
Leveraging UAV Imagery and Deep Learning for Automated Object Detection 

Sohan Kanse1 , Vara Prasad Lingam2 , Sahil K. Shah1 , Vidya Kumbahr1* , T. P. Singh1 , 

Kumar Karunendra3  

1 Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune 411016, India 
2 Stantec Resourcenet India Pvt Ltd., Pune 411045, India 
3 Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India 

Corresponding Author Email: vidya@sig.ac.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580710 ABSTRACT 

Received: 11 June 2025 

Revised: 12 July 2025 

Accepted: 22 July 2025 

Available online: 31 July 2025 

India is one of the leading countries in rapid global infrastructure development. Road 

infrastructure is one of the major contributors to the same. This raises a need for the real-

time maintenance of the developed infrastructure. In maintenance, precise identification 

and management of potholes are important, considering the safety of citizens. The current 

study presents a geo-intelligent framework for real-time detection of potholes. It uses 

advanced deep learning techniques such as PSP-Net and U-Net for pothole detection. It 

employs high-resolution unmanned aerial vehicle (UAV) imagery, digital surface model 

(DSM), along with training samples identified through annotations for model training and 

evaluation. Experimental results show that U-Net outperforms PSP-Net with an F1-score 

of 0.78, demonstrating high precision in pothole determination. This novel framework is 

further deployed in the form of a toolkit in the ESRI ArcGIS ecosystem. The two tools 

developed using the Python API were deployed for the determination of pothole volume 

and fill quantity estimation, respectively. The American Concrete Institute (ACI) approach 

was used to estimate the amount of repair materials needed for the identified potholes. The 

study helps in the reduction of man-hour efforts needed for lengthy field surveys for 

pothole identification. The Geo-Image Analytics toolbox offers a scalable solution for 

evolving urban infrastructure needs, marking a significant step forward in modernizing 

pothole management practices and the sustainability of the road infrastructure. 
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1. INTRODUCTION

Potholes are a significant issue for citizens, with serious 

economic and safety impacts. Traditional manual inspection 

methods for pothole detection are time-consuming and 

comparatively offer less precision, highlighting the need for 

innovative solutions. High-resolution UAV imagery combined 

with deep learning techniques and mobile mapping platforms 

enables automated pothole detection. These technologies can 

further aid in effectively managing the recognized potholes. 

Geospatial data provides accurate, location-wise insight, 

which is essential for mapping, monitoring, and analyzing the 

road infrastructure. When combined with geospatial data and 

deep learning, it triggers the automated generation of road 

damage, traffic patterns, and infrastructure degradation. This 

integration of both technologies enhances decision-making, 

supports predictive maintenance, and reduces operational 

costs by allowing timely interventions, ultimately improving 

road safety, efficiency, and longevity [1]. The researchers have 

applied high-resolution geospatial data combined with the 

road-infrastructure stress indices and/or advanced machine 

learning techniques for understanding, maintenance, and 

sustainability of the road infrastructure. 

The GIS-based maintenance model developed by Pantha et 

al. [1], prioritizes pavement and roadside slope stability, 

creating maps for maintenance and planning. It enhances 

decision-making, improving road system serviceability in the 

Himalayan regions using the International Roughness Index 

(IRI) and a roadside slope maintenance priority map. 

Chandimal and Wijesekera [2] addresses transportation issues 

like traffic congestion and financial burdens, using GIS to 

identify improvements such as road surface upgrades and 

alternative paths. It analyzes spatial accessibility in Kaduwela, 

Colombo, considering road variation, condition, and 

population. A novel method to monitor road surface conditions 

of stone pavements using AWZ index in cities is proposed in 

the study [3]. The results were compared with typical 

pavement indicators like IRI and PCI. The method was found 

to be reliable for assessing stone pavement conditions on the 

entire urban road network. (Hamdi et al. [4] applied Artificial 

Neural Networks (ANNs) to predict Surface Distress Index 

(SDI) values with a high correlation factor (R2 score 0.996) 

and reveal the influence of key input parameters for SDI 

prediction, such as rutting, crack width, crack area, patching, 

pothole, and depression. In the study [5], CNN model for road 

distress mapping using high-resolution remote sensing images 

was proposed. The model was tweaked to extract finer features, 

increasing the likelihood of accurate prediction. 

