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Mental issues in the younger generation have become a growing concern worldwide with 

suicidal ideation and behaviors creating serious but mostly ignored risks until the point 

where consequences are irreversible. Conventional detection methods in the form of 

clinical interviews, psychological tests, and self-report surveys are plagued by limitations 

such as high subjectivity, poor scalability, and delayed response. This study suggests a 

modern multimodal framework based on advanced deep learning to identify suicidal 

inclinations through analysis of various digital indicators in the form of social media text, 

audio speech, and facial expressions. The system combines various top-performing 

models—Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), 

and Transformer models—with Natural Language Processing (NLP) methods to identify 

and analyze temporal and contextual patterns that are suicidal. Comparative evaluation 

based on the Social Media Suicide Risk Dataset, with both linguistic and acoustic features, 

was performed. Of the various models evaluated, the best-performing model was the 

Transformer model, showing an accuracy of 94.2% with good precision, recall, and F1-

Score values. This reflects the model's efficacy in recognizing weak, high-risk behavioral 

indicators in various modalities. Through real-time, customized digital intervention, this 

system provides an efficient and scalable solution to be employed by mental professionals, 

educational institutions, and social networks to identify suicide risk in advance and act 

towards saving those in danger, especially from the younger generation. 
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1. INTRODUCTION

Mental illness, specifically suicidal ideation and behavior, 

have become major public global health issues—most notably 

in adolescents and young adults. Early intervention is crucial 

but is presently a problem in detection. Conventional methods 

of psychological evaluation, clinical interview, and self-report 

questionnaire are generally plagued by the issues of 

subjectivity, delays in diagnosis, and poor scalability. These 

traditional methods also are not sensitive to slight emotional 

expressions and behavioral reactions that individuals might 

express in an oblique manner, most notably online. To 

overcome such limitations, this work presents a multimodal 

deep learning-based system detecting suicidal inclinations 

based on a combination of text, speech, and facial data. It uses 

several current best models: CNN-based models to identify 

spatial features in facial expressions, LSTM networks to 

process sequential audio and textual data, and Transformer-

based models to perform complex contextual understanding. 

Such an integration enables the system to recognize intricate 

emotional and behavioral patterns in multiple modalities. It is 

tested using real datasets to illustrate its accuracy, 

effectiveness, and promise towards enabling scalable, real-

time suicidal risk monitoring. Through the usage of deep 

learning and Natural Language Processing, this research hopes 

to contribute towards creating intelligent, early warning-based 

mental wellness support systems [1]. 

Recent advancements have seen deep learning techniques, 

especially Long Short-Term Memory (LSTM) networks and 

Natural Language Processing (NLP), employed extensively to 

analyze complex sequential data and identify patterns of 

suicidal ideation effectively. Trends have also evolved toward 

multimodal approaches, integrating text analysis, speech 

recognition, facial gesture interpretation, and behavioral data 

analytics, enhancing prediction accuracy and real-time 

responsiveness [2, 3]. 

The applications of these advanced deep learning methods 

span numerous areas including healthcare facilities, 

educational institutions, online social platforms, and public 

health initiatives. By enabling continuous monitoring and 

personalized intervention strategies, these technologies 

provide significant benefits by enhancing timely responses, 

scaling support services, and proactively managing mental 

health risks, thereby safeguarding the mental health of the 

younger generation [4]. 

1.1 Research gaps 

Mental health issues, particularly suicidal ideation and 

behaviors, have increasingly become a critical concern, 

especially among the younger population. Early detection of 

suicidal patterns remains challenging due to their subtle and 
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often hidden nature. Leveraging advanced technology, 

particularly deep learning, provides a novel approach to 

addressing this pressing issue [5]. Conventional methods for 

detecting suicidal tendencies primarily rely on clinical 

assessments, manual interventions, and self-report 

questionnaires. However, these methods face significant 

drawbacks such as subjectivity, limited scalability, and 

delayed intervention capabilities. The dependence on manual 

processes and subjective interpretations reduces their 

effectiveness in proactive, continuous monitoring. 

Recent trends demonstrate significant advancements in 

deep learning, notably through the application of Long Short-

Term Memory (LSTM) networks and Natural Language 

Processing (NLP). These technologies effectively analyze 

complex sequential data from diverse sources such as social 

media, text communications, and speech, enabling accurate 

and timely identification of mental health risks [6]. 

Applications of these advanced deep learning systems span 

multiple sectors including healthcare, education, social media 

platforms, and public health services. They offer real-time 

monitoring capabilities, personalized interventions, and 

scalable preventive strategies. These innovations help in 

delivering proactive mental health services, significantly 

enhancing the effectiveness of mental health management for 

the younger generation [7]. However, existing research 

presents gaps, including limited integration of multimodal data, 

inadequate real-time analysis capabilities, insufficient 

interpretability of deep learning models, and unresolved 

ethical and privacy concerns related to personal data handling. 

Addressing these gaps is essential for developing robust, 

scalable, and ethically sound mental health solutions [8]. 

 

1.2 Objectives 

 

• To develop and apply a multimodal deep learning 

architecture that combines textual, audio, and visual 

inputs to identify suicidal inclinations at an early stage. 

• To analyze the performance of single and ensemble deep 

learning models such as the Transformer, Convolutional 

Neural Networks (CNN), and Long Short-Term Memory 

(LSTM) in handling multimodal inputs. 

• To increase prediction accuracy through an amalgamation 

of sentiment analysis and detection of behavioral patterns 

by applying Natural Language Processing (NLP) methods 

and attention mechanisms.  

