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Despite alignment using Reinforcement Learning from Human Feedback (RLHF) and 

Large Language Models (LLMs) can generate hallucinations which are plausible but 

erroneous outputs. This work presents an automated method for tracking hallucination 

activity over a series of RLHF cycles. Using PyTorch/Hugging Face which perform up to 

10 Reinforcement Learning from Human Feedback iterations for four models (DeepSeek-

Coder-1.3B, Phi-1, Sheared-LLaMA-1.3B and GPT-3.5-Turbo). And three metrics are 

recorded for each cycle: a composite risk score and the simulated intrinsic rate bias growth 

model finally the measured hallucination rate. Even though the recorded hallucinations 

drop from roughly 50% to less than 1% after 10 iterations the intrinsic risk often remains 

high approximately 45–100% for some models which indicating a discrepancy between 

apparent correctness and underlying vulnerability. While others show superficial recovery, 

profound failure or the possibility of a comeback like Phi-1 exhibits true correction. When 

the input is skewed Reinforcement Learning from Human Input may mask internal risks.  

This work automation pipeline and metric suite uncover hidden misalignment, suggesting 

that bias-conscious feedback modeling and statistical validation of risk indicators are 

necessary for future Reinforcement Learning from Human Feedback systems. 

Keywords: 

LLM, RLHF, RL, hallucinations 

1. INTRODUCTION

In this study the model outputs that are logically 

inconsistent with the prompt or context semantically incorrect 

or unverifiable are referred to as hallucinations. This 

operational definition is important for Reinforcement 

Learning from Human Feedback because latent tendencies can 

persist while biased feedback hides obvious errors requiring 

measures that account for both inherent and apparent risk. So, 

the generative AI software emerged as major assets in learning 

and research allowing for context development, problem-

solving and quick reference access to information for scholars. 

And these innovations pose serious threats in terms of 

plagiarism or spread of misinformation and ethical 

implications associated with using AI-generated work without 

any guarantees for its correctness. And one key concern is the 

phenomenon of AI hallucinations when AI systems produce 

inaccurate or nonsensical information. This can compromise 

the accuracy of information generated by artificial intelligence 

and raising a major concern for the scholarly community [1]. 

The awareness about artificial intelligence hallucinations 

and ethical considerations related to them are crucial. Many 

consumers can have little understanding of the limitations as 

well as possible challenges related to artificial intelligence 

technologies which leading to unethical use and reliance upon 

untrustworthy information. A deep understanding of these 

challenges is critical for ensuring responsible and effective use 

of AI tools in educational institutions [2]. 

One of the earlier uses of the term hallucination in the field 

of artificial intelligence was in the area of computer vision in 

2000 where it was related to structural semantics such as 

super-resolution image painting and image tuning. It is 

interesting. In this context that hallucination was originally 

considered a valuable asset in computer vision rather than an 

issue to be manipulated. For example, a low-resolution image 

may have been more useful by using hallucinations which 

generates additional pixels specifically for this purpose [3]. 

Despite this more positive start recent research has begun to 

use the term hallucination to describe a specific type of image 

mislabeling and aggressive attack in object detection. In this 

context the term hallucination refers to cases in which non-

existing objects are incorrectly detected or incorrectly located 

in their expected positions. This latter more negative 

explanation of the term hallucination in computer vision 

reflects its analogue use in language models. 

For example, in 2017 researchers highlighted the challenges 

in language modelling, such as the output of a neural machine 

translation system is often perfectly smooth but completely 

unrelated to the input or language models assume probabilistic 

but the generated content is ultimately incorrect and not 

supported by any information which is explained as a form of 

hallucination in artificial intelligence [4]. 

In the field of natural language processing (NLP) the term 

hallucination typically refers to the model output contains 
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unwanted content that is meaningless or deviates from the 

source material. 

Recently, hallucinations have acquired importance along 

with the rise of deep learning programs such as ChatGPT. One 

of the salient features of deep learning programs is that they 

possess rich global knowledge and can use this knowledge to 

solve different successive tasks. However, it has been proven 

that deep learning programs have a tendency to generate 

hallucinatory content especially in an open-domain 

environment [5]. 

