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Liver cancer remains a leading cause of mortality worldwide, where early and precise 

diagnosis plays a crucial role in improving patient outcomes. This study presents a novel 

deep convolutional neural network (CNN) architecture specifically designed for the 

classification of liver diseases in Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI) images. Unlike previous methods that depend on patch-based analysis or 

high-complexity transfer learning models, our model processes entire preprocessed images 

using tailored Hounsfield unit (HU) filtering and Contrast Limited Adaptive Histogram 

Equalization (CLAHE), eliminating the need for manual annotation and region selection. 

The proposed CNN demonstrates significant improvements over existing models by 

achieving 99.8% accuracy, 99.9% precision, and 100% recall across three benchmark 

datasets: The Cancer Genome Atlas Liver Hepatocellular Carcinoma Collection (TCGA-

LIHC), 3D-IRCADb-01, and LiTS17. It also reduces computational overhead while 

maintaining high diagnostic performance. These advancements highlight the effectiveness 

and efficiency of our approach in facilitating early detection and classification of liver 

tumors, offering substantial contributions to computer-aided diagnosis systems.  
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1. INTRODUCTION

Liver cancer is one of the leading causes of cancer-related 

deaths globally. Despite advancements in treatment, the 

disease still exhibits high mortality rates, largely due to 

challenges in early and accurate diagnosis. Medical imaging, 

particularly CT and MRI, remains the cornerstone of liver 

disease evaluation. However, conventional diagnosis methods 

are often time-consuming and subject to inter-observer 

variability, necessitating automated and intelligent systems 

based on deep learning [1-3]. CT and MRI imaging techniques 

are the primary tools for identifying hepatic lesions through 

detection, diagnosis, and monitoring. The challenge of 

underdiagnosis emerges because of subtle tissue contrast 

differences and noise from variations in anatomical structures, 

which interfere with proper treatment. Using traditional 

methods with prior knowledge and tissue properties usually 

results in unpredictable results, but deep learning models built 

on ResNet-50, AlexNet, and GoogLeNet achieve better 

segmentation accuracy. Despite the advancements in medical 

imaging, these improvements require higher computational 

resources [4, 5]. 

Abdominal CT scans are a valuable tool for the early 

detection and characterization of various liver cancers. They 

provide detailed information on the size, shape, and location 

of tumors within the liver and surrounding abdomen, along 

with the vascular anatomy. Accurate lesion characterization is 

crucial for treatment planning. However, radiologists face the 

time-consuming task of manually detecting and segmenting 

lesions within complex 3D CT images containing numerous 

lesions. This highlights the need for computer-aided analysis 

to assist physicians in liver metastasis detection and size 

evaluation in CT scans. Automatic segmentation of liver 

lesions and parenchyma remains challenging due to lesions' 

varying contrast enhancement patterns and the inherent 

variability in perfusion and scan timing, leading to poor image 

contrast between these tissues [6, 7]. 

This study explores the development of a deep-learning 

model for liver disease classification through a comparative 

analysis of various classifiers. A confusion matrix was utilized 

to assess each model's classification performance using 

multiple evaluation metrics. Given the complex clinical 

features of liver cancer histopathological images and the 

heterogeneous training data, a CNN model with superior 

architecture is proposed for tumor detection in liver CT and 

MRI images to address the challenges of feature extraction. 

The key contribution of our work lies in designing a scalable 

CNN model that can effectively handle both large, 

heterogeneous datasets and smaller datasets.  

Despite notable advancements in liver image classification 

using CNNs, many existing models still depend on high 

computational resources, manual region selection, or are 

trained on limited, modality-specific datasets. Moreover, few 

frameworks simultaneously support CT and MRI images in a 

unified architecture. To address these limitations, this study 

proposes a robust and lightweight CNN model that processes 

entire liver images, eliminating the need for patch-based input 

and reducing redundant computations. The architecture 
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integrates optimized preprocessing techniques, including HU 

filtering and CLAHE, to enhance tissue contrast and suppress 

irrelevant regions. Designed for small and large heterogeneous 

datasets, the model achieves classification accuracy exceeding 

99%, combining high diagnostic performance with 

computational efficiency. This balance of adaptability, 

precision, and speed represents the core contribution of this 

research. 

The paper is structured as follows: Section 2 reviews related 

work; Section 3 outlines the methodology; Section 4 presents 

the results and comparative analysis of the proposed method; 

and Section 5 provides the conclusion.  

 

 

2. LITERATURE REVIEW AND RELATED WORK 
 

Deep learning models demonstrate the potential to 

accurately predict liver diseases when provided with access to 

a broader range of patient data, including hidden attributes. 

Prior research has leveraged diverse datasets comprising 

binary computed tomography images, histologically stained 

slides, liver function blood tests, and molecular markers within 

blood samples to train classifiers for liver disease prediction. 

This review summarizes recent studies investigating the 

identification and classification of liver diseases using these 

advanced deep-learning techniques [8, 9]. 