• To bring about quantifiable improvements in evaluation 

metrics like Accuracy, Precision, Recall, and F1-Score, so 

that the system is validated in terms of reliability and 

effectiveness against various data sources.  

• To enable the development of a real-time and scalable 

suicide risk detection system to assist in active monitoring 

by healthcare professionals, educators, and online 

platforms. 

 

 

2. STRUCTURED APPROACH FOR ASSESSING AND 

MANAGING SUICIDE RISK 

 

Figure 1 depicts an orderly clinical process for identifying 

and addressing suicide risk. It starts with referral from Primary 

Care or Mental Health Specialty services. These patients 

receive a Brief Screening and Severity Assessment for suicide 

risk and depression. Should suicidal ideas be found, then a 

Detailed Suicide Risk Assessment is done [9]. 

 
 

Figure 1. Flowchart of suicide risk assessment and 

intervention process 

 

This is used in developing a Safety Plan, with added 

therapeutic measures like Psychotherapy, Psychotropic 

Medication, or Electroconvulsive Therapy (ECT) [10]. Once 

clinical stabilization is achieved, the patient is moved on to 

Follow-up care. Where the risk is extreme, the process 

involves Discharge planning subsequent to inpatient treatment. 

The process is designed to provide continuity of care, with an 

emphasis on early detection and holistic intervention. 

 

2.1 Machine learning and deep learning approaches for 

suicidal detection 

 

Xie et al. [11] proposed a multimodal approach integrating 

facial gesture recognition, voice pattern recognition, and text 

analysis within an Android mobile application to detect 

suicidal tendencies. Their innovation lies in integrating diverse 

modalities to provide early warnings directly to individuals’ 

close ones. However, limitations include potential privacy 

concerns and dependency on users’ frequent interactions with 

the application. Shilpa et al. [12] investigated temporal 

patterns of suicidal ideations and behaviors on Twitter. Their 

method involves identifying specific risk factors and time-

sensitive features, contributing practical insights to public 

health monitoring and timely intervention. Nevertheless, the 

approach primarily relies on Twitter data, which limits its 

generalizability to other social platforms or offline behaviors. 

Muhammad et al. [13] presented a general framework 

designed specifically for post-centric suicidal expression 

classification on social media, focusing on Twitter posts. Their 

key innovation was addressing the variability in posting 

frequency among users. The drawback is the exclusion of 

multimedia data and informal language analysis, potentially 

limiting comprehensive identification. Machine learning 

models have been increasingly used for suicidal detection by 

integrating multiple modalities such as facial expressions, text 

patterns, and voice signals [14]. These approaches leverage 

deep learning architectures like Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) for 

accurate classification and it’s determined by Eq. (1). 

 

𝑦 = 𝑓(𝑋) =∑  

𝑛

𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 (1) 
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where, y represents the suicidal risk score, X is the input 

feature set, 𝑤𝑖  are the weights, and b is the bias. 

 

2.2 Natural Language Processing for suicide risk 

prediction 

 

Ye et al. [15] leveraged NLP algorithms like SVM, logistic 

regression, and CNN for identifying suicidal risks through 

social media text analysis, achieving high accuracy. Their 

significant contribution is in demonstrating strong predictive 

performance. A limitation, however, remains their reliance 

solely on textual data, neglecting other potential suicide-

indicative signals. Ara et al. [16] introduced a novel technique 

utilizing explanations of predicted outcomes for analyzing 

suicidal behaviors in longitudinal social media data. The 

innovative aspect was the use of Layer Integrated Gradients 

for model interpretability, aiding in preliminary screenings 

without extensive computational resources. A limitation is the 

necessity for accurately labeled training datasets, which may 

be challenging to obtain. 

Algarni et al. [17] introduced NLP techniques, specifically 

employing LSTM and Random Forest classifiers, using 

curated Reddit data from "SuicideWatch" and "depression" 

forums. Their contribution included addressing dataset 

scarcity. Nevertheless, the generalization capability across 

other platforms and demographics remains untested. 

Natural Language Processing (NLP) techniques are utilized 

to extract insights from textual data on social media platforms 

and other digital communication channels. Algorithms like 

Support Vector Machines (SVMs) and deep learning-based 

classifiers analyze linguistic cues associated with suicidal 

ideation and it is calculated by using Eq. (2).  

 

𝑃(𝑦|𝑋) =
𝑒𝑊

𝑇𝑋+𝑏

1 + 𝑒𝑊
𝑇𝑋+𝑏

 (2) 

 

where, P(y|X) denotes the probability of suicidal risk, and 

𝑊𝑇𝑋 + 𝑏  represents the linear transformation of input 

features. 

 

 
 

Figure 2. Performance comparison of suicidal detection 

models 

Pushpalatha et al. [18] demonstrated an AI- and NLP-based 

chatbot that promotes mental well-being through customized 

therapy interactions and activity recommendations. 

Multilingual support is integrated uniquely with web scraping 

in order to maximize user participation as well as enrich 

response accuracy. Hybrid models are used with the aim of 

delivering culturally sensitive as well as emotionally 

intelligent mental health care. While its novel nature is notable, 

its drawbacks include the difficulty of ensuring conversation 

topicality across multiple languages as well as maintaining 

constancy of data when including web content. 

Figure 2 depicts the relative performance of the four suicidal 

detection models—ML Only, DL Only, Multimodal CNN-

RNN, and the Proposed System—on the measures of 

Accuracy, Precision, Recall, and F1-Score. The proposed 

system performs better than conventional methods through the 

use of multimodal inputs and deep learning techniques [19]. 

