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This study presents the development of a comprehensive lung scan dataset tailored for 

machine learning-based lung cancer detection, specifically focusing on applying the 

adaptive Convolutional Neural Network (CNN) technique. Here, this paper proposes 

Federated Learning-Driven Data Aggregation and Enhancement (FL-DAE) to tackle the 

issues of data privacy, diversity, and quality when creating an extensive dataset of lung 

scans for machine learning-based lung cancer detection. The dataset comprises diverse 

lung scan images from multiple medical institutions, including computed tomography 

(CT) and X-ray modalities. Rigorous annotation protocols were employed to categorize 

images into normal and abnormal classes, ensuring accuracy and reliability. Notably, the 

dataset creation process integrates the Feature-adaptive CNN technique, which adaptively 

adjusts network parameters based on learned feature representations. This approach 

enhances the model's ability to capture and leverage discriminative features relevant to 

lung cancer detection, improving classification performance. Stringent quality control 

measures were implemented to address artifacts and inconsistencies in the dataset, while 

ethical considerations were carefully managed to safeguard patient privacy. The resulting 

dataset, augmented with the Feature-adaptive CNN technique, provides a standardized 

benchmark for evaluating and advancing machine learning algorithms in lung cancer 

detection. By leveraging this comprehensive dataset and innovative technique, researchers 

and practitioners can accelerate the development of more effective and robust approaches 

for early lung cancer detection, ultimately contributing to improved patient outcomes. The 

accuracy, false rate, precision and other experimental results of the suggested approach 

was higher against other established procedures. The designed technique gained high 

accuracy of 0.99, high precision of 0.98, and high F-Measure of 0.98. 
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1. INTRODUCTION

Early detection and diagnosis of lung cancer are key to 

improving patient outcomes and survival. As one of the 

leading causes of cancer-related death worldwide, lung cancer 

often goes undetected until advanced stages, making treatment 

difficult and ineffective Learning devices [1]. Artificial 

intelligence (AI) has resulted in new features for accuracy and 

efficiency. Machine learning algorithms can be trained to 

detect patterns and abnormalities indicative of lung cancer, 

potentially leading to more reliable early detection. 

Developing a comprehensive lung screening database is an 

important step in harnessing the ability of machine learning to 

detect lung cancer [2]. This dataset should include a wide 

range of lung imaging modalities, including imaging 

modalities such as X-rays, computed tomography (CT) scans, 

and magnetic resonance imaging (MRI), as well as many 

medical specialists, it highlights areas of concern [3]. By 

including datasets that may include cancers and tumours that 

also include confirmed presence or absence, researchers can 

ensure patterns are presented to machine learning models, and 

it has led to better diagnosis and generalization in patient 

populations and disease definitions [4]. Radiologists, 

oncologists, data scientists, and machine learning engineers 

work together to create and manage this data set. This requires 

careful data collection, quality control, and strict 

confidentiality to protect patient information [5]. The resulting 

data will not only facilitate the development of advanced 

diagnostic tools but will also benefit a broader physician 

community by providing a valuable resource for ongoing 

research and innovation [6]. Ultimately, the integration of 

advanced lung test data into machine learning workflows 

holds the promise of transforming lung cancer diagnosis, 

making it faster, more accurate, and more accessible to 

healthcare providers and patients around the world [7]. 

In recent years, there has been tremendous progress at the 

interface between health and technology [8], especially in 

medical imaging and detection Lung cancer presents a great 

opportunity to use state-of-the-art machine learning 

technologies [9]. If there is potential can be developed but the 

effectiveness of these algorithms makes it more 

comprehensive and better [10]. Depends on the availability of 

pulmonary evaluation datasets that can form a solid foundation 

for training and validation [11]. Creating a comprehensive 
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lung diagnostic dataset involves not only image storage but 

also combining surrogate data [12]. This includes scans from 

different populations, cancer stages, and imaging 

photographic technologies captured [13]. Medical 

professionals must catalogue the images carefully to ensure 

that machine learning models can learn from accurate detailed 

modelling [13]. Ensuring inclusion is robust and generalizable 

modelling is critical [14].  