Anusree and Rahiman [6] used a stereo vision-based 

approach for the identification of potholes and estimation of 
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the volume for identified potholes using disparity maps and 

3D point clouds. Kharel and Ahmed [7] used YOLOv5s to 

identify the potholes in real-time with high precision using 

high and low resolution images. The study by Lakshmi 

Kumari et al. [8] explored the use of YOLOv7 and Faster R-

CNN with ResNet-50 as a backbone to automate real-time 

pothole identification. Biçici and Zeybek [9] used three-

dimensional point cloud data to automatically detect and 

measure road distress using UAV images. 

The use of CNN models for pothole identification and 

prediction using biophysical variables was discussed in the 

study [10]. A pyramid scene parsing network (PSP-Net) to 

detect the potholes with high-quality results on various 

datasets such as ImageNet, PASCAL VOC 2012, and 

Cityscapes benchmarks was discussed in the study [11, 12].  

The comprehensive literature review shows that although 

geospatial techniques that use geospatial data and remote 

sensing are widely used for pothole identification, the studies 

that use high-resolution UAV imagery data are limited [13-20]. 

The review also shows that the estimation of identified pothole 

volumes has not been considered by researchers. Moreover, 

the integration of pothole identification systems with GIS 

software such as ArcGIS for development of integrated tool is 

observed rarely [21-23]. This lays a strong foundation to 

amalgamate advanced deep learning techniques with UAV 

imagery using GIS techniques for precise pothole 

identification and management. ESRI ArcGIS provides the 

facility of accessing and managing geospatial data using 

various tools [24].  

From the comprehensive analysis of contemporary studies 

in pothole identification, it is observed that studies that 

integrate pothole identification, pothole volume and fill 

quantity estimation are not available in the easily accessible 

and deployable formats. Moreover, it is perceived that 

surveying such potholes manually is slower and inaccurate 

since it is difficult to measure the volume of the pothole due to 

its irregular shape. This necessitates the need for a system that 

automates the detection and maintenance of potholes through 

an integrated framework. 

Considering the limitations of existing works, this study 

attempts to design and develop a toolbox to detect potholes in 

real-time settings with the aid of segmentation architectures: 

PSP-Net and U-Net [12]. Two novel tools, namely 1) Pothole 

Volume Estimation and 2) Pothole Fill Quantity Estimation, 

were developed. This affirms integration of identification and 

fill quantity estimation of potholes in a seamless manner.  

The following sections discuss methodology, followed by 

results and discussion. The main findings and limitations of 

the proposed method, along with future scope, are discussed 

in the conclusion. 
 

 

2. METHODOLOGY 
 

The methodology of the proposed study involved two steps. 

The first step involved gathering DSMs and high-resolution 

orthomosaic UAV imagery of 1cm spatial resolution captured 

from Florida, USA, obtained using OpenAerial Map [13], 

preprocessing and CNN model development. In the second 

step the development of tool for pothole volume and fill 

quantity estimation. 

 

2.1 Dataset preparation 

 

The high-resolution orthomosaic UAV imagery was 

obtained using OpenAerial Map [25] with a ground sampling 

distance (GSD) of 1cm/pixel. Table 1 presents the details 

about imagery acquired. The obtained image was preprocessed 

to reduce noise, normalize, and align the data for consistency. 

To prepare the dataset, road images with potholes were 

identified through manual inspections and annotated. These 

annotations were used for training and evaluating the 

segmentation models.  

The dataset of annotated bounding boxes of size 6000 was 

created from the UAV orthomosaic imagery. It was divided 

into training (80%) and testing (20%) datasets for model 

training and validation. The detailed methodology of the 

proposed work is shown in Figure 1. 