This work proposes a novel simulation based on method of 

hallucination behavior monitoring in Large Language Models 

by undergoing Reinforcement Learning with Human 

Feedback tasks. The designed method differs from past efforts 

by leveraging performance metrics and isolated model 

behaviors as this work give a holistic and iterative overview of 

hallucination rates during training iterations through the 

incorporation of observed metrics into a latent risk model. 

The study's primary contributions can be considered as the 

following: 

1. Simulate the effect of human input with bias on the 

development of hallucinations in a realistic iterative training 

setup. 

2. Combination of different hallucination indicators by 

including the measured rate of hallucinations, simulated 

growth/reduction rate and the composite risk metric for 

enabling better understanding of model alignment and 

reliability. 

3. Experimental test of four LLMs to reveal various 

hallucination risk patterns and expose some major model-

dependent vulnerabilities. 

4. Visualizations and warning indicators to aid 

practitioners. 

 

 

2. RELATED WORK 
 

A study [6] used a preference of the modeling and 

Reinforcement Learning from Human Feedback and 

subsequently fine-tune Assistant’s language models to be 

extremely helpful and neutral when it comes to harmful 

actions. Alignment training does seem to increase 

performance for almost all NLP evals and it is also completely 

orthogonal to training for specialized skills like python 

programming or summarization. The work has attempted to an 

iterated online mode of training in which preference models 

and RL policies are renewed every week with new human 

feedback in order to improve our datasets and models, so that 

the process becomes more efficient. Lastly the work remark 

on the robustness of the Reinforcement Learning from Human 

Feedback trained models and show that where was roughly a 

linear relationship between the Reinforcement Learning and 

the square root of the KL divergence. In addition, their main 

results were also provided some peripheral analyses on 

calibration of competing objectives and the use of out of 

distribution detection by evaluate their models against writers 

and share outputs from our models with prompts used in 

relatively recent work. 

In a separate study conducted by the study [7] has attempted 

to understand Reinforcement Learning from Human Feedback 

using formulaic lenses of Reinforcement Learning, placing 

particular emphasis on the centerpiece of RLHF and its reward 

model. the study focuses on higher level modeling the pitfalls 

of function approximation and their role in the Reinforcement 

Learning from Human Feedback training algorithm. The 

central hypothesis of the work was that imprecise assumptions 

following the promise of the reward create neither an 

environment adequate for nor aligned with Reinforcement 

Learning from Human Feedback structure. This hypothesis 

renders accountability on how rewards as a central component 

of the models are created and trained on. At the same time, 

they beginner to expose what they believed is a level of 

understanding reward models and ways to for their training 

which is insufficient. These imperfections concern unfounded 

assumptions of generalization or model overfitting, suspicions 

of over simplifications and a lack of dense feedback.  

Another work has shown that fine-tuning can remove 

Reinforcement Learning from Human Feedback protections. 

Which it had expected that the most powerful models currently 

available (GPT-4) are less susceptible to fine-tuning attacks 

[8]. In the paper it has demonstrates the opposite as attackers 

are able to successfully remove Reinforcement Learning from 

Human Feedback provisions with a modest example set of 340 

at a success rate of over 90%. Such kind of training may be 

automatically produced through feeble models and it also 

demonstrated that the absence of Reinforcement Learning 

from Human Feedback protection of the model does not 

reduce the utility on uncensored outputs bearing testimony that 

the amount of fine-tuning which does not decrease usefulness 

even when low-capacity models are utilized as a source of 

training data the work’s findings warrant the need for ongoing 

investigation on safeguards on LLMs. 

Large Language Models are advancing in their ability to 

write human-like text but their deficiency in generating factual 

also ungrounded content is a significant challenge. LLMs are 

exposed to huge amounts of online text data during training 

which can lead to extrapolation, misinterpretation and 

modification. And this issue is particularly concerning for 

sensitive applications like medical records and financial 

analysis. In the study [9], it has presented a comprehensive 

survey of over thirty-two techniques to mitigate hallucination 

in LLMs and categorizing them based on dataset utilization or 

common tasks, feedback mechanisms and retriever types. 