A dual-model framework was proposed in the study [10] for 

liver tumor detection and classification in CT scans using the 

LiTS2017 dataset. The system integrates TAGN, a 

Transformer-based U-Net variant for segmentation, and ViT-

GRU, which combines Vision Transformer features with 

Gated Recurrent Units for classification. TAGN achieved a 

segmentation accuracy of 84.65%, while ViT-GRU reached 

98.79% classification accuracy, with 96.12% precision and 

95.64% recall, outperforming conventional models.  

An Improved Probabilistic Neural Network using Bayesian 

Optimization (IPNN-BO) for the segmentation and 

classification of liver tumors using the LiTS17 dataset was 

proposed by Kolli in the study [11]. This approach addresses 

problems like the intensity overlap of tissues and 

morphological variations using several preprocessing methods 

such as denoising, edge sharpening, and normalization. 

Segmentation was performed using custom-designed liver and 

tumor masks, and the optimization of hyperparameters was 

done using Bayesian techniques. The IPNN-BO recorded a 

Dice accuracy of 0.897 for segmentation and attained 99.25% 

classification accuracy, outperforming baseline methods like 

KNN, CNN, and DCNN.  

Sumash Chandra Bandaru in research [12] introduced 

Swingale, a liver tumor classification framework utilizing the 

Duke Liver Dataset. The model integrates Swin Transformers 

for spatial feature extraction and employs GANs for data 

augmentation. Attention mechanisms, including CBAM and 

ECA, are incorporated to enhance regional feature 

discrimination. Built upon VGG19 with feature fusion, 

Swingale achieved a classification accuracy of 99.29%.  

A liver segmentation and classification methodology were 

presented in reference [13] by using the Edge Strengthening 

Parallel UNet (ESP-UNet) to handle both under-segmentation 

and over-segmentation artifact problems in computed 

tomography (CT) scans. The methodology presents an 

Automated Lesion Classification and Detection (ALCD) 

system using lightweight sequential Deep Convolutional 

Neural Networks (DCNNs). The combined approach reached 

98.60% accuracy with perfect recall of 1.00, precision of 0.97, 

and F1-score of 0.98. 

A deep learning technology-based network was proposed in 

a study [14] for classifying early-stage liver cancer using the 

LiTS dataset. This technique utilized Gaussian filtering for 

removing noise, the Enhanced Otsu Method (EOM) for the 

extraction of the liver area, and classification was done using 

a Dilated Attention Convolutional Neural Network (DA-

CNN). The model successfully classified liver cancer into NC, 

HCC, and CC at 98.20% accuracy.  

A multimodal DNN was presented by the authors in 

research [15] for the classification of liver cancer types, 

namely HCC Multiple, HCC Single, and mCRC. The network 

architecture simultaneously examined varied imaging 

modalities for cancer-relevant feature detection. For stable 

training and to avoid the potential of overfitting, strategies like 

batch normalization and stochastic depth were utilized. 

Evaluated on a dataset collected from various institutions, the 

model reported a classification accuracy of 96.06%, with an 

area under the curve (AUC) measure of 0.832.  

A two-step computer-aided diagnosis method was proposed 

by the authors in the study [16] using pre-treatment portal 

venous phase CT scans for liver tumor classification. A 

modified Inception v3 network was used to differentiate 

between HCC, ICC, CRLM, and benign tumors. Evaluated on 

a multi-institutional dataset of 814 patients, the model 

achieved an overall accuracy of 96%, with class-wise 

sensitivities of 96% (HCC), 94% (ICC), 99% (CRLM), and 

86% (benign tumors). 

The authors in their research study [17] proposed a VGG-

16-based model for classifying thyroid ultrasound images as 

benign or malignant, using TCGA-THCA and DDTI datasets. 

After applying histogram equalization and fine-tuning the pre-

trained network, the model achieved 99.80% accuracy, 100% 

precision, and 98.9% F1-score. While the results are 

impressive, the study focused on binary classification using 

2D ultrasound. In contrast, the proposed CNN in this work 

handles multi-class classification on CT and MRI data, 

offering broader applicability and comparable accuracy with 

higher modality complexity. 

The previous models, named ResNet Unet and Inception-

v3, demonstrated effective performance in liver tumor 

detection despite their existing constraints. The ResNet model 

effectively handles gradient issues, but this model needs 

extensive computational power and long training periods. 

UNet functions well in image segmentation, yet shows lower 

performance in classifying medical images when dealing with 

restricted data resources or when making multiclass 

predictions. Inception-v3 implements a complex structure that 

does not work effectively for immediate clinical processing. 

The new CNN model establishes an optimized relationship 

between precision and operational efficiency. The model's 

performance in classification operations becomes better than 

ResNet and other systems because it avoids complex pathways 

and multi-scale connections, which enable 99.8% accuracy 

with minimal processing requirements. The combination of 

CT and MRI data through a single unified training approach 

boosts the model's generalization capabilities, which 

commonly remains unexplored in existing research. 

