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In recent years, several impactful studies have provided stakeholders with actionable 
insights aimed at reducing accident severity, aligning with Sustainable Development 
Goals 3 and 11, which target a reduction in global deaths and injuries by 2030. Building 
upon this foundation, the present study applies the Multiple Correspondence Analysis 
(MCA) technique to uncover complex and latent relationships among categorical 
variables influencing road accident severity across Sub-Saharan Africa. The dataset 
comprises 12,316 accident records spanning 2017 to 2020, with 22 carefully selected 
categorical variables relevant to driver demographics, environmental conditions, vehicle 
characteristics, and road infrastructure. Through MCA, the dimensionality of the original 
182 dimensions was reduced to 29 dimensions based on eigenvalue retention, with the 
first two dimensions accounting for 60.2% of the total variance. The resulting MCA biplot 
reveals distinct quadrant-based groupings of variables. The top-right quadrant 
demonstrates a strong positive correlation among factors such as younger drivers (aged 
18-30), vehicle ownership, type of vehicle, service year, presence of medians or lanes, 
specific accident-prone areas, and weekdays. This cluster suggests that accident severity 
is significantly influenced by driver age and vehicle characteristics in particular contexts. 
This study revealed the interrelationships among key features, offering a data-driven 
foundation upon which policymakers and transport authorities can design and implement 
targeted interventions. These may include stricter licensing regulations for younger 
drivers, the enforcement of improved vehicle safety standards, and strategic infrastructural 
enhancements in identified high-risk zones. The findings provide a strong foundation for 
the expansion of sustainable road safety strategies and contribute to the growing discourse 
on mitigating accident severity in Sub-Saharan Africa. 
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1. INTRODUCTION

Road traffic accidents continue to pose a serious challenge,
especially across Sub-Saharan Africa, which, quite 
disturbingly, recorded the highest mortality rate globally in 
2021, with 19 deaths per 100,000 people [1]. While numerous 
efforts have been made to identify contributing factors and 
curb the trend, the statistics remain sobering: road accidents 
still top the list as the leading cause of death among children 
and young people aged 5 to 29, and sit as the 12th leading 
cause of death across all age groups. Beyond the tragic loss of 
lives and the burden of long-term injuries, the economic 
impact is also significant, with some countries losing up to 6% 
of their GDP to costs associated with road crashes [2]. Road 
traffic accidents, therefore, not only constitute a major health 
challenge but also a development challenge, requiring equal or 
more attention to those given to other sustainable development 

objectives, such as poverty reduction [3, 4]. 
Much research has investigated factors affecting road 

accident severity, especially in developing African countries. 
These include human factors, such as driver inattention, 
speeding, alcohol consumption, young inexperienced drivers, 
and the failure to maintain vehicles [5]. Both studies [6, 7] 
identified speeding as a significant predictor of accident 
severity, while alcohol consumption increases crash likelihood. 
Also, behaviors such as dangerous overtaking pedestrian 
actions, like jaywalking, can have a pronounced impact on 
accident severity [8]. Another notable factor is vehicle 
conditions, including vehicle type, age, and maintenance 
levels. Ouni and Chaibi in reference [8] suggest maintenance 
conditions as a key contributor to accident outcomes. 
Environmental factors such as roadway geometry, lighting 
conditions, and weather were not exempted. For example, poor 
road infrastructure, such as poor lighting and road designs, 
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contributes to severe accidents [5, 9]. 
Most of the research has focused on the use of machine 

learning models, such as decision trees and support vector 
machines, to identify how these factors affect road accident 
severity. For instance, the J48 pruned tree model has been 
shown to outperform other models presented in reference [6]. 
Recent reviews [10, 11] of several statistical methods applied 
in road accident analysis show that tangible milestones have 
been achieved in identifying the factors influencing road 
traffic accidents and their severity. For example, logistic 
regression was used to identify risk factors in single-vehicle 
traffic accidents and to investigate how various factors, like 
road environmental conditions, affect accident severity [12, 
13]. Ordered probit models were used to determine the ordered 
severity levels of injuries in accidents occurring in a specific 
area or during a defined period, such as cold and snowy [14]. 
Among others, a Bayesian Hierarchical Model, an advanced 
statistical technique, has been applied to assess the role of 
multi-level data hierarchies in road safety, such as the 
influence of individual, road, and environmental factors on 
motorcycle crashes at intersections [15]. 