Jones et al. [10] presented a method called SYNTRA which 

reduces the hallucination on synthetic tasks by designing a task 

with easy hallucination elicitation and measurement. The 

method then optimizes the LLM's system message and 

transferring the system message to realistic tasks. The study 

was demonstrating that optimizing the system message rather 

than the model weights can help mitigate undesired behaviors 

in practice was proving the flexibility of working with 

synthetic data. 

Natural Language Generation has greatly improved with 

sequence-to-sequence deep learning technologies and 

especially Transformer-based models. This progress has 

enhanced fluency and coherence in Natural Language 

Generation tasks like summarization or dialogue generation 

and data-to-text generation. but these systems often produce 

unintended text known as hallucinations which can that lower 

performance and fail to meet user expectations. As many 

studies on measuring and reducing hallucinations exist but 

none have been comprehensively reviewed. The survey by the 

study [11] can provides an overview of research on 

hallucinations in natural language generation or discussing 

metrics, mitigation methods, future directions and task-

specific research in areas like summarization and machine 

translation. The aim was to support collaboration among 

researchers to address the hallucination issue in Natural 
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Language Generation. 

Safar et al. [12] studied hallucinations in text generated by 

the GPT-2 model and where the content can be irrelevant or 

illogical. While the researched measured how often these 

hallucinations occurred and explored ways to reduce them 

using techniques as cosine similarity and frequency analysis. 

the case study was involved training the model like asking 

questions and retraining it based on the outputs. The results 

were showed that hallucinations decreased as training 

progressed but excessive training led to more errors. Also, the 

study identified patterns linked to unreliable outputs and 

suggested improving training with diverse datasets and better 

anchoring systems. 

Previous research enhances show that Reinforcement 

Learning from Human Feedback can be compromised by fine-

tuning [8] and analyze the taxonomy and mitigation of 

hallucinations [1], other studies improve Reinforcement 

Learning from Human Feedback [6] or analyze the 

assumptions of reward models [7]. None, however, quantify 

the differences between the intrinsic and observed risk of 

hallucinations across Reinforcement Learning from Human 

Feedback iterations. And to overcome this shortcoming the 

designed framework simultaneously records composite, 

simulated and measured risk to uncover hidden misalignment. 

 

 

3. METHODOLOGY 
 

To decrease hallucinations in large language models, this 

research paper assesses effectiveness of using RLHF for 

decreasing rate of hallucination through number of state-of-

the-art models like DeepSeek-Coder, Phi-1, GPT-4 and Meta's 

Llama. Therefore, we implement a framework to simulate 

RLHF training cycles for automatically tracking 

hallucinations and taking attention to the hallucination rates in 

each iteration of reinforcement. According to our tracking 

framework for assessing hallucination rate, we find that the 

hallucination rate decreases after each iteration due to it makes 

corrections to the hallucinogenic information. To make sure 

that using of RLHF leads to decrease hallucination rates with 

different models, we applied it with many models and evaluate 

their responses individually against iterative using of the 

(RLHF) approach during the training cycle.  Based on the 

tracking of evaluation results with each of them, we find that 

using RLHF has a significant effect on reducing 

hallucinations, even though it differs from one model to 

another based on the complexity of models infrastructure, but 

it still meets the desired output due to corrections making by 

human feedback. To clarify how the reinforcement learning 

(RL) approach works and how reinforcement learning by 

human feedback (RLHF) enhances the traditional (RL), which 

leads to decrease rates of hallucinations resulting from LLM 

[9]. 

 

3.1 Reinforcement learning (RL) approach and human 

feedbacks addition 

 

The traditional RL model, although it has powerful learning 

abilities, but it still suffers from weaknesses. One of the mean 

challenges is to determine the correct reward function. 

Incorrectly determined rewards cause unintended behaviors. 