A collaborative effort between radiologists, data scientists, 

and machine learning engineers aims to develop a valuable 

resource that can significantly improve lung cancer detection 

and ultimately will improve the prognosis of countless patients 

[15]. Lung cancer is one of the diseases in which machine 

learning, associating the same principles with medical 

research, has revolutionized diagnosis and treatment [16]. Late 

diagnosis qualifies it as one of the deadliest malignancies 

worldwide. Detailed lung examination data are required to 

train the system for better outcomes in patients. Accurate 

machine learning algorithms capable of the identification of 

lung images would directly improve the number of early 

identifications of patients [17]. The algorithms can identify 

abnormal patterns that are cancerous lesions and provide all 

the necessary details for diagnosis. Of course, to make such a 

dataset, some full chest pictures will be required from many 

sources and are not limited to X-rays, CT scans, MRIs, or any 

other image taken from the imaging modalities. Many 

traditional approaches were used such as a new hybrid method 

based on the Dual-Stage Classification model [18], 

Convolutional Neural Networks (CNNs) [19], and Transfer 

Learning Model (TLM) [20] to resolve the problem, but no 

proper results were formed. So, a new deep learning method is 

implemented to improve the performance in this paper. 

The major contribution of the paper is provided in the 

following: 

• Gather diverse and high-quality lung scan images 

from multiple sources, ensuring a balanced 

representation of healthy and diseased cases 

annotated by expert radiologists. 

• Implement consistent pre-processing steps and data 

augmentation techniques to enhance image 

uniformity and dataset robustness, while ensuring 

rigorous quality control. 

• Provide detailed multi-level annotations and 

integrate relevant clinical metadata, using 

standardized formats to ensure interoperability. 

• Make the dataset publicly available with 

comprehensive documentation, user support, and 

regular updates to facilitate wide use and 

collaboration in the research community. 

The following parts of this study are outlined as follows: 

Section 2 defines the most recent categories of literature; 

Section 3 explains the system description and problem 

statement; Section 4 deals with the workflow of the suggested 

methodology; Section 5 presents the achieved results and 

discussion, and Section 6 wraps up the research paper. 

 

 

2. RELATED WORKS 

 

Tasnim et al. [21] employed deep learning (DL) techniques 

on patient's 1190 CT scan images from the Kaggle IQ-OTH 

lung cancer dataset. Following extensive image preprocessing, 

this method was discovered by augmented images comprised 

of benign, malignant, and high-risk cases to identify 

individuals to target for early intervention to prevent long-term 

consequences and identify lung cancer. A comprehensive 

analysis of the relative performances of multiple classifiers, 

such as InceptionV3, Resnet50, and the traditional CNN, has 

been provided. Gaussian noise, affine transformation, and 

other thorough picture pre-treatment methods were applied 

here. The contribution reduced the complexity of the model 

with the prior pre-processing step and achieved a 98% 

validation accuracy. The proposed technique was validated by 

the comparison method, which produced a higher F1-Score 

value of 97% for the suggested pre-processing procedure. 

Nathan and Rithani [22] incorporated fully connected layers 

for genomic data, recurrent neural networks (RNNs) for 

sequential clinical data, and Convolutional Neural Networks 

(CNNs) for picture analysis. The approach enabled more 

accurate forecasts by capturing complex patterns and 

correlations by combining these many data modalities. 

presents a novel deep-learning method for predicting the 

prognosis of lung cancer that makes use of standardized pre-

processing and diverse data improvement. This algorithm gave 

clinicians an effective tool for better patient outcomes through 

more accurate prognostic predictions by combining medical 

pictures, clinical records, and genomic data. With new 

opportunities for early intervention and individualized 

treatment plans, this research advanced personalized medicine 

in the management of lung cancer. 