While it is widely acknowledged that identifying the 
specific factors influencing traffic accident severity is 
important, far less attention has been given to exploring the 
deeper, often hidden relationships between these variables. 
These often-overlooked connections, frequently buried 
beneath layers of categorical complexity, remain 
underexplored, not least because of the methodological 
hurdles involved. Yet, understanding these relationships is 
vital if we are to set meaningful priorities and craft policies 
that go beyond surface-level fixes. To probe how various 
factors interplay in shaping accident severity, this study 
employs Multiple Correspondence Analysis (MCA), a method 
well-suited to unpacking nuanced patterns that might 
otherwise go unnoticed. While MCA isn’t a silver bullet, its 
strength lies in its ability to distill multi-dimensional data into 
digestible trends, offering a clearer picture of how seemingly 
disparate variables coalesce. In the context of global road 
safety goals and the push toward sustainable development, 
these insights serve a practical purpose: guiding more targeted 
interventions that can reduce not just the economic toll but also 
the deeper, often hidden social costs of traffic accidents. 

2. RELATED WORK

In Sub-Saharan Africa (SSA), traffic accidents remain a
deeply troubling public health and socioeconomic issue, one 
that touches the lives of individuals, disrupts communities, and 
hampers national development efforts. These accidents 
continue to place an avoidable burden on low- and middle-
income countries (LMICs), both economically and 
developmentally, and are among the leading causes of death 
and serious injury across the globe [16]. To better understand 
the factors behind various crash outcomes, researchers often 
conduct injury severity analyses using crash data. Human-
related factors such as speeding, fatigue, intoxicated driving, 
drug use, distractions, and wrong-way driving are repeatedly 
identified as key contributors, particularly in head-on 
collisions. Supporting this, a recent study [17] found that 
speeding alone accounts for nearly 54% of global road 
fatalities, with an alarming 95% of these deaths occurring on 
roads in LMICs. Other factors, such as hazardous roadway 
conditions and improper passing, have also been identified as 

contributing to head-on crashes [18]. 
On the other hand, understanding the determinants of 

accident severity is crucial for effective intervention strategies 
aimed at reducing fatalities and injuries on SSA roads. 
According to the study [19], road traffic crashes were common 
among younger age and males’ gender. Other factors 
identified included poor road network, unplanned stoppage by 
police, unlawful vehicular parking, increased urbanization, 
and slippery floors. Using MCA as a statistical technique for 
analyzing complex datasets with interrelated categorical 
variables, the Highway Safety Manual (HSM) of the American 
Association of State Highway and Transportation Officials 
(AASHTO) categorizes road crash risk factors into three main 
groups: human, vehicle, and road environmental factors [20]. 
These factors contribute to road traffic crashes (RTCs) at rates 
of 93%, 34%, and 13%, respectively the study [21]. According 
to the study [22], life losses from road traffic accidents in the 
African region are 40% greater than in all other countries, with 
LMICs generally being about 50% greater than the world 
average. Through the multi-dimensional mapping of these 
linkages, MCA enables researchers to identify patterns and 
associations that might not be readily evident using more 
conventional methodologies. 

World Health Organization [23] affirms that African 
countries have the highest regional rates of road traffic deaths, 
estimated at 26.6 deaths per 100,000 population, with 
Pedestrians and cyclists, known as vulnerable road users, 
representing 26% of all deaths due to road traffic crashes 
(RTCs). In the Nigerian context, for instance, incidences of 
RTCs were highest across peak commuting hours (07:00-
12:59 and 13:00-18:59), rainy season, and harmattan (foggy) 
months, and in densely populated local government areas 
(LGAs) in Lagos state. Five urban LGAs accounted for over 
half of RTCs distributions: Eti-Osa (14.7%), Ikeja (14.4%), 
Kosofe (9.9%), Ikorodu (9.7%), and Alimosho (6.6%) [24]. 
Safety-conscious Road design, construction, and maintenance 
are vital in ensuring safe roads and reducing death and serious 
injury from traffic crashes [25]. MCA is a powerful statistical 
technique that can facilitate the identification of high-risk 
groups and locations within SSA, guiding targeted 
interventions and resource allocation. Using MCA, the cause 
and severity of accidents analysis is developed based on traffic 
accident data to explore the relationship among factors such as 
people, vehicles, roads, environment, and their combination 
[26]. 

Recent studies have yielded significant insights into the 
factors determining the severity of road accidents in Sub-
Saharan Africa [27-30]. These insights have highlighted 
important causes, methodologies, and conclusions that might 
guide future investigations and policy initiatives. Driver 
actions continuously show that the severity of traffic accidents 
is significantly influenced by the actions of drivers. Gudugbe 
et al. [31] found that among minibus cab drivers in Addis 
Ababa, Ethiopia, critical factors included driver weariness, 
over-speeding, and poor vehicle maintenance. Environmental 
factors, poor road conditions, and inadequate vehicle 
maintenance were also identified as major factors contributing 
to road traffic accidents. However, the study [30] highlighted 
that in the North Gondar Zone of Ethiopia, poor road 
conditions and a deficiency of traffic signs play significant 
roles in road traffic accidents. Similarly, the public’s 
understanding of traffic laws and their enforcement is a crucial 
problem. Konlan and Hayford [19] indicated that a significant 
factor in the high incidence of motorcycle-related accidents in 
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Africa is the lack of public knowledge and the ineffective 
implementation of traffic laws. One of the persistent barriers 
to improving road safety is the weak enforcement of traffic 
laws, where existing regulations, even when well-intended, are 
often applied inconsistently or overlooked entirely. This 
regulatory laxity undermines broader safety efforts. 