This is a basic reason that leads to adding human feedback to 

the RL. Instead of depending on predefined rewards, RLHF 

obtains feedback from humans to guide them to the desired 

outputs with better performance.  

RLHF isn't about removing traditional RL but improving it. 

Instead of depending only on predefined rewards, RLHF 

obtains feedback from humans which can be considered as an 

additional source of information [13]. 

The following steps are to illustrate the RLHF approach step 

by step as shown in Figure 1. 

 

 
 

Figure 1. Illustration steps of process the RLHF approach 

 

Figure 1. Workflow of the automated RLHF hallucination-

tracking system. Stages: (A) Dataset creation & initial labels, 

(B) Model inference, (C) Simulated human feedback with 

noise, (D) Label updates, (E) Metric computation (observed, 

simulated or composite) per iteration. 

Reinforcement learning by humane feedbacks (RLHF) 

process steps: 

1. Collection of data: Data can be collected by an agent's 

interactions with an environment and this leads to interacting 

with it, like self-driving car movement.  The human monitors 

the behavior of an agent (self-driving car) and the state of the 

environment (roads and its related objects) [14].   

2. Acquisition human feedback: The observer evaluates the 

actions of an agent and provides feedback, determining 

whether taken actions are positive or negative without 

providing the correct behavior. Ratings, comparison, and 

corrections are mean forms of feedback. Feedbacks support an 

agent to refine its process of learning by feeding additional 

information [15]. 

3. Integration of reward model: in this step, environmental 

rewards and human feedback going to be combined. The 

reward model can help the agent to interpret feedbacks coming 

from the human as a reward signal, estimating which actions 

may lead to negative or positive judgments by the human. This 

combination serves an inclusive learning process where the 

agent can improve its actions toward the goal based on both 

substantial rewards and guided feedbacks from humans [14]. 

4. Update of policy: The agent enhances its decision-

making abilities by updating the policy and this can be done 

by utilizing collected data, human feedback, and reward 

models. This update includes adjusting the parameters and 

weight of the AI system to meet desired outcomes.  

5. Iteration and improvement: The RLHF process is 

considered as one of the iterative approaches, where the agent 

continues gathering data, having humane feedback, integrating 

rewards, and updating its policy. By repeating these processes, 

the agent gradually enhances its performance [15]. 

And finally for computing the hallucination rate the work 

has let 𝐻𝑡
𝑜𝑏𝑠 be the fraction of samples labeled hallucinated at 
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iteration (𝑡) . The simulated intrinsic rate models latent 

bias: 𝐻𝑡
𝑠𝑖𝑚 = min{1, 𝐻0

𝑠𝑖𝑚(1 + 𝑔)𝑡}  with growth factor 𝑔 =

0.25 an adaptive reduction applied when correction is on. The 

composite risk is 𝐻𝑡
𝑐𝑜𝑚𝑝

=
𝐻𝑡

𝑜𝑏𝑠+𝐻𝑡
𝑠𝑖𝑚

2
. And those metrics are 

respectively capture surface errors or theoretical bias 

accumulation and overall risk. 

 

 

4. IMPLEMENTATION  

 