Khattar et al. [23] introduced techniques for detecting lung 

cancer, such as CT scans and biopsies, which have 

disadvantages like being pricy, invasive, and radiation-

exposing for patients. Deep learning, Convolutional Neural 

Networks (CNN), and other machine learning techniques have 

lately shown encouraging results in the analysis of medical 

images, including the detection of lung cancer. A dataset of 

1,010 lung nodules was used by the publicly available Lung 

Image Database Consortium and Image Database Resource 

Initiative (LIDC-IDRI). The nodules in the dataset varied in 

size and shape and could be either benign or cancerous. The 

images were pre-processed by standardizing the pixel values 

to be between 0 and 1 and uniformly resizing them to 32 by 32 

pixels. A data-validating set (20%) and a data-training set 

(80%) were randomly selected from the database.  

Li et al. [24] used a hybrid feature extraction technique that 

combines autoencoder features with an autoencoder and Gray-

level co-occurrence matrix (GLCM) with Haralick. Following 

that, supervised machine learning techniques were trained 

using these features. SVM polynomial provided an accuracy 

of 99.89% when using GLCM with an autoencoder, Haralick, 

and autoencoder features, whereas Support Vector Machine 

(SVM) Radial Base Function (RBF) and SVM Gaussian 

reached flawless performance metrics. SVM RBF, using 

GLCM with Haralick features, obtained an accuracy of 

99.35%, whereas SVM Gaussian obtained an accuracy of 

99.56%. These outcomes show how the suggested strategy 

may be used to create better prognostic and diagnostic tools 

for lung cancer treatment planning and decision-making. 

Venkatesh et al. [25] introduced a brand-new approach to 

lung cancer diagnosis was put forth that used deep learning 

algorithms to accurately detect the disease while consuming 

less processing time. Since CT pictures had less noise than 

MRI and X-ray images, they were used in this investigation. 

Patch processing and median filtering were applied to these 

CT scans to enhance image quality. Following their pre-

processing, these images were sent into a CNN classifier use a 

segmentation procedure called clustering. CNN architecture 
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was used to classify and extract features. High-level and low-

level features were extracted in the section on future extraction. 

The supplied image's categorization layer was responsible for 

the identification of whether the tumor was malignant, benign, 

or normal. 

Sujatha et al. [26] examined whether sophisticated deep 

learning algorithms are suitable for accurately diagnosing lung 

cancer using MRI scans. To ascertain their distinct 

contributions, recurrent neural networks (RNN), 

Convolutional Neural Networks (CNN), K-Nearest 

Neighbours (KNN), and ResNet50 were all rigorously 

assessed. With an accuracy of 92.3%, CNN demonstrated its 

strong performance and ability to identify complex patterns in 

lung pictures. KNN showed competitive outcomes, 

highlighting the versatility of non-parametric techniques for 

classify medical images. Surprisingly, ResNet50 performed 

remarkably well, demonstrating an astounding accuracy of 

94.8% and confirming the usefulness of deep residual 

networks in distinguishing between complex properties. 

RNNs added a time dimension to the study and helped it 

achieve an accuracy of 89.5%. 

Mishra et al. [27] suggested a novel deep learning-based 

method, namely utilizing Generative Adversarial Networks 

(GANs), to modernize the use of scientific imaging for the 

diagnosis and localization of pulmonary cancers. The models, 

which were trained on a variety of datasets, showed a good 

accuracy rate of 70% in the sample set, indicated that they can 

distinguish between cancerous and non-cancerous cases in 

scientific photographs with ease. Although the findings point 

to a notable increase in lung cancer detection, they also point 

out areas that still required improvement. Future research 

would continue to focus on finding a balance between 

scientific value and technological prowess, as measured by 

criteria like specificity and sensitivity. Karthikeyan and Ali 

[28] presented a unique Convolutional Neural Network (CNN) 

framework that was painstakingly created for the 

interpretation of CT scan pictures to detect lung cancer early. 