Beyond enforcement, several studies have highlighted the 
role of sociodemographic factors in traffic incidents. For 
example, younger and less experienced drivers remain 
disproportionately involved in road crashes [32], which 
suggests a need for more tailored, perhaps even proactive, 
interventions aimed at this group. Accidents also appear to 
concentrate in densely populated urban settings and during 
peak traffic hours. Data from Lagos State, Nigeria, illustrates 
this vividly: local government areas with both high population 
density and heavy congestion tend to record the highest crash 
rates [24]. These patterns emerging from the literature make a 
compelling case for multi-layered interventions ranging from 
infrastructural upgrades and sustained public awareness 
campaigns to, quite crucially, a more disciplined approach to 
law enforcement. As the study [31] rightly observes, without 
these deliberate efforts, the goal of significantly lowering 
traffic-related fatalities may remain aspirational. 

 
 
3. MATERIALS AND METHODS 

 
Multiple Correspondence Analysis (MCA), an evolution of 

Correspondence Analysis (CA), was designed to work 
specifically with categorical data [33]. At its core, MCA seeks 
to reveal and map out the hidden relationships within datasets 
composed of multiple categorical variables. Rather than 
merely providing tabular summaries, it brings these 
associations to life through intuitive visualizations, making it 
easier to spot underlying patterns that might otherwise go 
unnoticed [34]. In this study, MCA is employed not just for its 
technical suitability, but also for its ability to expose the 
geometric configurations of factors influencing road traffic 
accident severity, something conventional summaries often 
fail to capture. The process unfolds in three essential stages: 
preparing the dataset, applying appropriate coding, and 
performing the analysis. 

 
3.1 Data preparation 

 
The dataset underpinning this study was sourced from 

manually documented road traffic accident reports spanning 
2017 to 2020, yielding a total of 12,316 entries across 32 
initially derived features [35]. Since MCA is best suited to 
categorical data, the dataset comprises a deliberate mix of 
nominal and ordinal variables. During the pre-processing 
phase, entries with missing or incomplete information were 
filtered out, resulting in a more analytically viable subset of 
6,422 valid records. To maintain analytical clarity and reduce 
noise, 22 features out of the original 32 were retained based on 
their relevance to accident causality. These selected variables, 
as detailed in Table 1 alongside their category distributions, 
capture dimensions frequently associated with road traffic 
outcomes. It should be acknowledged, however, that the 
dataset is constrained to a specific time frame (2017-2020). 
While this window provides a solid snapshot of recurring 
patterns and risk factors, it may not fully reflect the influence 
of more recent shifts in driving behaviour, safety regulations, 
or emerging vehicular technologies elements that could 

reshape the current risk landscape in ways this dataset cannot 
fully anticipate. 

 
Table 1. Description of road traffic accident features 

 