 

 

3. METHODOLOGY 
 

This section outlines the proposed CNN-based framework 
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for the classification of liver diseases from CT and MRI 

images. The overall methodology is illustrated in Figure 1 and 

consists of three main stages: preprocessing, feature 

extraction, and deep learning-based classification. The 

prescribed workflow begins with the image preprocessing 

phase, where unhindered compatibility with the CNN is 

ensured by transforming the DICOM-format CT images into 

the JPG format. Furthermore, the HU intensity scale is also 

limited to values in the range of -75 to 150 to emphasize the 

tissue densities of the liver and exclude irrelevant regions such 

as bones and air in CT images. After windowing the HU 

images, CLAHE is applied to both the HU images and the JPG 

version of the MRI images to enhance contrast and outline the 

tumor edges alongside the physiological tissue appearances. 

Other preprocessing steps comprise intensity thresholding to 

leave intensities that are clinically significant, image resizing 

to a standard spatial resolution of 100 pixels by 100 pixels, and 

normalization of pixel values across all datasets to a standard 

pixel value. All the images are reconstructed into three 

channels before they are analyzed to meet the input 

requirements of the convolutional neural network. 

 

 
 

Figure 1. Block diagram for the proposed model 

 

Data augmentation is applied to expand the dataset and 

improve generalizability through rotation, flipping, and 

brightness adjustments. The refined data is split into 65% for 

training, 10% for validation, and 25% for testing. The CNN 

model is trained to extract hierarchical features from the liver 

images, automatically learning texture, shape, and structural 

patterns associated with various liver conditions. Model 

parameters are optimized iteratively to minimize classification 

error, based on validation metrics that include accuracy, 

sensitivity, and specificity. 

Upon completion of training, the model is deployed to 

classify liver images into three categories: cancer, tumor, and 

normal. The learned feature representations guide the 

classification, enabling robust performance across 

heterogeneous image modalities. The proposed pipeline 

integrates advanced preprocessing, high-quality imaging 

datasets (TCGA-LIHC, 3D-IRCADb-01, and LiTS17), and an 

efficient CNN architecture, offering a reliable approach for 

automated liver disease detection and diagnosis. 

 

3.1 The liver datasets preparation 

 

This study utilized three publicly available liver imaging 

datasets: 3D-IRCADb-01, LiTS17, and TCGA-LIHC [18-20]. 

These datasets contain abdominal CT scans originally stored 

in the DICOM (.dcm) format. However, DICOM files are not 

natively supported by most deep learning libraries. All 

DICOM images were converted to JPEG (.jpg) format to 

address this issue. The conversion process was implemented 

using MATLAB. A custom conversion pipeline was applied 

and executed in two stages. The main script iterated through a 

list of DICOM file identifiers. A helper function 

(dicom2image.m) was called for each file. This function uses 

MATLAB’s dicomread to load the image data. The image was 

normalized using mat2 gray, scaled to an 8-bit representation 

using uint8, and saved in JPEG format using imwrite. This 

procedure ensured that the images were preserved with high 

visual fidelity while being formatted for compatibility with 

deep learning models. The converted images were resized and 

stored in a consistent format and resolution, enabling 

streamlined training and testing of the custom-designed 

convolutional neural network. 

The 3D-IRCADb-01 dataset provides CT scans from 20 

patients (10 male, 10 female), ranging from 260 to 2800 axial 

slices per scan at a resolution of 512×512. The LiTS17 dataset 

comprises 130 training and 70 testing volumes for the liver 

tumor segmentation benchmark. 

Our decision to rely heavily on well-documented public 

data, including TCGA-LIHC, 3D-IRCADb-01, and LiTS17, to 

conduct this fundamental study was driven by interconnected 

issues. Top among these is the provision of standardized 

procedures for acquisition, which, in addition to making the 

direct comparison of the results to current state-of-the-art 

procedures a less daunting task, also makes the reproducibility 

of our findings that much easier. Nevertheless, we are mindful 

of the shortcomings that real-life clinical circumstances 

impose with heterogeneous scanner manufacturers, varying 

protocols, different demographics of patients, and variable 

clinical presentations of diseases, which can lead to 

misinterpretations.  

 

3.2 Preprocessing 

 

All CT images underwent a systematic pre-processing 

pipeline to enhance structural clarity and improve the 

reliability of feature extraction for downstream classification 

tasks. The initial step involved converting raw DICOM pixel 

values to HU, which represent a standardized radiodensity 

scale used in computed tomography. This conversion is crucial 

for ensuring consistency across imaging devices and clinical 

settings. The transformation is performed using a linear 

mapping extracted from DICOM metadata: 
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𝐻𝑈 = 𝑅𝑎𝑤𝑉𝑎𝑙𝑢𝑒 × 𝑅𝑒𝑠𝑐𝑎𝑙𝑒𝑆𝑙𝑜𝑝𝑒 +
𝑅𝑒𝑠𝑐𝑎𝑙𝑒𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  

(1) 

 

This enables meaningful interpretation of tissue densities; 

the range of -75 to 150 HU was deliberately chosen based on 

established clinical practices for liver CT imaging [21, 22]. 

After conversion, intensity windowing was applied to isolate 

and emphasize relevant anatomical structures. Voxels outside 

the selected liver window were clipped, and the resulting 

image was rescaled to a normalized range of [0,1], preparing 

it for further enhancement. 