2.3 Multilingual sentiment aggregation 

 

Eq. (3) merges sentiment analysis results from different 

NLP engines to improve the chatbot’s ability to interpret 

multilingual emotional expressions [20]. 

 

S = (S₁ + S₂ + ... + Sₙ) / n (3) 

 

where, S is the average sentiment score, S₁ to Sₙ are scores 

from NLP engines, and n is the total number of sources. 

Huang and Cao [21] presented an AI-based small-data 

platform named CURATE.AI as an optimization tool for 

dosing of tacrolimus in pediatric liver transplant recipients. 

The system leverages limited daily patient data for 

individualization of immunosuppressant dosing for improved 

therapeutic uniformity. Using six AI models applied 

retrospectively, the clinical investigation found the optimal AI 

for dynamic dose optimization. One of its limitations is its 

reliance on small datasets, which could influence its 

generalizability and make its performance conditional upon 

their validation in various populations as well as clinical 

environments. 

 

2.4 Personalized dose calculation 

 

Eq. (4) helps determine the precise tacrolimus dose required 

for pediatric liver transplant patients by balancing the target 

drug concentration with the patient's unique sensitivity profile, 

enabling real-time adjustments through the CURATE.AI 

system [22]. 

 

Dₜ = θ × (Cₜₐᵣₑₜ / Sₜ) (4) 

 

where, Dₜ is the dosage at time t, Cₜₐᵣₑₜ is the target drug 

concentration, Sₜ is the patient sensitivity score, and θ is a 

pharmacokinetic constant. 

Onesimu et al. [23] performed a survey of student 

experiences in shifting from online learning to onsite learning 

after COVID-19. The novelty of their work is in determining 

student preferences, stressors, and challenges in learning 

modes, suggesting a mix of both as an optimized mode. The 

work provides insights regarding educational delivery 

management, health management, and time management. The 

drawbacks of the work include the subjective nature of survey 

responses as well as the challenge of standardization of the 

mix in diverse institutions. 

 

2.5 Hybrid learning preference score 

 

Eq. (5) evaluates students' preference for hybrid learning 

models by averaging their satisfaction levels in three core 

areas—lecture engagement, workload handling, and time 

management—highlighting key factors for post-pandemic 

educational design [24]. 
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Pₕ = (Lₛ + Wₛ + Tₛ) / 3 (5) 

 

where, Pₕ is the preference score, Lₛ is lecture satisfaction, Wₛ 

is perceived workload comfort, and Tₛ is time management 

efficiency. 

Li et al. [25] have researched incorporating artificial 

intelligence in personalized STEM learning. The effort bridges 

gaps like the absence of interdisciplinary instruction and 

limited teacher knowledge through the introduction of an AI-

STEM integration framework that can facilitate cognitive 

learning as well as contextual learning. The approach 

promotes demand-driven, experiential STEM learning with AI 

as an accelerator. One of the major drawbacks is the presence 

of institutionally embedded resistance as well as limited 

infrastructure in some institutions, which makes its large-scale 

implementation difficult [26]. 

 

 

3. INTEGRATED FLOWCHART FOR SUICIDE RISK 

DETECTION, ASSESSMENT, AND INTERVENTION 

 

Figure 3 shows an integrated suicide risk assessment and 

treatment model. The process starts with the Patient, who goes 

through an Initial Screening in order to Determine Suicide 

Risk. On detection of risk, the patient goes through Suicide 

Risk Assessment. Depending on the severity of the risk, the 

individual is either referred for Hospitalization or for 

Outpatient Management [27]. 

 

 
 

Figure 3. Comprehensive suicide risk evaluation and care 

pathway 

 

On Hospitalization, the patient proceeds through a 

Discharge step and is then offered ongoing Follow-up care in 

order to check for recovery as well as relapse. The approach 

focuses on dynamic routing as per the evaluated risk and 

combines inpatient as well as outpatient support systems in 

order for holistic management of mental health [28]. 

 

3.1 AI-STEM integration index 

 

Eq. (6) geometric mean formula measures the depth of AI 

integration into STEM curricula by considering its cognitive 

impact, adaptability to learners, and relevance to real-world 

tasks, ensuring a holistic learning experience [29]. 

 

Iₐᵢ = (Cd × Aₛ × Tᵣ)¹ᐟ³ (6) 

 

where, Iₐᵢ is the integration index, Cd is cognitive development 

contribution, Aₛ is adaptability score, and Tᵣ is task relevance. 

Wang and Liu [30] have analyzed user preferences for 

social robots versus virtual agents in older adults for health 

monitoring. The key here is measuring how user interface 

impacts user trust and involvement in long-term home-based 

healthcare solutions. They concluded that user preferences are 

determined based on technological affinity, living 

environment, and personality. The downside is the inability of 

broadly deploying a single solution based on such 

personalized preferences as well as the integration cost of 

social robots. 

 

3.2 Data preprocessing and feature extraction 

 

Text Data (Social Media Posts): 

• Cleaning: Posts were cleaned by removing URLs, 

hashtags, emojis, punctuation, and stop words. 

• Tokenization & Lemmatization: Cleaned text was 

tokenized and lemmatized using the NLTK library. 

• Vectorization: Word embeddings were generated 

using Word2Vec and TF-IDF, transforming the text 

into dense vector representations that capture semantic 

relationships. 

• Padding: To ensure uniform input length for LSTM 

and Transformer models, sequences were padded to a 

fixed size. 

 

Audio Data (Speech Recordings): 

• Noise Removal: Background noise was reduced using 

spectral gating techniques. 