Features 
Number of 

Categories Per 
Feature 

Definitions 

Day of week 7 
The day of the week on which 

the road traffic accident 
occurred 

Age band of 
driver 5 The age range of the driver 

involved in the accident 

Sex of driver 3 The gender of the driver 
involved in the accident 

Educational 
level 7 The highest level of education 

attained by the drive 
Vehicle driver 

relation 4 The relationship between the 
driver and the vehicle 

Driving 
experience 7 The number of years the driver 

has been driving 

Type of vehicle 18 The type of vehicle involved in 
the accident 

Owner of the 
vehicle 4 The owner of the vehicle 

involved in the accident 

Service year of 
the vehicle 6 

The age of the vehicle in years, 
indicating how long it has been 

in service 
Area accident 

occurred 12 The type of area where the 
accident occurred 

Lanes or 
Medians 7 

The presence and type of lanes 
or medians on the road where 

the accident occurred 

Road alignment 9 The alignment of the road at the 
accident site 

Types of 
Junctions 8 The type of junction where the 

accident occurred 
Road surface 

type 5 The type of surface of the road 
where the accident occurred 

Road surface 
conditions 4 

The condition of the road 
surface at the time of the 

accident 
 

Light conditions 4 The lighting conditions at the 
time of the accident 

Weather 
conditions 9 The weather conditions at the 

time of the accident 
Type of 
collision 10 The nature of the collision, 

Number of 
vehicles 
involved 

6 The number of vehicles 
involved in the accident 

Number of 
casualties 8 

The total number of casualties 
(injured or deceased) resulting 

from the accident 
Vehicle 

movement 13 The movement of the vehicle at 
the time of the accident 

Accident 
severity 3 The severity of the accident 

 
3.2 Data codification 

 
The MCA categorical data was coded using 6422 records 

after data pre-processing. The MCA analysis considered 
features, categories per feature, and frequency of each 
category. The first 22 features presented in Table 2 are 
numbered from 1 to 22, coded F1 to F22. Each category within 
these 22 features is assigned a code ranging from 1 to 159, 
coded F23-F181. The frequency of each category is classified 
into four groups, coded 1 to 4, representing very small, small, 
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large, and very large frequencies, respectively coded F182 to 
F185. The sample size ranges are as follows: 1 to 1600 (very 
small), 1601 to 3200 (small), 3201 to 4800 (large), and 4801 
to 6400 (very large). Table 2 presents the coding for the 
severity of road accident factors. 

 
Table 2. Severity of road accident factors 

 
La
bel Factor La

bel Factor 

F1 Day of Week F2 Age Band of Driver 
F3 Sex of Driver F4 Educational Level 
F5 Vehicle Driver Relation F6 Driving Experience 
F7 Type of Vehicle F8 Owner Of the Vehicle 

F9 Service Year of The Vehicle F1
0 Area Accident Occurred 

F1
1 Lanes or Medians F1

2 Road Alignment 

F1
3 Types of Junctions F1

4 Road Surface Type 

F1
5 Road Surface Conditions F1

6 Light Conditions 

F1
7 Weather Conditions F1

8 Type Of Collision 

F1
9 Number Of Vehicles Involved F2

0 Number Of Casualties 

F2
1 Vehicle Movement F2

2 Accident Severity 

F2
3 Monday F2

4 Tuesday 

F2
5 Wednesday F2

6 Thursday 

F2
7 Friday F2

8 Saturday 

F2
9 Sunday F3

0 Under 18 

F3
1 18-30 F3

2 31-50 

F3
3 Over 51 F3

4 Unknown 

F3
5 Male F3

6 Female 

F3
7 Unknown F3

8 Illiterate 

F3
9 Writing & Reading F4

0 Elementary School 

F4
1 Junior High School F4

2 High School 

F4
3 Above High School F4

4 Unknown 

F4
5 Employee F4

6 Owner 

F4
7 Unknown F4

8 Other 

F4
9 No Licence F5

0 Below 1yr 

F5
1 1 2yr F5

2 2 5yr 

F5
3 5 10yr F5

4 Above 10yr 

F5
5 Unknown F5

6 Automobile 

F5
7 Bajaj F5

8 Long Lorry 

F5
9 Lorry (11 400) F6

0 Lorry (41 1000) 

F6
1 Pick Up to 10Q F6

2 Public (> 45 Seats) 

F6
3 Public (12 Seats) F6

4 Public (13 45 Seats) 

F6
5 Ridden Horse F6

6 Special Vehicle 

F6
7 Station Wagon F6

8 Taxi 

F6
9 Turbo F7

0 Motorcycle 

F7
1 Other F7

2 Unknown 

F7
3 Bicycle F7

4 Owner 

F7
5 Governmental F7

6 Organization 

F7
7 Other F7

8 Below 1yr 

F7
9 1 2yr F8

0 2 5yr 

F8
1 5 10yr F8

2 Above 10yr 

F8
3 Unknown F8

4 Residential Areas 

F8
5 Office Areas F8

6 Market Areas 

F8
7 Church Areas F8

8 Other 

F8
9 Outside Rural Areas F9

0 Industrial Areas 

F9
1 School Areas F9

2 Rural Village Areas 

F9
3 Hospital Areas F9

4 Recreational Areas 

F9
5 

Rural Village Areas Office 
Areas 

F9
6 Other 

F9
7 

Two-Way (Divided with 
Broken Lines Road Marking) 