The research emphasized the improved performance of CNN 

over traditional diagnostic techniques through thorough 

comparison evaluations with other models. The outcomes 

highlight the effectiveness of the suggested deep learning 

model and confirm that it was a more reliable and powerful 

diagnostic tool than current methods for the early detection of 

lung cancer [29]. To ensure the model's robustness and 

applicability across a range of clinical settings, future research 

paths may investigate the integration of larger and more 

diversified datasets. This would ultimately advance the 

landscape of lung cancer diagnostics toward improved patient 

outcomes and healthcare practices [30]. 

The key challenges of the existing works are given below: 

Developing extensive lung screening data for device-based 

lung cancer screening has been hampered by a number of 

significant obstacles in the past. These encompass challenges 

such as acquiring varied top-notch data from numerous 

references as well as having it accurately interpreted by expert 

radiologists to ensure correctness; also, there is the constant 

need to deal with alterations in imaging methodologies and 

standards that affect data pre-processing while retaining 

original details 

 

 

3. SYSTEM MODEL AND PROBLEM STATEMENT 

 

The proposed system is designed to create a comprehensive 

lung screening profile that addresses the shortcomings of 

current resources. Chest images from various medical 

institutions CT, MRI, and other imaging modalities will be 

collected to ensure diversity. The machine learning model will 

pre-process the dataset to include relevant clinical metadata, 

such as patient demographics and medical history, to enhance 

context-dependent pre-processing, which involves data 

normalization and enhancement for accuracy and robustness. 

The final information will be made available to the public 

through appropriate documentation and regular updates to aid 

in the development of more precise and universal lung cancer 

detection models. Pre-processing steps include image intensity 

normalization, segmentation to isolate bubble areas, and data 

enhancement techniques such as rotation, rotation, and noise 

generation enlargement to increase dataset diversity and 

robustness Implement regular quality control procedures to 

ensure image quality to remove artifacts. For interactivity and 

ease of use, the dataset will be stored in standard formats (e.g., 

DICOM for images, and JSON for comments). To address 

ethical and privacy concerns, data sets will remain anonymous 

and comply with strict data protection regulations. It will be 

made available to the public under appropriate licenses, with 

detailed documentation describing data collection methods, 

pre-processing steps, coding guidelines, and metadata 

interpretation Using methods so user support, such as 

workshops and quizzes, will be provided to help researchers 

use datasets effectively. Articles are regularly updated to 

include new data and comments, ensuring that the dataset 

remains current and relevant. This advanced approach aims to 

contribute to the development of accurate, robust, and 

generalizable machine learning tools for lung cancer detection, 

ultimately contributing to lung diagnosis early cancer and 

improved outcomes in patients. 

Lung cancer is still one of the most prevalent cancer killers 

worldwide, due to inadequate early detection and delayed 

diagnosis. Machine learning for early lung cancer detection 

requires access to a vast and varied dataset of lung scans. 

Nevertheless, present datasets often exhibit limitations such as 

inadequate diversity, fluctuating annotation quality, and a 

dearth of integrated clinical metadata. Until now, machine 

learning models that can detect lung cancer across a range of 

populations and imaging conditions are not been validated. 

 

 

4. PROPOSED METHODOLOGY 

 

The proposed method for developing comprehensive lung 

screening datasets for lung cancer detection based on machine 

learning Another approach using federal learning-driven data 

collection enhancement (FL-DAE) addresses key challenges 

such as data privacy, diversity, and quality management The 

integrated process begins with the establishment of an 

integrated curriculum in which multiple medical institutions 

participate in collaborative modelling training without 

informed consent not in the long run. Each institution trains a 

local model on its data set, which includes various imaging 

modalities such as CT, X-ray, MRI, etc., and only shares 

model updates (gradients) with a central server. This approach 

ensures that patient data at any institution is secure and 

confidential. The central server collects these updates and 

creates global instances, which are then redistributed to 

organizations for further local training. This iteration process 

is ongoing, enabling the global model to learn from multiple 

datasets from all participating organizations, thus ensuring that 
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patient populations, stages, and types of disease are studied 

and available for detailed information. A lot of data is 

augmented with more sophisticated data augmentation 

techniques, such as generative adversarial networks, which are 

used to synthesize high-quality lung scans. Synthetic scans can 

increase the diversity of datasets and balance out 

underrepresented classes by mimicking the statistical features 

of real scans. 

