graph-

1367

https://doi.org/10.14445/23488387/IJCSE-V4I3P101
https://doi.org/10.1016/C2009-0-61592-0

oriented databases. In 2018 IEEE International

Conference on Software Quality, Reliability and

Security (QRS), Lisbon, Portugal, pp. 135-142.

https://doi.org/10.1109/QRS.2018.00027

[23] Blanco, C., García-Saiz, D., Peral, J., Maté, A., Oliver,

A., Fernández-Medina, E. (2018). How the conceptual

modelling improves the security on document

databases. In 37th International Conference on

Conceptual Modeling, Xi'an, China, pp. 497-504.

https://doi.org/10.1007/978-3-030-00847-5_36

[24] Kulkarni, D. (2013). A fine-grained access control

model for key-value systems. In Proceedings of the

Third ACM Conference on Data and Application

Security and Privacy, San Antonio, Texas, USA, pp.

161-164. https://doi.org/10.1145/2435349.2435370

[25] Clark, S., Yakovets, N., Fletcher, G., Zannone, N.

(2022). ReLOG: A unified framework for relationship-

based access control over graph databases. In IFIP

Annual Conference on Data and Applications Security

and Privacy, Newark, NJ, USA, pp. 303-315.

https://doi.org/10.1007/978-3-031-10684-2_17

[26] Ahmadi, H., Small, D. (2019). Graph model

implementation of attribute-based access control

policies. arXiv preprint arXiv: 1909.09904.

https://doi.org/10.48550/arXiv.1909.09904

[27] Magomedov, S., Pavelyev, S., Ivanova, I.,

Dobrotvorsky, A., Khrestina, M., Yusubaliev, T.

(2018). Anomaly detection with machine learning and

graph databases in fraud management. International

Journal of Advanced Computer Science and

Applications, 9(11).

https://doi.org/10.14569/IJACSA.2018.091104

[28] Alotaibi, A., Alotaibi, R., Hamza, N. (2019). Access

control models in NoSQL databases: An overview.

Journal of King Abdulaziz University (JKAU), 8(1): 1-

9. https://doi.org/10.4197/Comp. 8-1.1

[29] Paneque, M., del Mar Roldán-García, M., Blanco, C.,

Maté, A., Rosado, D.G., Trujillo, J. (2024). An

ontology-based secure design framework for graph-

based databases. Computer Standards & Interfaces, 88:

103801. https://doi.org/10.1016/j.csi.2023.103801

[30] Chabin, J., Ciferri, C.D., Halfeld-Ferrari, M., Hara,

C.S., Penteado, R.R. (2021). Role-based access control

on graph databases. In 47th International Conference on

Current Trends in Theory and Practice of Computer

Science, Bolzano-Bozen, Italy, pp. 519-534.

https://doi.org/10.1007/978-3-030-67731-2_38

[31] Kemper, C. (2015). Building an Application with

Neo4j. In: Beginning Neo4j. Apress, Berkeley, CA,

USA, pp. 103-129. https://doi.org/10.1007/978-1-4842-

1227-1_8

1368