F9
8 Undivided Two Way 

F9
9 Double Carriageway (Median) F1

00 
Two-Way (Divided with 

Solid Lines Road Marking) 
F1
01 One Way F1

02 Unknown 

F1
03 Escarpments F1

04 
Tangent Road with Flat 

Terrain 
F1
05 

Steep Grade Downward with 
Mountainous Terrain 

F1
06 

Tangent Road with Mild 
Grade and Flat Terrain 

F1
07 

Tangent Road with 
Mountainous Terrain 

F1
08 Sharp Reverse Curve 

F1
09 

Steep Grade Upward with 
Mountainous Terrain 

F1
10 Gentle Horizontal Curve 

F1
11 

Tangent Road with Rolling 
Terrain 

F1
12 Crossing 

F1
13 Y Shape F1

14 No Junction 

F1
15 O Shape F1

16 T Shape 

F1
17 X Shape F1

18 Other 

F1
19 Unknown F1

20 Asphalt Roads 

F1
21 Earth Roads F1

22 Gravel Roads 

F1
23 Other F1

24 
Asphalt Roads with Some 

Distress 
F1
25 Dry F1

26 Wet Or Damp 

F1
27 Snow F1

28 Flood Over 3cm Deep 

F1
29 Daylight F1

30 Darkness Lights Lit 

F1
31 Darkness No Lighting F1

32 Darkness Lights Unlit 

F1
33 Normal F1

34 Cloudy 
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F1
35 Raining F1

36 Windy 

F1
37 Other F1

38 Snow 

F1
39 Raining and Windy F1

40 Fog Or Mist 

F1
41 Unknown F1

42 Collision With Animals 

F1
43 

Collision With Roadside 
Parked Vehicles 

F1
44 

Collision With Roadside 
Objects 

F1
45 Collision With Pedestrians F1

46 
A Vehicle with A Vehicle 

Collision 
F1
47 Fall From Vehicles F1

48 Rollover 

F1
49 Other F1

50 Unknown 

F1
51 With Train F1

66 Turnover 

F1
67 Going Straight F1

68 Moving Backward 

F1
69 Reversing F1

70 Waiting To Go 

F1
71 Getting Off F1

72 Other 

F1
73 U Turn F1

74 Stopping 

F1
75 Entering A Junction F1

76 Overtaking 

F1
77 Unknown F1

78 Parked 

F1
79 Slight Injury F1

80 Serious Injury 

F1
81 Fatal Injury F1

82 Very Small 

F1
83 Small F1

84 Large 

F1
85 Very Large   

 
3.3 Data analysis 

 
Correspondence Analysis extends the application of CA to 

more than two categorical variables, generalizing Principal 
Component Analysis (PCA) for categorical data and revealing 
patterns in complex datasets [36]. The subset of the dataset 
focusing on influencing factors and sources of heterogeneity 
was analyzed using MCA to uncover hidden associations. 

MCA presents a methodologically and strategically 
appropriate choice as the primary analytical technique for this 
study. This is largely due to the categorical nature of the 
variables typically encountered in accident severity datasets, 
such as vehicle type, road condition, time of day, weather, type 
of collision, and severity level (e.g., fatal, serious, or minor). 
Unlike traditional statistical techniques that are more suited to 
numerical or normally distributed data, MCA is specifically 
designed to accommodate multiple categorical variables 
simultaneously. This makes it particularly effective in 
uncovering meaningful patterns and relationships within 
complex, categorical datasets. 

MCA, a type of Correspondence Analysis, can be 
performed on either an indicator matrix or a Burt matrix, with 
both matrices being central to the analysis. However, the 
standard approach to MCA is fundamentally based on the 
indicator matrix [37]. This matrix presents each observation as 
a disjunctive map of variables; essentially, each column 
corresponds to a specific category within a categorical variable 
[33]. Each observation is assigned a binary indicator: a 1 if it 
belongs to a specific category and 0 otherwise. To explore this 

categorical structure, we employed Multiple Correspondence 
Analysis (MCA) via the MultipleCar toolbox [34], which uses 
weighted least squares estimation balancing precision with a 
reasonable degree of robustness in how parameters are derived. 

At the heart of this approach lies the disjunctive (indicator) 
matrix, which reformulates categorical responses into a format 
amenable to multivariate analysis. While this transformation 
appears mechanical, it plays a critical role in clarifying hidden 
associations among variables and lends itself well to visual 
interpretation, without sacrificing computational simplicity. In 
practice, the indicator matrix offers more than just structural 
clarity. It’s relatively easy to construct, keeps the underlying 
data intact, and brings to light nuances at the individual level. 
Its flexibility in handling incomplete records is a quiet 
advantage, especially when working with large, imperfect 
datasets, something most real-world studies inevitably 
contend with. 
 
 
4. RESULT ANALYSIS AND DISCUSSION 

 
The total variance percentage for each dimension is 

represented by the inertia (eigenvalue). A higher inertia 
indicates a larger portion of the total variance among the 
variables on that dimension. The MCA analyzed 3 variables 
with a total of 185 categories, resulting in an overall solution 
of 182 dimensions. The first five dimensions exhibit a higher 
percentage of variance compared to the others, as illustrated in 
Figure 1. Given the low data variability, dimension reduction 
was performed in this study. Figure 1 displays the scree plot, 
plotting eigenvalues against the number of principal 
dimensions. Based on the scree test, the “elbow” of the plot, 
where the eigenvalues begin to level off, occurs at dimension 
5 in this case. This indicates that the significant number of 
dimensions to retain is 5, as identified to the left of the elbow, 
further confirming visually that these dimensions should be 
used for the subsequent MCA analysis. 