 

 
 

Figure 1. Methodology 
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Table 1. Dataset details 

 
Parameter Particulars 

Acquisition Date 07-11-2018 

Location Florida, USA 

Flight Altitude 60m 

Imaging Angle 00 (nadir) 

Ground Sampling Distance (GSD) 1cm/pixel 

 

2.2 Model design and validation 

 

2.2.1 Pothole identification 

For the pothole identification model development and 

validation, two segmentation architectures U-Net and PSP-Net 

were employed using the ArcGIS Python API.  

The U-Net model [12, 26] excels at capturing fine details 

and spatial hierarchies, which makes it suitable for pothole 

detection in images of road infrastructure. The expanding and 

contracting paths of the model ensure precise localization and 

context capture for accurate pothole segmentation. PSP-Net 

model [11] divides the road surfaces in order to extract the 

features and train the model using a pyramid pooling module.  

With its encoder-decoder architecture, U-Net is an excellent 

tool for collecting the small details of potholes, and PSP-Net 

improves the comprehension of the global context of a picture.  

The experimentation was undertaken in iterative trails and 

fine-tuning of hyperparameters until an optimal performance. 

Table 2 presents the details of hyperparameters used while 

training the models. 

 

Table 2. Hyperparameter configuration 

 
Hyperparameter Particulars 

Learning Rate  0.001 

Batch Size 08 

Epochs 100 

Optimizer Adam 

Activation ReLU, Sigmoid 

Split Ratio 80:20 

 

The model with the best evaluation performance on the 

validation dataset was selected for deployment. The final 

pothole feature class was created using segmentation results 

obtained from DL techniques, which shows details of the 

spatial extent and position of identified potholes. 

 

2.2.2 Pothole volume and quantity fill estimation 

The segmented DSMs are extracted using the identified 

feature class and a high-resolution DSM, which represents 

elevation data essential for calculating the material needed for 

repairs. A volume computation technique involves creating 

points within each pothole at 5 cm intervals, comparing actual 

and constant levels of elevation to determine fill volume. This 

calculation helps assign a volume property to each pothole, 

which is critical for resource allocation. 

 

2.3 Geo-Image Analytics toolbox  

 

A crucial component of the proposed work was creating a 

Python toolbox in ArcGIS Pro. It will automate the operations 

of estimating pothole volume, quantity fill, and calculating 

repair quantities. Figure 2 presents the workflow for the 

development of this toolbox. Two tools, namely 1) Pothole 

Volume Estimation (Figure 3) and 2) Pothole Fill Quantity 

Estimation using the ACI method (Figure 4), were developed.  

2.3.1 Pothole volume estimation tool 

Each Python script from the toolbox analyzed the 

segmented photos to determine each pothole's measurements 

and estimate the volume of each pothole. In this stage, feature 

class (the boundary points) of identified potholes using 

segmentation model along with the elevation details extracted 

through DSM are fed as input parameters as a raster layer 

(Figure 3). 

The volume for the identified pothole is calculated using 

geometric calculations based on the obtained measurements. 

 

2.3.2 Pothole quantity fill estimation tool 

Using the ACI approach [27], a Python script was created 

to estimate the amount of repair materials needed. It calculates 

the quantity of concrete or asphalt needed for repairs by using 

the pothole volume and the ACI criteria, as shown in Figure 5. 

The input parameters required at this stage are the identified 

pothole boundaries, estimated volume, desirable concrete 

strength and water to cement ratio for calculating the fill 

quantity. The output generated is an updated pothole feature 

class with details such as requirement for cement, sand, water 

and other aggregate mixture as derived using ACI criteria. To 

guarantee precise estimations, the script incorporates 

parameters for material density and other pertinent aspects. 