To amplify local contrast and expose subtle tissue 

boundaries, CLAHE was applied to the windowed HU images. 

CLAHE divides the image into contextual regions (tiles), 

performs histogram equalization within each, and then 

combines the results using bilinear interpolation. To prevent 

over-enhancement of noise, a clip limit (0.01) was set, 

controlling the maximum slope of the cumulative distribution 

function within each tile. The intensity histogram hm,n(r) for a 

tile Tm,n was computed as: 

 

ℎ𝑚,𝑛(𝑟) = ∑  
(𝑥,𝑦)∈𝑇𝑚,𝑛

𝛿(𝐼(𝑥, 𝑦) − 𝑟) (2) 

 

where, δ is the Kronecker delta function, excess pixels above 

the clip limit were redistributed to maintain contrast without 

introducing artifacts.  

The 8×8 tile size ensured that enhancement was localized to 

small, clinically relevant regions, while the modest clip limit 

of 0.01 was effective in enhancing the visibility of subtle 

tumor boundaries and textural details without amplifying 

background noise. This combination proved essential for 

normalizing the diverse datasets and preparing them for the 

subsequent feature extraction stages. It is important to note 

that using other parameter values for CLAHE, such as a clip 

limit of 0.02 with an 8×8 tile size (resulting in 95.6% 

accuracy), or a clip limit of 0.01 with a 4×4 tile size (90.1% 

accuracy) or 16×16 tile size (85.7% accuracy), consistently led 

to sub-optimal performance compared to our chosen 

parameters. 

Following contrast enhancement, a 2D median filter was 

employed to suppress high-frequency noise and improve 

overall image quality. This non-linear filter replaces each pixel 

with the median of its neighboring values within a fixed 

window (3×3), making it highly effective against impulsive 

noise while preserving anatomical boundaries. Compared to 

linear smoothing filters, the median filter maintains edge 

sharpness and structural fidelity, which are essential in 

medical imaging analysis. 

The integrated application of HU normalization, intensity 

windowing, CLAHE, and median filtering yielded images 

with improved clarity, balanced contrast, and reduced noise 

artifacts. This pre-processing sequence proved particularly 

beneficial for subsequent classification tasks, as it enhanced 

the visibility of diagnostically significant features while 

suppressing irrelevant variability. Figure 2 shows the liver 

image before and after the pre-processing using HU, CLAHE, 

and a median filter. 

 

 

 
 

Figure 2. Preprocessing state of the CT image before and 

after applying HU, CLAHE, and the median filter 

 

3.3 Proposed CNN design 
 

 
 

Figure 3. The proposed CNN structure 
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The suggested CNN model is designed to extract high-level 

features from 100×100-pixel grayscale medical images. A 

proposed CNN architecture for liver tumor classification 

comprised six convolutional blocks and a fully connected 

layer. Each convolutional block consisted of a convolutional 

layer with more learnable filters (16, 32, and 64 for the 

subsequent four layers), capturing more abstract features from 

the images. The architecture's deeper convolutional layers are 

designed to capture high-level discriminative features, such as 

morphological or textural patterns that distinguish 

pathological abnormalities from normal regions. These layers 

are sequentially followed by batch normalization, rectified 

linear unit (ReLU) activation, and max-pooling operations to 

optimize feature robustness and computational efficiency. The 

network architecture integrated four max-pooling layers, each 

contributing to the progressive downsampling of feature maps. 

Full and convolutional layers followed a ReLU activation 

function and batch normalization to enhance training stability 

and make the network more effective. By combining them, it 

brings in non-linearity, allowing for the network to learn 

complex patterns. To mitigate overfitting, dropout 

regularization with a probability of 0.1 was applied to the fully 

connected layer. Finally, softmax activation was utilized to 

compute low-risk probabilities. The model was optimized 

using the Adam (Adaptive Moment Estimation) optimizer 

with a learning rate of 0.001 and trained over 25 epochs, 

allowing fast convergence and high performance across 

diverse datasets. The proposed model's structure is illustrated 

in Figure 3. 

 

3.4 Feature extraction 

 

Mathematical transformations play a crucial role in 

extracting hidden or subtle patterns from medical images that 

are not easily discernible in their raw form. Among the most 

prominent techniques, the Discrete Wavelet Transform 

(DWT) has demonstrated high efficacy in image analysis, 

particularly in medical image feature extraction. In the context 

of this study, 2D-DWT was employed on liver CT images to 

extract meaningful texture and structural features. The wavelet 

transform is capable of decomposing an image into a set of 

sub-bands that represent different frequency components and 

orientations, capturing both spatial and spectral 

characteristics. The 2D-DWT is applied in a separable manner: 

first across the rows and then across the columns of the image, 

effectively generating four sub-band components — 

approximation (LL), vertical details (LH), horizontal details 

(HL), and diagonal details (HH). 