Before applying dimensionality reduction, the dataset 
originally consisted of 182 dimensions, collectively 
explaining 100% of the cumulative variance, with a total 
eigenvalue of 6.913. However, as part of the refinement 
process, Table 3 illustrates that dimension reduction reduced 
the dataset to 29 dimensions, while still preserving 100% of 
the cumulative variance, albeit with a lower total eigenvalue 
of 2.414. Despite retaining all 29 dimensions post-reduction, a 
more granular analysis revealed that only 5 dimensions were 
ultimately selected for further analysis. This decision was 
based on the eigenvalue scree plot, where a noticeable 
levelling off occurred at dimension 5, indicating that 
additional dimensions contributed marginal variance beyond 
this point. Consequently, these 5 dimensions were deemed 
most significant for representing the dataset effectively while 
minimizing complexity. 

MCA provides insights into a dataset through information 
visualization, serving as a valuable tool for visualizing 
relationships between variable categories. Typically, the first 
and second dimensions are plotted to examine these 
relationships. In the resulting biplot shown in Figure 2, 
categories farther from the origin are more discriminating, 
while those closer to the origin are less distinct. 

Figure 2 presents the Multiple Correspondence Analysis 
(MCA) biplot, which visually illustrates the relationships 
among categorical variables influencing accident severity, 
forming a combination cloud. Dimension 1 accounts for 
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30.5% of the total variance in the data, capturing factors 
related to road conditions, driver behaviour, and vehicle 
attributes. Dimension 2 explains 29.7% of the variance, 
focusing on variables such as vehicle ownership, service years, 
and demographic characteristics of drivers. Together, these 
two dimensions explain 60.2% of the variability in the dataset. 

If two variables point in the same direction, they are 
positively correlated and exhibit a strong association. When 
variables form a 90-degree angle, no correlation exists 
between them. Conversely, variables pointing in opposite 
directions indicate a negative correlation. In the context of the 
MCA biplot, negative correlations are particularly significant 
for factors in the top-left, bottom-left, and bottom-right 
quadrants, as they highlight contrasting influences on accident 
severity, such as driver demographics, environmental 
conditions, and situational elements. Positive correlations in 
the top-right quadrant emphasize a cluster of factors such as 
vehicle ownership, type, and younger driver involvement that 
work together to shape accident trends, revealing opportunities 
for targeted interventions. 

 

 
 

Figure 1. Scree plot of eigenvalues vs 20 dimensions 

Table 3. The Eigenvalue for 29 dimensions (Dim) 
 

Dim Eigenvalue Percentage 
Inertia 

Cumulative 
Percentage 

1 0.7358 30.5 30.5 
2 0.7166 29.7 60.2 
3 0.1187 4.9 65.1 
4 0.1111 4.6 69.7 
5 0.1111 4.6 74.3 
6 0.1111 4.6 78.9 
7 0.1111 4.6 83.5 
8 0.1111 4.6 88.1 
9 0.1111 4.6 92.7 

10 0.0878 3.6 96.3 
11 0.0430 1.8 98.1 
12 0.0427 1.8 99.9 
13 0.0032 0.1 100.0 
14 0.0000 0.0 100.0 
15 0.0000 0.0 100.0 
16 0.0000 0.0 100.0 
17 0.0000 0.0 100.0 
18 0.0000 0.0 100.0 
19 0.0000 0.0 100.0 
20 0.0000 0.0 100.0 
21 0.0000 0.0 100.0 
22 0.0000 0.0 100.0 
23 0.0000 0.0 100.0 
24 0.0000 0.0 100.0 
25 0.0000 0.0 100.0 
26 0.0000 0.0 100.0 
27 0.0000 0.0 100.0 
28 0.0000 0.0 100.0 
29 0.0000 0.0 100.0 
 

 

 
 

Figure 2. MCA Biplot of the first and second dimensions 
 
Figure 2 shows how different factors are connected in road 

accidents. It helps us understand which things commonly 
occur together when accidents happen. For example, it shows 
that younger drivers (ages 18-30) are more likely to be 
involved in accidents with newer or personally owned vehicles, 
usually during the weekdays, and on roads with specific 
features like medians or lanes. In contrast, more severe 
accidents often happen during bad weather, at night, or when 

visibility is poor, especially involving teen drivers (under 18). 
It also shows that road conditions, weekend days, and older 
drivers (31-50) are linked to different types of accident 
patterns. Meanwhile, factors like gender, education, and 
whether the driver owns the car also play a role, but are less 
connected to other factors. Overall, the chart makes it easier to 
see patterns in road accidents and can help improve road safety 
by focusing on who is most at risk and under what conditions. 
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The top-right quadrant presents variables which include 
owner of vehicle, service year of vehicle, age: 18-30, type of 
vehicle, lanes or median, area accident occurred, and day of 
the week. These factors suggest that accidents involving 
younger drivers (18-30) are closely associated with vehicle 
ownership and type of vehicle. Such incidents often occur in 
specific areas or lanes, with weekdays playing a role in 
influencing severity. The bottom-right quadrant presents key 
variables, including weather condition, light condition, type of 
collision, vehicle movement, number of casualties, age: under 
18, and specific days like Tuesday, Thursday, and Wednesday. 
These factors relate to environmental and situational aspects 
of accidents, such as poor weather, low visibility, and vehicle 
movement, which significantly contribute to accident severity. 
Younger drivers under 18 are also linked to severe accidents 
under these conditions. 