The detailed procedure adopted for pothole fill quantity 

estimate using ACI method [27] is as follows: 

The total volume of concrete (V) (Eq. (1)) is assumed to be 

1m³, and the sum of the absolute volumes of all ingredients 

should equal 1: 
 

𝑉 =
𝑊

𝜌𝑤
+

𝐶

𝜌𝑐
+

𝐹𝐴

𝜌𝑓𝑎
+

𝐶𝐴

𝜌𝑐𝑎
+ 𝑉𝑎𝑖𝑟  (1) 

 

where,  

• W: weight of water (kg) 

• C: weight of cement (kg) 

• FA: weight of fine aggregate (kg) 

• CA: weight of coarse aggregate (kg) 

• ρ: specific gravity × 1000 (kg/m³) 

• Vair: air content (typically 2% for non-air-entrained 

concrete) 

1. Choose target strength based on grade.  

(e.g., M25 → 31.6 MPa target). 

2. Select water to cement (W/C) ratio (e.g., 0.45). 

3. Estimate water content (e.g., 160 kg for 1 cm slump). 

4. Calculate cement content using Eq. (2). 

 

𝐶 =
𝑊

𝑊/𝐶
  (2) 

 

5. Estimate air content (e.g., 2%). 

6. Determine coarse aggregate volume from reference 

ACI tables based on max size and fineness modulus. 

7. Compute fine aggregate volume by subtracting all 

known volumes from 1 m³. 

8. Convert volumes to weights using specific gravities 

as shown in Eq. (3). 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 =
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑚𝑎𝑠𝑠

( 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦∗𝑤𝑎𝑡𝑒𝑟 𝑚𝑎𝑠𝑠)
  (3) 

 

The python toolbox was developed using ArcGIS Pro 3.1 

with the support of ArcGIS API for python, and the python 

libraries ArcPy and Pandas for processing of geospatial data, 

model development, integration and deployment. 
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Figure 2. Workflow for toolbox development 

 

 
 

Figure 3. Tool for pothole volume estimation 

 

 
 

Figure 4. Tool for quantity estimation using ACI method 
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Figure 5. ACI method of mix-concrete design for pothole repair 

 

3. RESULTS AND DISCUSSIONS 

 

The performance of CNN models was evaluated using 

metrics like pixel accuracy, precision, recall, F1-score, and 

intersection over union (IoU). It is observed that, with a recall 

of 0.76, precision of 0.82, accuracy of 0.72, IoU of 0.68, and 

an F1 score of 0.78, the U-Net model performed well. The 

PSP-Net model provided an F1 score of 0.61, an IoU of 0.76, 

an accuracy of 0.85, a precision of 0.58, and a recall of 0.72. 

The above findings demonstrated the trade-offs between 

various model properties, indicating the U-Net model 

performs better in terms of precision and F1-score, and the 

PSP-Net model demonstrates higher accuracy and IoU (Table 

3).  

While PSP-Net achieves a higher IoU than U-Net, it records 

a lower F1-score, pointing to an important trade-off between 

region-level accuracy and pixel-wise recall. The architecture 

of PSP-Net, with its multi-scale context aggregation through 

pyramid pooling, tends to produce smoother and more 

conservative segmentations. This often leads to better overlap 

with the ground truth as measured by IoU but can miss the 

finer details/smaller structures, thus reduce the recall and 

lower the F1-score. On the contrary, U-Net benefits from 

direct skip connections that help retain spatial details, making 

it more effective at capturing object boundaries and smaller 

regions. As a result, it tends to achieve higher recall, which 

contributes to an improved F1-score. Thus the selection of 

model in cases where detecting small or minor regions like 

potholes drives the overall efficacy of the developed system. 

The actual high-resolution UAV image with ground truth 

pothole annotations recorded through manual field visits, and 

predicted results are shown in Figures 6 and 7, respectively. 

The model was trained using the annotated samples of 

potholes using the high-resolution UAV imagery. From the 

results, it is apparent that model learned the minute features 

for correct discrimination of potholes. The accuracy of model 

is driven by the spatial resolution of the aerial images captured 

and correctness of the annotations. It can be used across 

different geographical locations in similar experimental 

settings and resolution of input images. Further, the 

calculations can be used for estimation of pothole volume and 

fill quantity. The factors such as the effects of shadow, lighting 

and angle of image capture play a vital role in models 

learnability and robustness [28]. 