 

 
 

Figure 1. Block diagram of the proposed FL-DAE 

 

The Block diagram (Figure 1) represents the Federated 

Learning framework for the public databases that generates the 

data and augment it to proceed the Federated Learning-Drive 

Data Aggregation and Enhancement (FL-DAE). 

Global model and synthetic data are validated and the 

quality control is strict with expert radiologists reviewing and 

noting the synthetic scans to make sure they meet clinical 

standards. Federated learning also allows for de-identified 

clinical metadata, such as patient demographics, medical 

histories, treatment outcomes, etc., which can be used to 

enhance machine learning models. After the global model has 

been sufficiently trained and validated, the dataset, which is 

enriched with high-quality synthetic data and detailed 

annotations, is released for public use. A comprehensive 

record of the data collection, enhancement, validation, user 

support channels, and regular updates is available. Federated 

learning drives data privacy and provides a comprehensive, 

reputable, and clinically relevant lung scan dataset, enabling 

the development of machine learning models for lung cancer 

detection. 

 

4.1 Process of the proposed FL-DAE 

 

The Federal Learning-Driven Data Collection Enhancement 

(FL-DDE) is used in this paper. For analysis, several models 

can be employed to achieve better results. 

 

4.1.1 Data collection 

To create a complete set of lung scan images for using 

machine learning to find lung cancer, collect different lung 

scan pictures from many hospitals. Make sure the images use 

different types of scans (like CT scans and X-rays) and come 

from people of different ages, genders, and ethnicities. Employ 

advanced techniques to securely merge and utilize data from 

various sources while maintaining patient confidentiality. 

Enhance the collection of images by incorporating additional 

details such as doctor's notes, test outcomes, and patient 

history, and by refining the images to improve their clarity. 

This collaborative approach while preserving privacy will 

result in a high-quality, clear set of images that can be used to 

train robust machine-learning models for detecting lung cancer. 

 
2

( , )

( , ) [ ]exp( || || )k n k n

k n A

B v L L    


=  − −  (1) 

 

4.1.2 Preprocessing 

The initial step was standardizing the lung scan data from 

the LUNA16 and Kaggle datasets to guarantee uniformity and 

compatibility across various imaging sources. While LUNA16 

offers volumetric images in.mhd and.raw forms, the Kaggle 

dataset includes CT scans in DICOM format. To ensure model 

compatibility and consistent downstream processing, all 

image files were transformed into standard 3D NumPy array 

structures. A fixed voxel spacing of 1 mm × 1 mm × 1 mm was 

then applied to all scans during resampling. Because different 

medical institutions utilize varied scanner settings, which 

result in non-uniform spatial resolutions, this step is crucial. In 

order to ensure spatial consistency of anatomical features 

throughout the datasets, resampling was accomplished 

through the use of linear interpolation techniques. 

Intensity normalization was done after resampling. The 

pixel values were clipped to the range of [-1000, 400], which 

accurately depicts the density range of lung tissues and any 

lesions, because CT image intensities are expressed in 

Hounsfield Units (HU). In order to improve contrast and 

guarantee numerical stability during neural network training, 

the clipped values were then scaled to the range [0, 1] utilizing 

min-max normalization. 

Intensity normalization was done after resampling. The 

pixel values were clipped to the range of [-1000, 400], which 

accurately depicts the density range of lung tissues and any 

lesions, because CT image intensities are expressed in 

Hounsfield Units (HU). In order to improve contrast and 

guarantee numerical stability during neural network training, 

the clipped values were then scaled to the range [0, 1] utilizing 

min-max normalization. The segmented lung areas were then 

used to mask the original scans in order to eliminate 

background and irrelevant anatomical features. While 3D 

patches (usually 64×64×64) were extracted around annotated 

nodule coordinates in the LUNA16 dataset, axial slices with 

visible nodules were chosen from the Kaggle volumes for 

better focus on diagnostically significant locations. This 

focused extraction minimizes needless computational work 

and guarantees that training samples are rich in pertinent 

features. 