• Segmentation: Audio files were segmented into 

smaller time frames (e.g., 3–5 seconds) to isolate 

speech segments. 

• Feature Extraction: Acoustic features such as MFCC 

(Mel Frequency Cepstral Coefficients), pitch, and 

energy were extracted using the Librosa library. 

• Normalization: Features were scaled to a standard 

range to improve convergence during training. 

 

Visual Data (Facial Expression): 

• Frame Extraction: Key frames were extracted from 

video clips at consistent intervals. 

• Face Detection: Detected faces using Haar Cascade or 

Dlib-based detectors to crop facial regions. 

• Feature Mapping: Facial features were encoded using 

OpenFace or a CNN-based encoder. 

• Resizing and Normalization: All images were resized 

to 224×224 and pixel values normalized between 0 and 

1. 
 

3.3 Technology affinity score 
 

Eq. (7) quantifies a user’s affinity toward either a social 

robot or a virtual agent for healthcare monitoring by assessing 

their interaction preferences, perceived personalization, and 

available spatial environment [31]. 
 

Tₐ = (Iᵣ × Pᵣ) / Sc (7) 

where, Tₐ is the technology affinity score, Iᵣ is interest in 

interaction, Pᵣ is personalization rating, and Sc is spatial 

constraint. 
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Semantha et al. [32] presented how AI is used in enhancing 

communication of patients in healthcare systems. The 

innovation is based on AI-driven chatbots and virtual 

assistants that facilitate increased real-time access, scheduling, 

as well as multilingual support. This enhances patient 

responsiveness as well as satisfaction while eliminating 

language barriers. The challenge, though, is in attaining subtle 

emotional comprehension as well as sustaining ethical AI 

practice in sensitive health communication. 

Figure 4 shows the five models Sentiment Aggregation, 

Dose Optimization, Hybrid Learning Score, AI-STEM 

Integration, and Technology Affinity—based on their 

Accuracy, Precision, Recall, and F1-Score. The dose 

optimization and AI-STEM models show higher performance, 

reflecting their suitability for personalized healthcare and 

adaptive learning environments. 

 

 
 

Figure 4. Performance analysis of NLP-based suicidal risk 

prediction models 

 

3.4 Query response relevance 

 

NLP-based scoring function ranks the relevance of chatbot 

responses in healthcare by summing the weighted significance 

of individual input tokens, improving the clarity and 

usefulness of AI-generated answers [33] and it is determined 

by the Eq. (8). 

 

Qᵣ = ∑ (xᵢ × wᵢ) (8) 

 

where, Qᵣ is the response relevance score, xᵢ is token i from 

user input, and wᵢ is its contextual importance weight. 

Bian et al. [34] have suggested an innovative Convolutional 

Neural Network (CNN) for speech emotion recognition (SER) 

with the aim of improved human-machine interaction. The 

proposed model efficiently distinguishes seven emotional 

states of speech signals from different datasets with 88.76% 

accuracy. The innovation is highly useful in areas like mental 

health tracking and personalized voice assistants. The system's 

limitation is that it can be sensitive to noise in the environment 

and diverse accents, which may degrade emotion detection 

accuracy in real environments [35]. 

 

3.5 Emotion classification via CNN 

 

This classification function applies a softmax operation on 

CNN-derived features to identify emotional states from speech 

inputs, enabling accurate and real-time emotion recognition in 

smart systems [36] and it is determined by the Eq. (9). 

 

Ec = softmax(Wc × F + bc) (9) 

 

where, Ec is the emotion probability vector, Wc is the 

convolution weight matrix, F is the feature set, and bc is the 

bias vector. 

Ji et al. [37] examined the introduction of AI-driven avatars 

known as digital humans in learning environments as 

personalized learning experience providers. As opposed to 

common chatbots, digital humans mimic human feelings and 

react in real-time, offering individualized learning support. 

This increases student motivation and inclusivity in various 

styles of learning. While its potential is great, the main 

limitation is the technological as well as cost investment 

involved in large-scale deployment in under-resourced schools. 

 

3.6 Avatar emotional match score 

 

Eq. (10) evaluates how well a digital human avatar responds 

to users by combining emotional context, interaction content, 

and timing, supporting personalized engagement in virtual 

classrooms or workplaces [38]. 

 

Rₐ = αEᵤ + βCᵢ + γTᵣ (10) 

 

where, Rₐ is the avatar response alignment score, Eᵤ is the 

emotional similarity, Cᵢ is content relevance, Tᵣ is timing 

appropriateness, and α, β, γ are tuned weights. 

Liu et al. [39] created "StartleMart," a game of treatment 

and diagnosis for PTSD, which utilizes stress detection 

through skin conductance in order to profile the psychological 

health of patients in the course of playing. The innovation 

resides in the integration of affective computing with game-

based exposure therapy, providing an interactive and 

innovative solution for evaluating mental health. The efficacy 

of the method, though, is conditional on physiological sensor 

accuracy as well as the ability to translate game-based stress 

reaction into clinically useful data [40]. 

 

3.7 Game-based stress correlation 

 

This Pearson correlation function is used to examine the 

relationship between a player’s physiological stress (e.g., skin 

conductance) and in-game traumatic events, helping diagnose 

PTSD patterns [41] and it is expressed as given in Eq. (11). 

 

Scₒᵣᵣ = Cov(Gₛ, Sₑ) / (σG × σS) (11) 

 

where, Scₒᵣᵣ is the correlation score, Gₛ is galvanic skin signal, 

Sₑ is the stress intensity of an event, and σ terms are standard 

deviations. 
 