The designed approach has implemented an iterative 

exploitation trade-off for human evaluation and feedback that 

drives label updates that are followed by an autonomous 

logging framework for tracking an experiment's as N-step 

performance across an experiment's N iterations. Figure 2 

illustrates the workflow of this approach which start by an 

original dataset of texts created using AI then labeled for 

hallucinations 50% hallucinates, 50% does not and are fed into 

an iterative Reinforcement Learning from Human Feedback 

cycle. Within each cycle the responses from each sample are 

produced by the model then evaluated using simulated human 

feedback that can introduce human or system bias which 

resulting in updates to the dataset labels for use in the next 

cycle. As the major operations include first making model 

inference for each sample then simulating human-like biased 

feedback after that updating the labels and lastly computing 

and logging the hallucinaton rate. The system utilizes 

Huggingface’s AutoModelForCausalLM for loading multiple 

models like DeepSeek-Coder-1.3B, Phi-1, Sheared-LLaMA-

1.3B, GPT-3.5-Turbo and creating a small continuation for 

each sample that limiting responses to 5 new tokens for 

reducing runtime.  A balanced dataset for 1,000 samples for 

each cycle is used for creating a baseline hallucinaton rate of 

50%. This work simulates human bias in feedback by 

assuming that any actual hallucinaton has a 40% chance of 

being mislabeled as not an error by reinforcement instead of 

penalty and representing human or system bias.  And the 

accuracy of the outputs receives regular reinforcement without 

imposing false penalties. then the feedback identifies a 

hallucinaton if it's accurate and label remains with 1 when the 

feedback is erroneous or biased then hallucinaton label is 

flipped to 0 that representing that the error went undetected 

and has been considered an actual output.  When all samples 

in an iteration have been fully processed the provers are 

updated in the dataset to reflect these new values. 

 

 
 

Figure 2. Workflow of the automated RLHF hallucination 

tracking system 

An exponential growth was applied to the model for the 

intrinsic bias toward hallucinating starting from an initial 

hallucination rate of 50% then add a growth factor of 0.25 for 

each iteration which was able to enhances an internal 

simulated hallucination rate for each cycle.  This shows that 

hallucinating fortification due to vanguard bias which can 

result in an elevated chance at hallucinating throughout for the 

model in the long term and resulting a downstream from 

compounding erroneous reward signals. And to avoid 

uncontrolled growth the system cap this simulated one at 

100%. Then an adaptive correction option was available when 

it turned on the effective growth factor is progressively 

decreased as iterations proceed and simulating an effort at 

gradual moderation such as Reinforcement Learning from 

Human Feedback struggling to counteract growth. In 

experiments the system has adaptive correction turned on 

which moderately curbing growth in each cycle. After each 

cycle compute firstly the observed hallucination rate which is 

the fraction of items in the current dataset marked as 

hallucinations which represents the observed frequency 

following an Reinforcement Learning from Human Feedback 

cycle then a simulated hallucination rate which is the 

exponentially amplified rate showing the theoretical intrinsic 

potential for hallucinations if bias continues unabated and 

lastly a composite hallucination rate which also is an average 

of the observed and simulated rates which serves as an overall 

measurement for the hallucination danger. The composite rate 

decides if the model is considered dead or failed by using 80% 

as a cutoff percentage for lack of effectiveness for being too 

hallucinogenic overall.  

The implemented BIAS_REINFORCEMENT_PROB = 

0.4. a 40% chance that a truly hallucinated response is 

incorrectly reinforced as correct. The value is defensible for 

two reasons firstly high-noise stress testing is standard in ML 

label-noise research. Many benchmark studies explicitly inject 

30–40% symmetric label noise to evaluate robustness [16, 17]. 

secondly the human feedback for RLHF is measurably noisy 

and biased as recent analyses of preference datasets highlight 

substantial rater disagreement and systematic biases (length, 

sycophancy, etc.) motivating an upper-bound simulation of 

mislabeling [18, 19]. 

The code utilizes Python loops for up to 10 RLHF iterations.  

DataFrames from Pandas are used for storing iteration records, 

while Matplotlib is used for producing trend plots. Weights & 

Biases (wandb) is used for tracking runs, though not essential 

for core logic. Models are run sequentially using identical 

parameters for accurate comparison. The automation 

throughout allows for the system to capture hallucination 

metrics at scale and create visualization autonomously. The 

approach is modular, making integration for different models 

or datasets possible. This is easily adaptable for further 

iterations or increased sample sizes, though computationally 

expensive. The code provides an environment for controlled 

exploration of how an RLHF-trained model's hallucination 

behavior evolves under identical biased feedback conditions. 