 

4.1.3 Federated learning framework 

The federated learning system for creating a large, detailed 

dataset of lung scans to help machines detect lung cancer 

works by having several hospitals train their versions of a 

model using their lung scan data. These hospitals regularly 

send the information their models have learned, not the actual 

patient data, to a main computer, which combines this 

information to improve a single, overall model. This way, 
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patient privacy is protected and data protection laws are 

followed while using a wide range of data from various places. 

The system has strong safeguards like secure messaging, 

privacy techniques, and encryption to keep the data safe and 

accurate. It also improves the model over time through 

repeated updates and checks, leading to a very accurate model 

that can be used widely for detecting lung cancer.  

The following equation shows how the feature map 𝑁𝑗  is 

calculated: 

 

j j ji i

i

N d V Y= +   (2) 

 

where, 𝑌𝑖 is the 𝑖𝑡ℎ input channel 𝑉𝑗𝑖 is its sub-kernel, and 𝑑𝑗 is 

a biased term, and  is the convolution operator. In other 

words, each feature map's convolution operation consists of 

applying i separate 2D squared convolution features in 

addition to a bias term. 

 

4.1.4 Public databases 

To create a complete set of lung scan images for using 

machine learning to find lung cancer with a method called 

federated learning, we can use important public databases like 

the Lung Image Database Consortium image collection 

(LIDC-IDRI), The Cancer Imaging Archive (TCIA), and the 

National Lung Screening Trial (NLST). These databases give 

us access to many lung scan images with notes, including CT 

and X-ray pictures, that show different stages and types of lung 

cancer. Using these free datasets helps us assemble various 

imaging data, which helps make a strong and general model. 

Also, adding datasets like ChestX-ray14 and the NIH Clinical 

Centre’s Chest-ray dataset can make the dataset bigger and 

better, giving a good base for using federated learning to 

gather and improve data. 

 

4.1.5 Synthetic data generation 

Creating artificial data is very important for building a 

complete set of lung scan images for using machine learning 

to find lung cancer. This is especially true when combined 

with a special way of sharing and improving data called 

federated learning. Methods like generative adversarial 

networks (GANs) and variational autoencoders (VAEs) can be 

used to make high-quality fake lung scans that look like real 

ones from patients. These fake images can add to the real ones 

we already have, fixing problems like not having enough data 

or having too much of one type and not enough of another. 

This makes the group of training images more varied and 

stronger. By adding fake data, the federated learning method 

gets more data and more kinds of it without breaking rules 

about keeping patient information private. This helps the 

model work better at finding lung cancer in different groups of 

people and under different conditions for taking pictures of the 

lungs. This gives a strong base for using federated learning to 

bring together and improve data.  

 

( ) max(0, )p a a=  (3) 

 

where, a represents the training images, which receives a set 

of input images, and produces the results.  

 

4.1.6 Data augmentation 

Data augmentation is an important method for creating a 

large and varied set of lung scan images for use in machine 

learning to detect lung cancer. This is especially useful when 

combining data from different sources using a method called 

federated learning. At each federated client, data augmentation 

was used during the local training stage. Among the 

augmentation techniques were zooming, contrast 

modifications, random rotations, vertical and horizontal flips, 

and elastic deformations. These adjustments enhance the 

model's capacity to generalize across various patient profiles 

and scanner circumstances in addition to preventing 

overfitting. This helps create a better set of data that can help 

the computer learning model work well in various situations 

and with different patients. More advanced methods, like 

slightly changing the shapes of the images and adjusting the 

colors, can also be used to make the training data even more 

diverse and high-quality, which helps the model better identify 

small differences in lung tissue and possible signs of cancer. 