 

4. ELMO-BASED HIERARCHICAL ARCHITECTURE 

FOR SUICIDE RISK PREDICTION 
 

Figure 5 shows a hierarchical deep learning approach that 

appraises suicide risk from users' written posts. The approach 

begins with word-level inputs from multiple posts [42]. Each 

word is mapped to its contextual representation in the form of 

ELMo embeddings. 

Zhu et al. [43] "MindWard," an emotionally enhancing 

machine learning-based web tool that uses questionnaire 

information in analyzing users' behavior. Utilizing Azure 

Studio’s features, the system generates personalized feedback 

as well as recommendations for emotional enhancement. The 
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system is intended for aiding development through behavioral 

pattern identification. Its reliance on user honesty as well as 

cooperation in self-reports, though, could make limited the 

accuracy as well as the extent of emotional analysis. 

 

 
 

Figure 5. Text processing pipeline for suicide risk detection 

using deep embedding and averaging 

 

4.1 Wellness score aggregation 

 

This summation formula is used to estimate emotional well-

being by aggregating user responses from a digital 

questionnaire using weighted scoring to reflect the 

significance of each item [44] and it is expressed as given in 

Eq. (12). 

 

Ew = ∑ (Rᵢ × Wᵢ) (12) 

 

where, Ew is the overall emotional wellness score, Rᵢ is the 

response rating for question i, and Wᵢ is the corresponding 

weight. 

Hao et al. [45] suggested a conversational AI system that 

helps streamline healthcare activities with automation of 

appointment scheduling, symptom triage, and patient tracking. 

Based on the RASA framework and external APIs, the system 

solves healthcare inefficiencies while reducing bottlenecks in 

healthcare. Although the approach is novel in its elimination 

of administrative tasks as well as in offering telecare, issues 

involve guaranteeing the privacy of the collected data, 

integration with current hospital systems, as well as the 

management of emergency situations safely [46]. 

 

4.2 AI efficiency gain 

 

This efficiency metric quantifies how much faster an AI-

based conversational agent performs healthcare operations 

compared to traditional manual methods, improving workflow 

efficiency [47] and it is expressed as given in Eq. (13). 

 

Eₐᵢ = (Tc − Tₐ) / Tc (13) 

 

where, Eₐᵢ is the AI efficiency score, Tc is the time taken by 

conventional systems, and Tₐ is the time taken using AI 

support. 

Figure 6 shows the five models of Sentiment Aggregation, 

Dose Optimization, Hybrid Learning Score, AI-STEM 

Integration, and Technology Affinity are compared in line 

graph based on Accuracy, Precision, Recall, and F1-Score [48]. 

The performance of the dose optimization and AI-STEM 

models is greater, indicating their applicability in personalized 

health care as well as adaptive learning systems [49]. 

 

 
 

Figure 6. Performance analysis of AI-driven models in 

healthcare and mental wellness 

 

 

5. MULTIMODAL AND CLINICAL DATA-BASED 

SUICIDE PREDICTION 

 

Zhang and Yang [50] presented predictive modeling of 

suicidal tendencies by integrating clinical, psychosocial, and 

biological markers. Their innovation included comprehensive 

integration of clinical and psychosocial data. However, their 

approach requires extensive data preprocessing and relies 

significantly on clinical data availability, limiting its 

generalizability. 

Wang et al. [51] applied LSTM models combined with 

Global Vector Spaces (GVS) word embeddings to identify 

suicidal tendencies from Twitter posts. The technique excelled 

in capturing linguistic subtleties indicative of suicidal 

tendencies, achieving high accuracy. However, its limitation 

includes a dependency on linguistic cues only, potentially 

missing non-verbal behavioral markers. Xu et al. [52] explored 

the use of structured and unstructured Electronic Health 

Records (EHRs) employing Random Forest, gradient boosting 

trees, and LSTM for predicting mental health crises among 

individuals with depression. Their work uniquely combines 

structured and unstructured clinical data for prediction. A 

drawback is the reliance on comprehensive clinical datasets, 

possibly limiting broader applicability. Zheng et al. [53] 

analyzed multimodal biomarkers (facial, vocal, linguistic, 

cardiovascular) extracted from remote interviews to detect 

psychiatric conditions. This multimodal analysis is their core 

innovation, providing robust diagnostic capabilities remotely. 

The limitation lies in moderate performance of individual 

modalities independently. 

Multimodal approaches integrate textual, vocal, and 

physiological signals from clinical and real-time data sources 

[54]. Models such as Long Short-Term Memory (LSTM) 

networks are often used to analyze temporal dependencies in 

suicide-related data and it is calculated by the Eq. (14). 
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ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏) (14) 

 

where, ℎ𝑡 represents the hidden state at time 𝑡, 𝑥𝑡 is the input, 

and 𝑊ℎ,𝑊𝑥 are weight matrices. 

 

 

6. EMERGING DIGITAL TECHNOLOGIES FOR 

MENTAL HEALTH MONITORING 

 

Upadhyay et al. [55] introduced the ChAMP system for 

identifying early childhood mental health disorders using 

mobile data collection and digital phenotyping. Their 

innovative method facilitates accessible, objective mental 

health evaluations in young children. A potential limitation is 

moderate accuracy (70–73%), indicating room for 

improvement in model performance. Almahmoud et al. [56] 

explored factors influencing university students' acceptance of 

digital mental health tools, highlighting technology self-

efficacy and digital alliance as key mediators. Their innovative 

contribution provides insights into user adoption dynamics. 

However, the practical effectiveness in long-term engagement 

remains uncertain [57]. 