The decomposition is mathematically defined using low-

pass and high-pass filters, denoted by h[n] and g[n], 

respectively. For a 1D discrete signal, the approximation and 

detail coefficients at the first level of decomposition are 

obtained as: 

 

 Low-pass (approximation): 𝑎[𝑘] = ∑  𝑛 𝑥[𝑛] ⋅
ℎ[2𝑘 − 𝑛]  

(3) 

 

 High-pass (detail): 𝑑[𝑘] = ∑  𝑛 𝑥[𝑛] ⋅ 𝑔[2𝑘 − 𝑛]  (4) 

 

In 2D-DWT, this decomposition is extended to two 

dimensions by applying the 1D-DWT first along the image 

rows and then along the columns, resulting in four sub-band 

images which can be mathematically represented by: 

 

𝐿𝐿(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑚, 𝑛) ⋅ ℎ(2𝑖 − 𝑚) ⋅ ℎ(2𝑗 − 𝑛)  (5) 

 

𝐿𝐻(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑚, 𝑛) ⋅ ℎ(2𝑖 − 𝑚) ⋅ ℎ(2𝑗 − 𝑛)  (6) 

 

𝐻𝐿(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑚, 𝑛) ⋅ ℎ(2𝑖 − 𝑚) ⋅ ℎ(2𝑗 − 𝑛)  (7) 

 

𝐻𝐻(𝑖, 𝑗) = ∑  𝑚 ∑  𝑛 𝐼(𝑚, 𝑛) ⋅ ℎ(2𝑖 − 𝑚) ⋅ ℎ(2𝑗 − 𝑛)  (8) 

 

where, I(m,n) is the input image.  

In this study, we utilized the Haar wavelet, a commonly 

used wavelet function defined by its simple step-like structure, 

suitable for detecting sharp transitions and edges in CT 

images. We performed both one-level and two-level 

decompositions, in which only the LL sub-band is recursively 

decomposed to achieve a multiscale representation. The 2D-

DWT-based feature extraction provided a multi-resolution and 

compact description of liver CT images, enabling the 

identification of both global structures and fine textures 

relevant to liver pathology. 

 

3.5 Training 

 

The proposed CNN model learns image features through 

multiple convolutional and pooling layers, followed by a fully 

connected layer for classification. To optimize performance, 

hyperparameters were tuned via grid search over discrete 

values, as detailed in Table 1, with accuracy used as the 

primary selection criterion. The model was trained using the 

Adam optimizer with a learning rate of 0.001, a batch size of 

32, and for 25 epochs. A dropout rate of 0.1 was applied to 

reduce overfitting. During training, weights were updated 

iteratively through forward and backward propagation to 

minimize loss and ensure stable convergence. 

 

Table 1. Hyperparameter tuning and optimization values 

 
Hyper Parameter Value 

Learning Rate 0.001 

Batch Size 32 

Number of Epochs 25 

Optimizer Adam 

Dropout Rate 0.1 

 

A data split of 65% for training, 10% for validation, and 

25% for testing was adopted to provide a sufficient training 

volume while maintaining a robust and unbiased test set for 

final evaluation. 

Our approach involved a series of practical experiments 

where different combinations of hyperparameters were tested 

to ensure a stable training process, avoiding issues such as 

overfitting identify the configuration that yielded the optimal 

balance between model performance (primarily accuracy) and 

generalization capability (minimizing the gap between 

training and validation curves). 

We systematically varied critical hyperparameters, 

including the learning rate, batch size, and optimizer settings. 

The impact of these variations was observed through the 

model's convergence behavior, final accuracy, and the 

learning curves (training vs. validation loss/accuracy over 

epochs). Configurations that led to rapid convergence without 

significant overfitting, and ultimately achieved the highest 

validation accuracy, were selected. 

Data augmentation played a critical role in enhancing the 

model's generalizability and robustness. By introducing 

transformations such as rotation, flipping, and shearing, the 
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model was exposed to varied orientations and intensities, 

reducing overfitting and improving classification accuracy 

across all datasets. Although the class distributions in the 

benchmark datasets used were relatively balanced, 

augmentation also helped mitigate minor class imbalances, 

especially for rare tumor subtypes. Regarding the architecture 

illustrated in Figure 4, each convolutional layer employed 3×3 

filters with a stride of 1 and 'same' padding to preserve spatial 

dimensions. Max-pooling layers with 2×2 filters and a stride 

of 2 were applied after specific convolutional blocks to 

downsample the feature maps progressively. The model 

operates on 2D image slices; therefore, standard 2D 

convolutions were used instead of 3D convolutions. While 

volumetric CT/MRI data were available, slices were extracted 

individually to reduce complexity and maintain training 

efficiency without compromising diagnostic relevance.