Furthermore, the bottom-left quadrant has variables such as 
sex of driver, vehicle-driver relation, and educational level. 
These factors indicate that driver demographics (gender, 
relationship to the vehicle, and education) influence accident 
severity but are less interconnected with other variable clusters. 
While the top-left quadrant variables include road alignment, 
Friday, road surface type, road surface condition, type of 
junction, driving experience, age band of driver (31-50), 
number of vehicles involved, as well as days like Saturday, 
Sunday, and Monday. These factors suggest that road 
alignment and specific days, such as Friday, may 
independently affect accident trends. Additionally, factors 
such as road surface conditions, junction types, driving 
experience, and the age group (31-50) form a moderately 
related cluster. This grouping represents routine contributors 
to accidents, especially during weekends and early weekdays. 
 
 
5. DISCUSSION 

 
Identifying the relationship between factors that impact 

accident severity helps make sense of complex datasets to 
transform raw data into meaningful, actionable insights. 
Leveraging MCA, the results provide connections among 
variables and reveal unexpected patterns that might otherwise 
go unnoticed. The biplot highlights distinct clusters of 
variables influencing accident severity. While some factors are 
interconnected, others show more independent influences, 
providing a comprehensive understanding of the interplay 
between demographics, environmental conditions, vehicle 
characteristics, and temporal patterns. With the top-right 
quadrant showing positive correlations, the results highlight 
factors such as vehicle ownership, vehicle type, younger driver 
demographics (18-30), specific lanes or medians, area of 
occurrence, and weekdays and implies that a cluster of factors 
such as vehicle ownership, type, and younger driver 
involvement work together to shape accident severity, 
revealing opportunities for targeted interventions. The key 
findings from this study provide valuable insights that can 
guide stakeholders in identifying critical areas of focus. By 
aligning their strategies with the study’s findings, stakeholders 
are better positioned to make thoughtful decisions, focus on 
what truly matters, and apply solutions where they’ll have the 
most impact. The points below outline key areas that deserve 
attention to ensure efforts are effective and outcomes are 
genuinely meaningful: 
a. Government agencies can draw valuable insights from the 

top-right quadrant to strengthen road safety through well-

targeted policies and regulations. For instance, more 
rigorous licensing and training requirements could be 
introduced for younger drivers [38], with a focus on 
improving safe vehicle handling and raising awareness of 
accident-prone zones [39]. One practical yet often 
underemphasized approach to improving road safety 
involves enforcing routine inspections for older vehicles, 
particularly those owned or operated by younger drivers. 
While this may sound regulatory, it serves a preventive 
purpose: ensuring that vehicles on the road remain 
mechanically sound and less prone to avoidable failures 
[40]. It might also be time for authorities to revisit existing 
zoning policies, not merely to review speed limits, but to 
rethink the logic behind where and how such limits are 
applied. In areas identified as high-risk zones, this could 
include layered interventions such as improved signage, 
speed calming measures, or even infrastructural redesign. 
Taken together, these actions not only reduce accident 
frequencies but also contribute to a more proactive and 
inclusive road safety culture [41]. 

b. Urban planners can extract actionable insights from the 
top-right quadrant of the MCA biplot, using them to 
rethink infrastructure in areas consistently flagged as 
accident hotspots. Rather than generic fixes, targeted 
interventions such as clearer lane markings, enhanced 
lighting around medians, and properly timed pedestrian 
crossings can significantly improve visibility and lower 
accident risk. Importantly, the demographic layer, 
especially trends linked to younger drivers, should not be 
overlooked. Traffic calming measures in proximity to 
schools, universities, and recreational centres could prove 
more effective than blanket enforcement. Moreover, high-
risk lane data offers a compelling case for the deployment 
of intelligent monitoring tools, such as real-time sensors, 
surveillance cameras, and AI-driven alerts, to provide 
early warnings and encourage responsible road use before 
incidents occur [42, 43]. 