 

Table 3. Comparative analysis of deep learning models for pothole identification 

 
Model Recall Precision Accuracy Intersection over Union (IoU) F1-Score 

U-Net 0.76 0.82 0.72 0.68 0.78 

PSP-Net  0.72 0.58 0.85 0.76 0.61 

 

An integrated dashboard using ArcGIS Pro was developed 

to monitor the progress of pothole repair through field updates 

in real-time. A dedicated data pipeline was designed to fetch 

the data of roads, edges, and pothole polygons. Figure 8 shows 

the workflow adapted for designing this integrated dashboard 

and the obtained results. The dashboard was developed using 

ArcGIS Dashboard hosted over ArcGIS Online (AGOL) 

platform. This dasboard hosted a web-map with layers such as: 

road center line (RDC) viewer, road edges (RE) viewer, 

pothole points (PEP) viewer etc. Each layer can be fetched 

separately from the dasboard.Its integration with web-map 

allows real-time pothole identification and monitoring of 

repairs.  

Field personnel were able to update the status of pothole 

repairs and material procurement directly from the site. 

Stakeholders were able to promptly resolve any concerns that 

developed during the repair work execution by using the 

dashboards to make educated decisions. The performance of 

proposed system is constrained due to the effects of lower 

resolution imagery, variations in the lighting or angle of image 

capture. In future, this study can be extended with more 

generalizability and robustness by training the models with 

more diverse datasets. 
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Figure 6. High-resolution UAV orthomosaic imagery and 

ground truth annotations for manually inspected 

potholes(annoted in yellow boxes) 

 

 
 

Figure 7. Pothole prediction results 

 

 
 

Figure 8. Workflow of pothole monitoring dashboard 

 

 

4. CONCLUSIONS 

 

The study presented the Geo-Image Analytics toolbox, an 

innovative approach that integrates deep learning models, 

geospatial data, and the ArcGIS Python API for pothole 

identification and maintenance. The proposed system explores 

the potential of advanced deep learning techniques such as 

PSP-Net and U-Net for the identification of potholes using 

high-resolution UAV imagery and DSM. Further, the U-Net 

model is deployed in the form of a toolbox for ready use by 

the stakeholders. The proposed method also provides the 

facility for the calculation of the fill quantity of detected 

potholes with the help of the ACI method. The DSM model 

with high-resolution imagery helped to detect small and 

shallow potholes with improved accuracy. An integrated 

dashboard is deployed for real-time monitoring of pothole 

repairs and field maps. With this framework, stakeholders can 

track the progress of the repair and maintenance of identified 

potholes, contributing to sustainable road infrastructure 

management and making informed decisions. It also ensures 

road safety, infrastructure management, operational efficiency, 

and improved livelihood of the citizens. This system acts as a 

prototype for further research that will use technology to 

manage infrastructure, making community road networks 

safer and more dependable in the end. 

1422



ACKNOWLEDGMENT 

 

Authors are obliged to anonymized editors and reviewers 

for their time and support in reviewing this manuscript. 

Authors are grateful to Symbiosis Institute of Geoinformatics, 

Symbiosis International (Deemed University), Pune, India for 

providing conducive research environment for carrying out 

this research work. 

 

 

REFERENCES  

 

[1] Pantha, B.R., Yatabe, R., Bhandary, N.P. (2010). GIS-

based highway maintenance prioritization model: An 

integrated approach for highway maintenance in Nepal 

mountains. Journal of Transport Geography, 18(3): 426-

433. https://doi.org/10.1016/j.jtrangeo.2009.06.016 

[2] Chandimal, W.P.A.I.M., Wijesekera, N.T.S. (2008). A 

GIS approach to identify road network improvement 

needs: Case study of Kaduwela, Sri Lanka. Engineer: 

Journal of the Institution of Engineers, Sri Lanka, 41(5): 