 

 

 

Figure 4. The training progress of a deep learning model designed 

 

 

4. EXPERIMENTAL RESULT AND DISCUSSION 

 

The proposed model was implemented and validated in 

MATLAB 2023b on a system equipped with 16 GB RAM, an 

Intel Core i5 (12th Gen) processor, an RTX 4060 Ti GPU, and 

Windows 11 OS. Performance evaluation was conducted 

using three benchmark datasets, including histopathological 

images for liver cancer. The evaluation metrics included 

accuracy, precision, recall (also known as sensitivity), 

specificity, F1-score, and intersection over union (IoU), 

supported by confusion matrix elements: true positive (TP), 

false positive (FP), false negative (FN), and true negative 

(TN). Precision measured the proportion of correctly predicted 

abnormal cases among all predicted abnormal cases, while 

recall quantified the proportion of correctly identified 

abnormal cases among all actual abnormal cases. The F1-score 

provided a harmonic mean of precision and recall. All metrics 

were computed for each dataset based on standard Eqs. (9)-

(14), and the results are summarized in Table 2. 

 

recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (9) 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (10) 

 

Accuracy =
(𝑇𝑃+𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (11) 

 

IoU =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  (12) 

 

𝐹1-score =
2×sensitivity×recall

sensitivity+recall
  (13) 

 

specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (14) 

 

Figure 4 illustrates the training progression of the proposed 

CNN across three datasets: TCGA-LIHC, 3D-IRCADb-01, 

and LiTS17. The accuracy curve shows a rapid initial increase, 

stabilizing near 100% after approximately 1,000 iterations, 

while validation accuracy improved from 59.58% to 99.61% 

by the end of the fifth epoch—demonstrating strong 

generalization and minimal overfitting. The corresponding 

loss curve exhibited a sharp decline followed by stabilization, 

indicating effective learning and optimized parameter tuning. 

Training was completed in 4,945 iterations over five epochs, 

using a constant learning rate of 0.001 and a single GPU setup, 

with a total runtime of 16 minutes and 27 seconds. These 

results confirm the model’s efficiency and ability to learn from 

heterogeneous datasets with high computational practicality. 

The evaluation metrics (accuracy, precision, recall, F1-

score, specificity, and IoU) were chosen to render a complete 

judgement of the model’s classification ability. In medical 

diagnosis, recall (sensitivity) is of particular importance 

because it indicates the capacity of the model to identify 

pathological cases in the correct way, avoiding false negatives. 

Precision, in contrast, reflects the confidence of the positive 
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predictions, which is crucial for cost-effective avoidance of 

subsequent follow-up tests. Specificity helps normal tissues 

to be correctly classified, thus decreasing false positives. The 

F1-score compromises between precision and recall, and IoU 

provides spatial accuracy that is particularly useful in 

segmentation-aware classification. The proposed CNN 

outperformed state-of-the-art models like GoogleNet, 

Inception-v3, and ResNet-50 according to all the performance 

metrics. This is due to the customized architecture, focused 

pre-processing, and training approach, which leads to 

outperforming the more complicated models even with its 

small computational footprint.

 

Table 2. The intermediate results of the proposed CNN model on three benchmark datasets 

 

Dataset Type 
Accuracy 

(%) 
Precision (%) 

Recall 

(%) 

IoU 

(%) 
F1-Score (%) 

Specificity 

(%) 

TCGA-LIHC 
Cancer 

99.7 
100 99.7 99.7 99.85 100 

Normal 94.1 100 94.1 96.9 99.7 

3D-IRCADb-01 
Normal 

99.7 
99.2 100 99.2 99.6 100 

Tumor 100 99.6 99.6 99.8 99.2 

LiTS17 
Normal 

99.5 
98.9 98.5 97.8 97.7 99.7 

Tumor 99.7 99.8 99.1 99.75 98.9 

TCGA-LIHC, 3D-

IRCADb-01, and 

LiTS17 

Cancer 

99.8 

99.7 99.9 99.6 99.8 99.7 

Normal 96.9 100 96.6 98.2 99.7 

Tumor 100 99.6 99.6 99.8 100 

 

A detailed quantitative assessment of the propositional 

CNN architecture's complexity was undertaken to prove that it 

is a lightweight one. The model was evaluated along two 

principal axes, which include the total number of parameters 

that can be trained and the number of floating-point operations 

(FLOPs) performed in a single forward pass. These measures 

form the established size and computing expense measures in 

models. To compare our model, we contrasted it with the well-

established ResNet-50 structure, which is a default benchmark 

in computer vision. Table 3 indicates the results. Floating-

point operations were also calculated in each model under an 

input dimension of 100×100×3, which were the exact 

dimensions used in the present research. 

 

Table 3. Comparison of computational complexity 

 
Model Total Parameters FLOPs  

Our Proposed Model ~0.31 million ~75.8 million 

ResNet-50 ~25.6 million ~1.34 billion 

 

This dramatic reduction in both parameters and FLOPs 

directly translates to a significantly lower inference time, 

making our model exceptionally well-suited for real-time 

applications and deployment on resource-limited hardware, 

such as embedded systems in clinical settings. 

A confusion matrix analysis was used to analyze the 

accuracy of the proposed CNN model compared to pre-trained 

models (AlexNet, VGG16, ResNet-50, Inception-v3, and 

GoogleNet). From Figure 5 and Table 4, the analysis reveals 

that classification accuracy is directly influenced by the 

complexity of the images. The small scale of the AlexNet 

network had difficulty extracting the unique features of the 

histopathological images, and the performance was low 

compared to other models. VGG16 was improved only 

modestly due to its large depth, whereas ResNet-50 achieved 

sufficient performance through the residual connections, 

overcoming the gradient vanishing issues. Inception-v3 

outperformed other pre-trained models due to its use of multi-

scale convolutions, and GoogleNet outperformed all the other 

pre-trained models due to its excellent design for complex 

pattern recognition. 