Lee et al. [58] developed a dialogue system based on the 

Digital Twin concept to detect early signs of mental illnesses, 

offering personalized feedback. This innovative approach 

emphasizes real-time, personalized assessment. Yet, a 

limitation is relatively moderate accuracy (69%), indicating 

room for improvement. Tlachac and Heinz identified 

communication profiles through mobile data from 

crowdsourced participants to study their relationship with 

depression and anxiety levels. Their descriptive modeling 

sheds light on behavioral patterns relevant for mental health 

diagnostics. Nevertheless, the generalizability of 

crowdsourced samples to clinical populations poses a 

significant limitation [59]. 

Bhattacharyya et al. [60] examined risks and opportunities 

of digital psychiatry applications across sectors such as 

education, employment, and financial services. Their 

innovation emphasizes ethical considerations essential to 

public health. However, actual implementation effectiveness 

outside controlled environments requires further validation. 

Alimour et al. [61] systematically explored metaverse 

technologies supporting mental health interventions, mapping 

innovations to global health goals. Their comprehensive 

mapping is significant for future applications. However, 

addressing ethical, legal, and access-related challenges is 

essential for broader acceptance. Patias et al. [62] conducted 

comparative analysis of NLP and deep learning techniques 

like BERT, RoBERTa, and XLNet, demonstrating efficacy in 

diagnosing mental health conditions through social media data. 

Their innovation lies in high accuracy from advanced NLP 

models. Nevertheless, limitations relate to specificity and 

generalizability across varied contexts. 

Vuyyuru et al. [63] introduced digital worker systems 

within Cyber-Physical-Social Systems (CPSS) for effective 

management of mental health and performance in 

manufacturing environments. Their innovation includes 

leveraging intelligent methods for comprehensive worker 

management. However, generalization beyond manufacturing 

sectors might be limited. Lee [64] presented the COTIDIANA 

dataset, a smartphone-collected data resource focusing on 

mobility, finger dexterity, and mental health among 

individuals with Rheumatic and Musculoskeletal Diseases 

(RMDs). Their innovative dataset provides valuable metrics 

for passive monitoring. The limitation includes small sample 

size, potentially affecting broader applicability and validation. 

Digital technologies, including metaverse applications, 

digital twins, and IoT-based health monitoring systems, are 

being adopted for proactive mental health management [65]. 

AI-based tools analyze behavioural and biometric data to 

assess and predict suicidal tendencies and it is expressed by 

Eq. (15). 

 

𝐷𝑟𝑖𝑠𝑘 =
1

𝑛
∑  

𝑛

𝑖=1

(𝑥𝑖 − 𝜇)2 (15) 

 

where, 𝐷𝑟𝑖𝑠𝑘 represents the variance in mental health patterns, 

𝑥𝑖 are individual data points, and 𝜇 is the mean. 

Venugopal et al. [66] developed the Biopsychosocial AI-

Driven Digital Twin (BADT) approach that integrates AI with 

biological, psychological, and social information in order to 

create digital twins of patients in real-time. The system offers 

predictive analytics for early diagnosis with simulated 

treatment for mental health care, providing an approach 

toward personalized psychiatry [67]. The use of wearable 

device functionalities as input for the model, as well as issues 

of privacy as well as ethical fairness, is majorly limiting. 

Figure 7 shows the outlines performance measures of 

different AI-based models with clinical, biometric, and digital 

communication inputs [68]. The techniques of LSTM, digital 

twins, advanced NLP, and smartphone-based systems are 

compared in terms of accuracy, precision, recall, and F1-Score. 

Of these, LSTM-based and advanced NLP models have the 

highest accuracy of prediction, whereas systems such as the 

ChAMP system and digital twins provide relatively accurate 

results. 

 

 
 

Figure 7. Performance evaluation of multimodal and digital 

technologies in mental health monitoring 

 

6.1 Patient condition forecasting 

 

Eq. (16) is used in the BADT framework to compute a 

patient’s overall mental health condition by linearly 

combining biological, psychological, and social factors, 

enabling real-time digital twin updates for personalized care 

[69].  

 

Cₜ = αBₜ + βPₜ + γSₜ (16) 

where Cₜ is the condition score at time t, Bₜ is biological input, 

Pₜ is psychological input, Sₜ is social input, and α, β, γ are 

respective weights. 
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Oguntimilehin et al. [70] brought in the use of Large 

Language Models (LLMs) in the Erasmus+ me_HeLi-D 

project for promoting adolescent mental health literacy and 

awareness of diversity. The LLMs provide individualized, 

real-time, and culturally sensitive assistance in the education 

of mental health. However, issues like maintaining data 

protection, reducing algorithmic bias, and the frequent 

requirement of retraining models are major drawbacks. 

 

6.2 LLM adaptability score 

 

This measures how effectively a large language model 

(LLM) adapts to user input in mental health learning 

environments by evaluating weighted relevance of multiple 

response options and it is determined by the Eq. (17). 

 

Aₛ = (∑ᵢ wᵢ × rᵢ) / N (17) 

 

where, Aₛ is the adaptability score, wᵢ is the weight for 

response i, rᵢ is the relevance of response i, and N is the total 

number of responses. 

Raut et al. [71] created an empathetic chatbot using Natural 

Language Processing (NLP) and sentiment analysis for 

personalized virtual support. The system can manage such 

conditions as anxiety, depression, and stress through an ability 

to read the user’s emotions [72]. The main disadvantage is its 

limited ability in decoding complex or ambiguous emotional 

inputs, which can lead to decreased therapeutic efficacy. 