116-125. https://doi.org/10.4038/engineer.v41i5.7111 

[3] Bruno, S., Vita, L., Loprencipe, G. (2022). Development 

of a GIS-based methodology for the management of 

stone pavements using low-cost sensors. Sensors, 22(17): 

6560. https://doi.org/10.3390/s22176560 

[4] Hamdi, Hadiwardoyo, S. P., Correia, A. G., Pereira, P., 

Cortez, P. (2017). Prediction of surface distress using 

neural networks. AIP Conference Proceedings, 1855(1): 

040006. https://doi.org/10.1063/1.4985502 

[5] Madhumita, D., Bharath, H.A. (2023). Deep Learning 

based approach for road distress mapping using VHR 

images. In IGARSS 2023-2023 IEEE International 

Geoscience and Remote Sensing Symposium, Pasadena, 

CA, USA, pp. 1549-1552. 

https://doi.org/10.1109/igarss52108.2023.10283229 

[6] Anusree, B., Rahiman, V.A. (2021). Pothole detection 

and volume estimation based on disparity transformation 

with histogram thresholding. Proceedings of the Yukthi 

2021- The International Conference on Emerging Trends 

in Engineering – GEC Kozhikode, Kerala, India. 

http://dx.doi.org/10.2139/ssrn.3973013 

[7] Kharel, S., Ahmed, K.R. (2022). Potholes detection using 

deep learning and area estimation using image 

processing. In Proceedings of SAI Intelligent Systems 

Conference, pp. 373-388. Cham: Springer International 

Publishing. https://doi.org/10.1007/978-3-030-82199-

9_24 

[8] Lakshmi Kumari, P.D.S.S., Ramacharanteja, G.S.S., 

Suresh Kumar, S., Bhuvana Sri, G., Jyotsna, G.S.N., 

Safalya, A.H.K.N. (2023). Developing an automated 

system for pothole detection and management using 

Deep Learning. In International Conference on 

Advanced Communication and Intelligent Systems, pp. 

12-22. Cham: Springer Nature, Switzerland. 

https://doi.org/10.1007/978-3-031-45124-9_2 

[9] Biçici, S., Zeybek, M. (2021). An approach for the 

automated extraction of road surface distress from a 

UAV-derived point cloud. Automation in Construction, 

122: 103475. 

https://doi.org/10.1016/j.autcon.2020.103475 

[10] Lee, S.Y., Le, T.H.M., Kim, Y.M. (2023). Prediction and 

detection of potholes in urban roads: Machine learning 

and deep learning based image segmentation approaches. 

Developments in the Built Environment, 13: 100109. 

https://doi.org/10.1016/j.dibe.2022.100109 

[11] Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J. (2017). 

Pyramid scene parsing network. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern 

Recognition, Honolulu, HI, USA, pp. 2881-2890. 

https://doi.org/10.1109/cvpr.2017.660 

[12] J Ghosh, R., Shah, S.K., Kumbhar, V. (2023). Deep 

learning-based liver tumor segmentation: A comparative 

study of U-Net variants for medical imaging analysis. In 

2023 Global Conference on Information Technologies 

and Communications (GCITC), Bangalore, India, pp. 1-

7. https://doi.org/10.1109/GCITC60406.2023.10426259 

[13] Ling, S., Pan, Y., Chen, W., Zhao, Y., Sun, J. (2024). 

Pothole detection based on superpixel features of 

unmanned aerial vehicle images. International Journal of 

Pavement Research and Technology, 1-11. 

https://doi.org/10.1007/s42947-024-00436-w 

[14] Ruseruka, C., Mwakalonge, J., Comert, G., Siuhi, S., 

Ngeni, F., Anderson, Q. (2024). Augmenting roadway 

safety with machine learning and deep learning: Pothole 

detection and dimension estimation using in-vehicle 

technologies. Machine Learning with Applications, 16: 

100547. https://doi.org/10.1016/j.mlwa.2024.100547 

[15] Pan, Y., Zhang, X., Cervone, G., Yang, L. (2018). 