 

( ) ( )( )f e t u e=  (4) 

 

4.1.7 Data anonymization 

A crucial step in producing a big collection of lung scan 

images for computer-assisted lung cancer detection is data 

anonymization. To respect HIPAA regulations and protect 

patient privacy, this procedure entails removing or concealing 

personal information from medical records. Sensitive 

information like names, social security numbers, and precise 

birthdates are kept secret by techniques including name-

changing, using false identities, and obscuring specifics. 

Additionally, unique numbers are utilized in place of names so 

that researchers can link disparate data sets without being 

aware of the identity of the patients. In addition to 

safeguarding patients' privacy, anonymizing the data makes it 

easier for researchers to collaborate and share findings. 

 

( )
z

n z

r

F n
g z

F R
=


 (5) 

 

Using strong methods to hide personal information in lung 

scan data is very important. This means we need to mix the 

need for useful data with keeping people's privacy. We must 

make sure the data without names still has the important parts 

that help train and test computer models. Special methods like 

adding small random changes to the data can protect patient 

privacy while keeping the data useful for analysis. By focusing 

on hiding personal details in the data, researchers can make a 

safe, ethical, and complete set of data that helps improve 

computer models for finding lung cancer early and accurately. 

The present investigation uses sophisticated privacy-

preserving mechanisms in addition to traditional 

anonymization techniques to improve patient confidentiality, 

particularly in the context of federated learning. Differential 

privacy is one such method that adds precisely calibrated 

random noise to the data processing pipeline, particularly 

while model updates are being transmitted from local clients 

to the central server. This guarantees that, even in cooperative 

machine learning environments, no single data point can be 

identified or reverse-engineered. All institutional participants 

followed stringent ethical guidelines in order to comply with 

international data protection requirements, including the 

General Data Protection Regulation (GDPR) and the Health 

Insurance Portability and Accountability Act (HIPAA). These 

included following data minimization guidelines, getting the 

appropriate institutional review board (IRB) approvals, and, 

when necessary, gaining informed consent. All storage 
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systems were secured with authentication and access control 

procedures to avoid unwanted access, and data transmission 

was carried out over encrypted channels. 

Furthermore, because patient data never leaves the local 

institution, the federated learning-driven solution naturally 

supports privacy by design. The risk of data leakage is greatly 

decreased because only model updates not raw images are 

transmitted. Strong anonymization and differential privacy 

procedures, along with this decentralized training paradigm, 

guarantee both data value for precise lung cancer detection and 

strong patient identity protection. Because of this, researchers 

can work together across institutions with confidence without 

sacrificing moral principles or legal obligations. 
 

4.1.8 Federated Learning-Driven Data Aggregation and 

Enhancement (FL-DAE) 

Federated Learning Driven Data Aggregation and 

Enhancement is crucial for creating large, detailed datasets of 

lung scans to help machines detect lung cancer. This method 

uses data from different places like hospitals and clinics to 

gather a variety of datasets while keeping the data private and 

safe. By using federated learning [31-33], the data stays where 

it was collected, and only the changes to the model are shared 

between different locations, which helps protect privacy and 

follow rules. 
 

( , , , ) ( , , , ) ( , )G v L RE v L B L    = +  (6) 

 

This process includes training a model together where each 

local dataset helps improve a main model without having to 

put all the sensitive medical data [34] in one place. This 

method of sharing information among many locations not only 

protects patient confidentiality but also increases the variety of 

data, showing differences in lung images from different groups 

of people and health situations. Additionally, this technique 

called federated learning lets the models get better over time 

as the local data changes, making models that can adapt to new 

information and improve how well they can spot lung cancer 

early. This way of gathering and improving data using 

federated learning is a path to making machine learning tools 

in healthcare better and more ethical, especially for finding 

and diagnosing lung cancer early. 
 