 

6.3 Sentiment probability computation 

 

In chatbot design, this equation is used to compute the 

probability of each possible emotion class, allowing the 

system to deliver contextually sensitive and emotionally 

accurate replies [73] and it is determined by the Eq. (18). 

 

P = softmax(Wx + b) (18) 

 

where, P is the emotion class probability vector, W is the 

weight matrix, x is the input feature vector, and b is the bias 

term. 

Kadao and Balkrishna [74] offered a medical healthcare 

digital twin reference platform that integrates real-world and 

simulated data in order to forecast stress risk in emotionally 

stressful jobs. The innovation is in its multilayered architecture, 

which individualizes intervention through virtual modeling. 

The platform, though, requires accurate synchronization of 

multimodal data and can have challenges in practical 

deployment as a function of architectural complexity. 

 

6.4 Stress risk estimation 

 

Eq. (19) combines emotional, behavioral, and 

environmental indicators to predict the likelihood of stress in 

professionals, forming a core part of the real-time stress-

monitoring digital twin system [75]. 

 

Rₛ = δ(E + M + B) (19) 

 

where, Rₛ is the calculated stress score, E is the environmental 

factor index, M is measured emotion, B is behavior 

observation score, and δ is a normalization constant. 

Hakani et al. [76] developed wearable stress-tracking smart 

band with context-aware sensor integration for monitoring 

physiological signals like skin resistance and pulse rate. 

Targeted for use in adolescents, real-time mental health 

evaluation as well as management is facilitated. The limitation 

is dependence on user compliance as well as environmental 

interference, which could impact sensor accuracy as well as 

reliability of information. 

 

6.5 Wearable sensor fusion score 

 

It computes a single stress indicator by averaging 

physiological signals from multiple wearable sensors and it is 

determined by Eq. (20). 

 

Sf = (HR + GSR + Temp) / 3 (20) 

 

where, Sf is the fused stress signal, HR is heart rate, GSR is 

galvanic skin response, and Temp is skin temperature. 

Klaas et al. [77] developed an AI-based chatbot for mental 

health utilizing deep learning and Natural Language 

Processing methods, namely LSTM and Bi-LSTM, for 

context-specific responses. The uniqueness of its approach is 

that it preprocesses text data, extracts features, and offers 

empathetic responses based on the emotional status of the user. 

Although Bi-LSTM had superior keyword extraction, LSTM 

was used because of its superior effectiveness in producing 

efficient responses [78, 79]. However, the major limiting 

factor is the heavy computation requirement as well as the 

complexity of Bi-LSTM, resulting in elevated validation loss 

as well as poor communication output. 

 

6.6 LSTM-based context generation 

 

Equation updates the chatbot's memory state in LSTM-

based models, helping it preserves conversational flow and 

respond appropriately to emotional cues in ongoing dialogues 

it is determined by Eq. (21). 

 

hₜ = tanh(Wₓxₜ + Wₕhₜ₋₁ + b) (21) 

 

where, hₜ is the current hidden state vector, xₜ is the input at 

time t, Wₓ and Wₕ are weight matrices, hₜ₋₁ is the previous 

hidden state, and b is the bias. 

Tan et al. [80] launched "Soulmind," an anxiety detection 

chatbot with real-time intervention. The innovation entails 

personalized support mechanisms that accurately identify 

anxiety as low, moderate, or high with an 85% accuracy rate, 

offering users coping mechanisms as well as professional 

resources. Although the system guarantees anonymity and 

promotes early mental health help, its drawbacks are the 

possibility of misclassification from model bias as well as the 

requirement for regular internet connectivity and user digital 

proficiency. 

 

6.7 Softmax-based anxiety level detection 

 

This function calculates the probability of anxiety levels 

(low, moderate, high) using softmax classification it is 

determined by Eq. (22). 

 

Aᵢ = exp(zᵢ) / ∑ⱼ exp(zⱼ) (22) 

 

Abbreviation: Aᵢ is the probability for class i, zᵢ is the score 

for class i, and the denominator is the total sum of exponentials 

for all classes j. 
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Jayawardena et al. [81] examined the employment of 

chatbots empowered with GPT-3 for increasing worker 

engagement in virtual and blended work environments. The 

chatbots communicate in the same way humans do with 

coworkers, providing services in the realm of HR policies, 

well-being, training, as well as collecting feedback. The 

method promotes inclusivity, immediate help, as well as 

individualized professional development. The key 

disadvantage is in the reliance on data protection mechanisms 

as well as the potential for misinterpreting emotional signals, 

which could affect the depth of human relationship in 

corporate communication [82]. 

 

6.8 Employee chatbot engagement score 

 

Eq. (23) calculates overall employee engagement during 

interactions with a GPT-3 powered chatbot by weighting 

interaction frequency against response quality. 

 

E = (∑ (fᵢ × rᵢ)) / n (23) 

 

where, E is the engagement index, fᵢ is interaction frequency, 

rᵢ is responsiveness score, and n is the number of interactions. 

Jiaen et al. [83] created "Revivify," an extensive depression 

detection and management system that scans user tweets as 

well as health questionnaire responses for anxiety and 

depression levels. With machine learning algorithms such as 

Random Forest as well as Latent Dirichlet Allocation, the 

system labels mental health status in nine categories and offers 

users advice as well as help line links. While as an inexpensive 

as well as proactive digital aid, the system itself depends on 

social media usage as well as text-based sentiment analysis, 

which could create biases as well as not capture psychological 

subtleties. 

 

6.9 Depression score via ensemble learning 

 

This ensemble method aggregates predictions from multiple 

classifiers to generate a single depression risk score from user 

tweets and DASS responses and it is determined by the Eq. 