Detection of asphalt pavement potholes and cracks based 

on the unmanned aerial vehicle multispectral imagery. 

IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 11(10): 3701-3712. 

https://doi.org/10.1109/JSTARS.2018.2865528 

[16] Ping, P., Yang, X., Gao, Z. (2020). A deep learning 

approach for street pothole detection. In 2020 IEEE Sixth 

International Conference on Big Data Computing 

Service and Applications (BigDataService), Oxford, UK, 

pp. 198-204. 

https://doi.org/10.1109/BigDataService49289.2020.000

39 

[17] Ahmed, K.R. (2021). Smart pothole detection using deep 

learning based on dilated convolution. Sensors, 21(24): 

8406. https://doi.org/10.3390/s21248406 

[18] Varona, B., Monteserin, A., Teyseyre, A. (2020). A deep 

learning approach to automatic road surface monitoring 

and pothole detection. Personal and Ubiquitous 

Computing, 24(4): 519-534. 

https://doi.org/10.1007/s00779-019-01234-z 

[19] Rastogi, R., Kumar, U., Kashyap, A., Jindal, S., Pahwa, 

S. (2020). A comparative evaluation of the deep learning 

algorithms for pothole detection. In 2020 IEEE 17th 

India council international conference (INDICON), New 

Delhi, India, pp. 1-6. 

https://doi.org/10.1109/INDICON49873.2020.9342558 

[20] Becker, Y.V.F., Siqueira, H.L., Matsubara, E.T., 

Gonçalves, W.N., Marcato, J.M. (2019). Asphalt pothole 

detection in UAV images using convolutional neural 

networks. In IGARSS 2019-2019 IEEE International 

Geoscience and Remote Sensing Symposium, 

Yokohama, Japan, pp. 56-58. 

https://doi.org/10.1109/IGARSS.2019.8900621 

[21] Faisal, A., Gargoum, S. (2025). Cost-effective LiDAR 

for pothole detection and quantification using a low-

point-density approach. Automation in Construction, 172: 

106006. https://doi.org/10.1016/j.autcon.2025.106006 

[22] Meier, J., Welborn, E., Diamantas, S. (2025). Pothole 

segmentation and area estimation with thermal imaging 

1423



 

using deep neural networks and unmanned aerial 

vehicles. Machine Vision and Applications, 36(1): 17. 

https://doi.org/10.1007/s00138-024-01637-w 

[23] Pan, Z., Guan, J., Yang, X., Guo, A., Wang, X. (2024). 

3D profile-based pothole segmentation and 

quantification. International Journal of 

Hydromechatronics, 7(1): 16-30. 

https://doi.org/10.1504/IJHM.2024.135980 

[24] Johnston, K., Ver Hoef, J.M., Krivoruchko, K., Lucas, N. 

(2001). Using ArcGIS geostatistical analyst (Vol. 380). 

Redlands: Esri. 

[25] OpenAerialMap. OpenAerialMap. 

https://openaerialmap.org/. 

[26] Ronneberger, O., Fischer, P., Brox, T. (2015). U-net: 

Convolutional networks for biomedical image 

segmentation. In Medical Image Computing and 

Computer-Assisted Intervention–MICCAI 2015: 18th 

International Conference, Munich, Germany, October 5-

9, 2015, Proceedings, Part III 18, pp. 234-241. Springer 

International Publishing. https://doi.org/10.1007/978-3-

319-24574-4_28 

[27] Chhachhia, A. (2021). Concrete mix design by IS, ACI 

and BS methods: A comparative analysis. Journal of 

Building Material Science, 2(1): 30-33. 

https://doi.org/10.30564/jbms.v2i1.2636 

[28] Sun, Q., Qiao, L., Shen, Y. (2025). Pavement potholes 

quantification: A study based on 3D point cloud analysis. 

IEEE Access, 13: 12945-12955 

https://doi.org/10.1109/ACCESS.2025.3531766

 

1424