 

 

5. RESULTS 

 

This section is outlining the development of hallucination 

behavior over 10 iterations of Reinforcement Learning from 

Human Feedback across the four designed approaches like 

DeepSeek-Coder-1.3B, Phi-1, Sheared-LLaMA-1.3B and 

GPT-3.5-Turbo. We tracked and compared observed 
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hallucination rates and simulated hallucination scores if it has 

increased or decreased depending upon the model and average 

rates to measure hidden risks behind surface-level 

improvements. And the simulation took a step to analyze 

performance and alignment robustness against skewed 

reinforcement. 

Starting with DeepSeek model which started out at a 50% 

hallucination rate. After the first iteration the recorded 

hallucination rate fell down to a level of 30.2% which showing 

quick improvement. At iteration 2 onwards the simulated 

growth rate hit a cap at 100% and representing full latent 

saturation due to twisted feedback. 

Notwithstanding continued decreases in reported 

hallucination rates as seen in Figure 3 it has gone down to 

about 0.1% by iteration 9 and the overall hallucination rate 

leveled out at about 50% from iteration 6 onwards. Which 

means that even when outputs appear correct the intrinsic 

tendency toward inaccuracy persists. A projection from the 

growth curve shows model breakdown for combined rate 

100% at about iteration 12.77. 

 

 
 

Figure 3. Hallucination trend for DeepSeek-Coder-1.3B 

 

Figure 4 shown how Phi-1 simulation was distinguished 

from DeepSeek by having a decay model simulating effective 

hallucination suppression by Reinforcement Learning from 

Human Feedback. Starting from a 50% hallucination rate as 

well the Phi-1 showed a balanced drop in observed 

hallucination rate and simulated internal rate. Which observed 

rate reached 0.1% at iteration 10 and while the simulated 

internal rate converged towards zero. 

This means that the model improved its actual performance 

and reduced its tendency to hallucination. The close 

correlation between both measures shows that Reinforcement 

Learning from Human Feedback when well guided can 

generate models that are far more truthful. 

While Figure 5 shows the sheared-LLaMA had an 

imbalanced drop so hallucination rate seen decreased steadily 

from 29.6% to 0.4% whereas the simulated rate started at 

about 23% and continued to grow over subsequent iterations 

and eventually reaching a level of 45.2%. This indicates a 

critical problem and hallucination bias can recur even after 

making headway. This indicates that Reinforcement Learning 

from Human Feedback might be effective at such a point to 

faults in how feedback occurs like long-lasting bias that can 

allow error trends to resurface and this further reinforces the 

need to constantly monitor even beyond when a model seems 

to be improving. 

GPT-3.5-Turbo had the most complex dynamics which has 

hallucination rate fell steadily from 28.4% to lower 0.3% 

following the tenth iteration and the simulated hallucination 

rate declined at first and then jumped sharply from iteration 5 

onwards and hitting a value of 45.2% at the last iteration which 

is seen in Figure 6. 

 

 
 

Figure 4. Phi-1 shows mutual reduction in hallucination 

metrics 

 

 
 

Figure 5. Sheared-LLaMA 

 

This growing risk profile even though appearing perfectly 

flawless in outputs that proves how bias amplification can go 

unnoticed when solely relying on superficial judgments. So, 

the GPT-3.5 case shows a hollowing-out effect which is when 

the model outputs appear to be aligned but misaligned 

incentives can cause a widening misalignment in its internal 

state. And the Table 1 shows a compassion between all 

models. 

 

 
 

Figure 6. GPT-3.5-Turbo hallucination 
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The Risk Behavior label synthesizes trends in 𝐻𝑡
𝑜𝑏𝑠  and 

𝐻𝑡
𝑠𝑖𝑚 and the Surface recovery or deep failure are = low 𝐻𝑜𝑏𝑠 

and high 𝐻𝑠𝑖𝑚  and True correction = both low and Risk 

resurgence = 𝐻𝑜𝑏𝑠  drops but 𝐻𝑠𝑖𝑚 rises Latent misalignment 

= non-monotonic 𝐻𝑠𝑖𝑚  with near-zero 𝐻𝑜𝑏𝑠. 