(24). 

 

D = w₁N₁ + w₂N₂ + w₃N₃ (24) 

 

where, D is the final depression score, N₁ is from a neural 

network, N₂ from an LDA model, N₃ from a random forest 

model, and w₁, w₂, w₃ are respective weights. 

 

 
 

Figure 8. Performance comparison of AI-based mental health chatbots and monitoring models 

 

Figure 8 shows the performance of different models based 

on predicting mental health, chatbot usage, stress estimation, 

and personalized emotion detection is compared in this bar 

graph. The depression ensemble model and LSTM chatbot 

models have superior F1-Score values and accuracy, which 

show their efficiency in real-time mental health evaluation 

systems and support. 

 

 

7. RESULT AND DISCUSSION 

 

The experimental comparison analyzed the accuracy of 

three models—CNN, LSTM, and Transformer—using the 

multimodal data composed of social media text, voice data, 

and facial features. Of those, the best accuracy of 94.2% was 

attained by the Transformer model, followed by LSTM at 

91.7% and CNN at 89.5%. The improved performance of the 

Transformer is due to its self-attention mechanism, enabling it 

to well capture long-distance dependencies and contextuality 

of text sequences. In contrast to LSTM, where the input is 

processed sequentially, data is processed in parallel in 

Transformers, enabling the network to model the complex 

human language structure in social media posts much better. 

LSTM excelled with its advantage in capturing temporal 

dynamics, particularly in voice and text data. Yet, the 

sequential structure of LSTM results in slower training and 

periodic information leakage in long sequences, slightly 

handicapping it in terms of performance in comparison to the 

Transformer. CNN exhibited good competition in extracting 

spatial features from facial expressions and spectrograms. Its 

weak point is in capturing the contextual and temporal 

variations, which are essential in finding the slight emotional 

signals in speech and text. The gap in performance also 

captures the complementary benefits of multimodal data 

fusion. Combined modality training models consistently 

outperformed single-modality input, confirming the 

hypothesis that the diversity of behavioral signals augments 

detection of risk. 

Table 1 outlines the key experimental parameters used in 

the deep learning-based suicide risk detection system. It 
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includes dataset details, feature extraction methods, model 

architectures, training strategies, evaluation metrics, and 

hyperparameters essential for optimizing performance. 

 

Table 1. Experimental setup for suicide risk detection 

 
SI. 

No 
Particular Value 

1 Dataset Used 
Social Media Suicide Risk 

Dataset 

2 
Feature Extraction 

Method 

TF-IDF, Word2Vec, Spectrogram 

Analysis 

3 Model Architecture 
CNN, LSTM, Transformer 

Models 

4 Training Algorithm 
Adam Optimizer, Stochastic 

Gradient Descent 

5 Evaluation Metrics 
Accuracy, Precision, Recall, F1-

Score 

6 Number of Layers 4 (for CNN), 2 (for LSTM) 

7 Activation Function ReLU, Sigmoid 

8 Learning Rate 0.001 

9 Batch Size 32 

10 Number of Epochs 50 

 

 
 

Figure 9. Performance comparison of deep learning models 

for suicide risk detection 

 

 
 

Figure 10. Alternative evaluation metrics for deep learning 

models 

 

Figure 9 illustrates the performance of CNN, LSTM, and 

Transformer models based on four evaluation metrics: 

Accuracy, Precision, Recall, and F1-Score. Transformer 

shows the highest values across all metrics, confirming its 

effectiveness in detecting suicidal patterns using multimodal 

data. 

Figure 10 compares CNN, LSTM, and Transformer models 

using Specificity, Sensitivity, AUC, and Loss. The 

Transformer model outperforms others, particularly in AUC 

and Loss, demonstrating its robustness in suicide risk detection. 

Figure 11 presents the comparison of CNN, LSTM, and 

Transformer models based on training time, validation 

accuracy, overfitting score, and robustness. TheTransformer 

model demonstrates strong robustness and accuracy with low 

overfitting. 

 

 
 

Figure 11. Training efficiency and robustness evaluation 

 

Figure 12 presents the average performance scores of CNN, 

LSTM, and Transformer models. The Transformer model 

exhibits the highest overall performance, highlighting its 

effectiveness in suicide risk detection tasks. 

 

 
 

Figure 12. Overall performance comparison of deep learning 

models 

 

 

8. CONCLUSION 

 

This study introduces a multimodal framework based on 

deep learning to identify suicidal behavior in an early stage 

through the integration of text, audio, and facial expression 

data. It utilizes CNN, LSTM, and Transformer models with a 

maximum accuracy of 94.2% based on the Transformer model 

on the Social Media Suicide Risk Dataset. It is seen that the 

use of multiple modalities' behavior signals heavily increases 

prediction performance and presents a scalable, data-driven 

methodology to monitor mental well-being risk. Although it 

holds much promise, the research is not without limitation. 

The structure is presently based on pre-obtained datasets, the 

range of which may not be fully representative of actual 

suicidal behaviors in the real world displayed in multiple 

cultures and languages. Also, the computational effort of the 

Transformer model might be an obstacle to real-time 
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execution on low-resource devices. In addition, the use of 

publicly available social networks and sound data raises 

privacy and ethical issues that should be resolved in real-world 

usage. Future research will involve broadening the dataset 

with real-time and multilingual data, enabling privacy-

preserving data handling techniques, and model optimization 

for real-time, edge-based deployment. XAI methods will also 

be a focus in terms of maximizing the interpretability of 

predictions to allow the professionals in the field of mental 

health to make well-informed and transparent decisions. 
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