c. Automotive manufacturers are uniquely positioned to 
contribute meaningfully to road safety, particularly by 
embedding features tailored to younger drivers, who often 
fall into high-risk categories. Safety mechanisms like 
automatic emergency braking, lane departure alerts, and 
electronic stability control are more than technological 
upgrades; they are strategic tools for mitigating 
behavioural risks common in this age group. Beyond 
engineering, there’s also a marketing gap to address. 
Messaging that speaks directly to the lifestyle, concerns, 
and media consumption patterns of young drivers could 
enhance uptake. There’s certainly room for creativity here: 
offering customizable safety packages within entry-level 
models could combine affordability with proactive risk 
management, making safe driving both attractive and 
accessible. 

d. Healthcare providers, though often seen as reactive 
stakeholders in the aftermath of road accidents, have a 
pivotal role to play in reshaping response systems, 
especially in areas with high accident incidence involving 
younger drivers. It begins with strengthening trauma 
systems: well-equipped ambulances, rapid deployment, 
and skilled first responders can make the critical 
difference in survival and recovery outcomes. But the 
opportunity extends beyond emergency response. 
Collaborations between healthcare institutions and road 
safety agencies could facilitate life-saving education, 
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basic first aid training, accident response preparedness, 
and peer-led awareness sessions for young drivers. 
Additionally, by analysing accident patterns, health 
professionals are well-placed to advocate for community-
level interventions, such as prevention-focused 
campaigns that stress responsibility over recklessness on 
the road [44]. 

e. Traffic authorities can adopt a more dynamic approach to
risk reduction by implementing time-sensitive traffic
management strategies in zones identified as weekday
accident clusters. For example, time-based lane closures
or temporary directional shifts could be applied during
peak-risk hours, especially on routes heavily used by
younger drivers. These measures, though logistically
demanding, offer a data-driven way to disrupt patterns of
recurring accidents. Equally, the targeted deployment of
enforcement personnel based on heatmap insights can
enhance compliance and reduce opportunistic traffic
violations. This kind of precision in planning not only
deters risky behaviour but also builds a visible presence
of accountability, which is often lacking in high-incident
corridors [45, 46].

f. The Top-Right Quadrant of the MCA biplot offers
insurance providers a clear vantage point for refining risk
assessment strategies. Premium adjustments that reflect
key factors such as vehicle ownership, car type, and driver 
age can serve both as deterrents and incentives, nudging
high-risk groups toward safer practices. However, it’s not
just about penalties; insurers could also introduce reward
structures—discounts for young drivers completing
certified safety programs or investing in advanced vehicle
safety features. This dual approach balances caution with
encouragement. Moreover, tailored insurance models
focused on specific risk profiles allow for proactive
engagement rather than reactive claims management. By
aligning underwriting with real-world accident patterns,
insurers stand to improve both prediction and prevention,
all while reinforcing trust through greater transparency.

6. CONCLUSION

Road accidents remain a critical public health issue in Sub-
Saharan Africa, ranking as the leading cause of death among 
children and young people aged 5 to 29 and the 12th leading 
cause of mortality across all age groups. Despite numerous 
interventions, the burden of road traffic incidents persists. 
Existing studies have identified several contributing factors, 
including driver inattention, excessive speed, alcohol 
consumption, inexperienced and young drivers, poor vehicle 
maintenance, and hazardous overtaking behaviours. However, 
limited attention has been given to exploring the 
interrelationships among these variables to generate deeper, 
actionable insights. 

This study applied Multiple Correspondence Analysis 
(MCA) to a curated dataset comprising 12,316 road accident 
records from 2017 to 2020, focusing on 22 categorical features 
most relevant to accident severity. The findings revealed 
strong associations among factors such as drivers aged 18-30, 
vehicle ownership, vehicle type, road features (medians or 
lanes), weekdays, and specific high-risk areas. These insights 
underscore the complex interplay between driver 
demographics, vehicle characteristics, and spatial-temporal 
patterns of road use in influencing accident outcomes. 

The analysis informs a number of targeted interventions, 
including the enforcement of stricter licensing protocols for 
younger drivers, improvements in vehicle safety regulations, 
and strategic upgrades to infrastructure in high-risk areas. This 
study thus presents a data-driven framework for the 
development of sustainable, context-specific road safety 
strategies in Sub-Saharan Africa. Moreover, the results create 
a foundation for further investigation. Future studies can 
extend this research by exploring variable relationships across 
different geographic regions, conducting comparative 
analyses, or applying state-of-the-art predictive techniques. 
Data scientists are also encouraged to refine data integrity by 
detecting anomalies and inconsistencies in accident records, 
thereby enhancing dataset reliability. 

Lastly, the study recommends longitudinal research to 
assess the stability of these findings over time and across 
countries. Such efforts will contribute meaningfully to the 
achievement of Sustainable Development Goals 3 and 11, 
particularly Target 3.6, reducing global deaths and injuries 
from road traffic accidents, and Target 11.2, ensuring safe, 
affordable, accessible, and sustainable transport systems for all. 
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