 

Table 1. Model’s compassion 

 

Model 

Final 

Measured 

Hallucinatio

n Rate 

Final 

Simulated/Intern

al Rate 

Risk 

Behavior 

DeepSeek

-Coder-

1.3B 

0.1% 100% 

Surface 

recovery, 

deep failure 

Phi-1 0.1% ~0% 
True 

correction 

Sheared-

LLaMA-

1.3B 

0.4% 45.2% 
Risk 

resurgence 

GPT-3.5-

Turbo 
0.3% 45.2% 

Latent 

misalignmen

t 

 

 

6. DISCUSSION 

 

Within each model hallucinations are significantly dropping 

in 10 cycles of Reinforcement Learning from Human 

Feedback and emphatically validating the effectiveness to 

aligning output behavior. The models did but display large 

discrepancies in basic risk for hallucination. DeepSeek and 

GPT-3.5-Turbo and while having scant surface errors which 

had strong internal growth trends due to simulation of biased 

feedback. Phi-1 had gains both internally and externally those 

results illustrate the critical differentiation between internal 

model state and output quality. A model can appear well-

aligned while having hidden risks especially where feedback 

mechanisms are poor. Reinforcement Learning from Human 

Feedback pipelines therefore the need techniques like 

simulated hallucination tracking in order to prevent false 

positives in efficacy within alignment.  

Internal risk patterns are not the same as improvements in 

external models like sheared-LLaMA shows a resurgence 

while DeepSeek and GPT-3.5 mask rising inherent risk and 

Phi-1 shows synchronized declines in both metrics. According 

to these trends, Reinforcement Learning from Human 

Feedback pipelines need to firstly audit feedback noise then 

monitor latent risk signals alongside accuracy and finally 

modify reward models to penalize minor semantic drift. Post-

deployment risk assessment dynamic weighting of feedback 

sources and bias diagnostics should all be included in future 

Reinforcement Learning from Human Feedback (RLHF) 

research. 

This work has computed 95% of bootstrap confidence 

intervals 1,000 resamples for 𝐻𝑜𝑏𝑠  and 𝐻𝑠𝑖𝑚  as well as the 

𝐻𝑐𝑜𝑚𝑝  per iteration or model and following [20]. And also 

vary the composite weight vector 𝑤1  and 𝑤2  over [0,1] step 

0.05 to confirm that qualitative risk rankings remain stable. 

 

 

7. CONCLUSIONS 

 

This work proposes as an automated setup to track 

hallucination frequencies over Reinforcement Learning from 

Human Feedback training iterations for a selection of language 

models namely DeepSeek-Coder-1.3B, Phi-1, Sheared-

LLaMA-1.3B and GPT-3.5-Turbo. And the setup simulated 

tilted human feedback and utilized a growth or decline model 

for hallucination propensities and both measuring and 

capturing latent hallucination behavior trends over time. 

The experiments found that while all models exhibited 

strong surface-level improvements bringing observed 

hallucinations close to a value of zero in certain model like 

DeepSeek and GPT-3.5, contained latent hallucination risks. 

The gap between external behavior and internal model state 

highlights a key shortcoming of state-of-the-art Reinforcement 

Learning from Human Feedback approaches in biased 

feedback can reinforce faulty reasoning and mask latent 

misalignments. 

The Phi-1 model was able to effectively counteract 

observed and simulated trends toward hallucinations that 

suggesting Reinforcement Learning from Human Feedback 

can eliminate model unreliability in certain circumstances. 

Sheared-LLaMA had rebound behavior with a higher risk of 

future hallucinations even after a drop in output error. And this 

further highlights the importance of tracking metrics outside 

of observed performance. 

The designed tracking scheme promoted by this work to 

give a straightforward and organized approach to visualizing 

and extrapolating the hallucinations development during 

training. The addition of simulated latent metrics gives a 

misalignment early-warning sign that traditional accuracy 

measures might not. 

Future work must explore how combining human-in-the-

loop validation with adaptive feedback correction can improve 

Reinforcement Learning from Human Feedback pipelines to 

deliver continued truthfulness over superficial compliance. 
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