The proposed CNN method delivers superior performance 

on all benchmark datasets, achieving an accuracy of 99.8%, 

precision of 98.77%, recall of 99.83%, specificity of 99.8%, 

an IoU of 98.6% and F1-score of 99.27%. The achieved results 

provide evidence of the model's strong feature extraction 

capabilities and reliable classification system. The model 

demonstrates outstanding recall and sensitivity, which enables 

it to find genuine positive diagnoses while avoiding missed 

cases in medical diagnostics. The system maintains high 

specificity in the identification of negative cases, which leads 

to reduced false positives. 

Within the framework of our manuscript, it should also be 

stressed that all the models subjected to the research, including 

both the proposed CNN architecture and the most frequent pre-

trained models (Inception-v3, ResNet-50, and VGG16), were 

evaluated under identical conditions. All CT and MRI images 

from all datasets were subjected to a coherent preprocessing 

protocol presented in Section 3.2, before being included in any 

model. With the help of such a strict protocol, we ensure that 

the comparison between the performance measures is fair and 

unbiased, since all models will be trained and tested on data 

that have the same enhancement, normalization, and 

standardization processes. As a result, all possible 

confounding factors that might be present through the 

difference in data preparation used are mitigated, and the 

strength of the models, along with their comparative 

advantages, thus becomes all the more strengthened.

 

Table 4. Performance of the proposed CNN with other methods 

 
Methods Accuracy (%) Precision (%) Recall (%) IoU (%) F1-Score (%) Specificity (%) 

alexnet 88 98.4 88.9 87.61 93.41 68.2 

vgg16 89.2 98.6 89.9 88.73 94.05 77 

resnet50 91.4 94.2 95.7 90.41 94.94 66.7 

googlenet 92.1 99.9 91.7 91.66 95.25 99.1 

Inception-v3 90.1 96.3 92.6 89.38 94.41 68.4 

Proposed CNN 99.8 98.77 99.83 98.6 99.27 99.8 
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(c) 

 
(d) 

 

Figure 5. The confusion matrix results of the proposed CNN 

model on three different benchmark datasets: (a) TCGA-

LIHC, (b) 3D-IRCADb-01, (c) LiTS17, and (d) for three 

benchmark datasets 

 

While the confusion matrices in Figure 5 demonstrate the 

high classification accuracy of the proposed CNN model, 

minor misclassifications were still observed—particularly 

between the tumor and cancer classes. This confusion likely 

stems from overlapping visual features in CT and MRI images, 

where both tumor and malignant tissue regions may exhibit 

similar texture intensities or irregular shapes. Factors like size, 

shape, enhancement patterns, and internal heterogeneity can 

be ambiguous. There is another reason, which is data 

heterogeneity. Some errors may arise from annotation 

inconsistencies or low-contrast slices, which limit the model’s 

ability to differentiate subtle boundary variations. To mitigate 

these issues, future work could focus on refining the labeling 

process, incorporating additional contrast-enhancement 

techniques during preprocessing, or leveraging attention 

mechanisms to guide the model toward discriminative regions. 

Augmenting the dataset with more diverse samples, especially 

borderline cases, could further improve class separation and 

reduce false predictions. 

 

 

5. COMPARATIVE ANALYSIS 

 

The superior performance of the proposed CNN compared 

to models like AlexNet, ResNet-50, and Inception-v3, as 

shown in Table 5, can be attributed to several architectural and 

dataset-specific factors. AlexNet, while historically 

significant, employs a relatively shallow architecture with 

fewer convolutional layers and lacks modern techniques such 

as batch normalization, making it less effective in extracting 

intricate spatial and textural patterns from grayscale CT and 

MRI images. As a result, it fails to generalize well to the 

complex anatomical variations present in liver images. 

ResNet-50, on the other hand, is a much deeper network that 

utilizes residual connections to solve the vanishing gradient 

problem. However, it is primarily trained on natural RGB 

images (e.g., ImageNet), and its high parameter count can lead 
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to overfitting when applied to smaller medical datasets. 

Moreover, residual learning may not significantly improve 

classification accuracy when the image features are already 

subtle and homogeneous, as is often the case in liver imaging. 

Inception-v3 introduces architectural complexity with multi-

scale feature extraction, but this comes at the cost of increased 

computational burden and training time, which may not yield 

proportional gains in medical image tasks. In contrast, the 

proposed CNN was designed from the ground up to handle 

grayscale liver CT and MRI images efficiently. It balances 

depth and simplicity, leverages carefully selected filter sizes 

and activation functions, and is trained end-to-end with 

domain-specific preprocessing. These design choices enable it 

to learn highly discriminative features with reduced risk of 

overfitting, leading to its superior performance in both 

accuracy and generalizability across all evaluated datasets.

 

Table 5. Performance comparison between the selected models 

 
Classifiers Dataset Accuracy (%) Precision (%) Recall (%) Specificity (%) 

GCN [23] LiTS17 99.1 99.4 99.4 - 

FC-CNN [24] 3D-IRCADb-01 99.11 98.10 - - 

CNN + EfficientNetV2B3 [25] Kaggle 96.3 93.4 86.4 - 

Differential CNN and KELM [26] LiTS17, and 3D-IRCADb-01 98.72 98.52 98.24 98.4 

UNet70 [27] 3D-IRCADb-01 94.58 92.12 97.5 91.66 

DeeplapV3 + ResNet-50 [28] 3D-IRCADb-01, and LiTS17 99.5 86.4 97.9 - 

 

A graph convolutional network (GCN)-based framework is 

proposed in the study [23] for automated liver and tumor 

segmentation in CT scans. Using the LiTS17 dataset, the 

model applies four Chebyshev graph convolution layers and a 

fully connected layer. Preprocessing involved adaptive 

histogram equalization and anisotropic diffusion filtering. The 

framework achieved state-of-the-art performance, with 99.1% 

accuracy, 99.4% sensitivity and precision, and a Dice 

coefficient of 91.1%, surpassing U-Net and ResNet-based 

methods in boundary-sensitive segmentation tasks. 

A fully connected convolutional neural network (FC-CNN) 

was introduced in research [24] for the segmentation and 

classification of hepatic tumors in CT scans, achieving 99.11% 

accuracy on the 3D-IRCADb-01 dataset with noted 

computational efficiency. However, the absence of sensitivity 

and specificity metrics raises concerns regarding its diagnostic 

reliability. Moreover, the model was evaluated on a single 

dataset, limiting its generalizability across diverse imaging 

protocols and patient populations. 

The authors in their research study [25] developed a spliced 

deep learning framework that consists of CNNs and 

EfficientNetV2B3 for IDC vs. non-IDC classification in 

WSIs. The model's good performance was attributed to its use 

of transfer learning and multi-stage preprocessing pipeline. 

Our best model performed similarly well with 96.3% 

accuracy, 93.4% precision, 86.4% recall, and an F1-score of 

89.7%. 

The authors in the study [26] introduced a hybrid model 

based on a Differential CNN and a KELM classifier for the 

detection of HB tumor. Evaluated on LiTS17 and 3D-

IRCADb-01 datasets, it attained 98.72% accuracy, 98.24% 

recall, and 98.52% sensitivity. However, the model is 

computationally expensive with KELM and has a bit inferior 

specificity to state-of-the-art CNNs, which may cause 

misdiagnosis of benign anomaly.   

The authors in the study [27] proposed the UNet70 model, 

an enhanced version of the UNet architecture featuring 70 

convolutional layers and hybrid residual connections. 

Designed to address limitations in tumor heterogeneity and 

small lesion detection, the model processed contrast-enhanced 

CT and MRI scans. UNet70 achieved 94.58% accuracy, a Dice 

score of 94.73%, and 97.50% sensitivity on a multi-

institutional dataset. 

A CNN-based framework was proposed in the study [28] 

for hepatic malignancy detection, leveraging transfer learning 

and feature fusion from multiple pretrained models, including 

ResNet-50 and DenseNet-121. Evaluated on LiTS17 and 3D-

IRCADb-01 datasets, the model achieved 99.5% accuracy, 

with a precision of 0.864 and a recall of 0.979. 

 

 

6. CONCLUSIONS 

 

In this study, a novel CNN architecture was developed and 

optimized for the classification of liver cancer and tumor 

images using CT and MRI data. The model achieved 

outstanding results across three benchmark datasets (TCGA-

LIHC, 3D-IRCADb-01, and LiTS17), recording an accuracy 

of 99.8%, a recall of 99.83%, and a precision of 99.9%. These 

results highlight the model’s strong generalization capabilities 

across diverse imaging modalities. The proposed CNN 

introduces a task-specific architecture that leverages 

Hounsfield unit filtering and CLAHE during preprocessing, 

eliminating the need for manual region selection or complex 

transfer learning pipelines. This design choice, combined with 

efficient training (converging in under 17 minutes on a single 

GPU), demonstrates the model's computational efficiency 

without compromising accuracy. The novelty of this work lies 

in its ability to balance performance, simplicity, and 

adaptability to both CT and MRI data. This makes it a 

promising candidate for integration into clinical decision 

support systems, offering potential to improve early detection, 

reduce diagnostic workload, and support timely treatment 

planning for liver cancer patients. 
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NOMENCLATURE 

 
DICOM Digital Imaging and Communications in Medicine 

LL Approximation (low-pass in both directions) 

LH Vertical details (low-pass rows, high-pass columns) 

HL Horizontal details (high-pass rows, low-pass columns) 
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HH Diagonal details (high-pass in both directions) 

GPU Graphics Processing Unit 

RAM Random Access Memory 

IoU Intersection over Union 

KELM Kernel Extreme Learning Machine 

 

1435