4.1.9 Validation and testing 

In the validation stage, the data is split into two groups: one 

for teaching the model and one for testing it. This helps adjust 

the settings of the model and prevents it from becoming too 

specialized for the training data. This process ensures that the 

model works well with new, unseen data. Methods like k-fold 

cross-validation are used to check how consistently the model 

performs across different parts of the data, giving a thorough 

evaluation. The testing stage uses a completely new part of the 

data that the model hasn't seen. This is important to see how 

accurately the model can predict outcomes and how well it can 

handle real-world situations. Performance measures like 

accuracy, precision, recall, F1-Score, and the area under the 

ROC curve are used to evaluate how well the model works. It's 

also important to check if the model can correctly identify 

different stages and types of lung cancer, making sure it can 

give accurate results for a wide range of patients. By 

thoroughly testing and validating the data and the machine 

learning model, we can make sure it is reliable and effective 

for detecting lung cancer early, which helps improve patient 

health. 
 

4.1.10 Deployment 

During this stage, the goal is to incorporate the model into 

the current healthcare setups so that it works well in different 

medical settings. Important factors to consider are how well 

the model can work with various medical imaging devices, 

how it fits with hospital computer systems, and how it follows 

healthcare rules and guidelines. To make the integration go 

smoothly, strong software development methods are used, 

such as APIs, cloud services, and simple interfaces that help 

doctors use the model and understand its findings easily. After 

the model is put into use, it's important to keep an eye on it and 

maintain it to make sure it stays accurate and useful. This 

includes gathering data and feedback from doctors to find any 

problems and ways to improve the model. It's important to 

regularly update and train the model with fresh data to ensure 

it stays up-to-date with the newest medical information and 

imaging techniques. Also, creating a system where healthcare 

professionals can give feedback helps improve the model and 

fix any problems or shortcomings found in everyday use. By 

effectively using the lung scan data and the related machine 

learning model in medical practice, we can greatly improve the 

early identification of lung cancer, which leads to improved 

patient results and more effective healthcare services. 

 

sol pressH D H=   (7) 

 

4.1.11 Fitness function 

When creating a large set of lung scan images to help 

computers find lung cancer, the need of a special tool called a 

fitness function. This tool helps us check and improve how 

well the computer model can tell the difference between scans 

showing lung cancer and those that don't. Here, several ways 

are used to measure this, like accuracy, precision, recall, F1-

score, and something called the area under the ROC curve. 

These ways give us a full picture of how good the model is at 

its job, making sure it can correctly spot both cancer and non-

cancer cases. 
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where, (1-(b-1)) denotes the threshold value, U denotes the 

maximum number of generations, β denotes the mutation 

factor. 

 

Algorithm: 

 

Step 1: Setup 

At the central server, start a global Feature-Adaptive CNN 

model. 

Give each participating medical facility (client) a copy of 

the initialized model. 

Step 2: Preparing Local Data  

Every client creates a local lung scan dataset. To get rid of 

noise and artifacts, do preprocessing and data cleaning. 

Use data augmentation strategies to improve the balance 

and diversity of your dataset. 

Verify normal and abnormal classifications to ensure 

annotation accuracy. 

Step 3: Client-side local training 

Every client uses its local dataset to train the Feature-

Adaptive CNN model. 
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To enhance representation, the model adaptively adjusts its 

convolutional parameters during training in response to feature 

pattern. 

 

Algorithm for the Proposed FL-DAE 

Input: Data 

{ 

#Data collection 
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(1) 

 

#Federated Learning Framework is given by the Eq. (2) 

 

j j ji i

i

N d V Y= +   (2) 

 

#Synthetic data generation is shown by the Eq. (3) 

 

( ) max(0, )p a a=  (3) 

 

#Data augmentation  

 

( ) ( )( )f e t u e=  (4) 

 

#Data anonymization is provided in the Eq. (5) 
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#Federated Learning-Driven Data Aggregation and 

Enhancement (FL-DAE) is given by the Eq. (6) 

 

( , , , ) ( , , , ) ( , )G v L RE v L B L    = +  (6) 

 

Fitness function is given by (7) 
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} 

End 

Output: Lung cancer detection 

 

The modified model is returned to the central server after 

training for a predetermined number of local epochs. 

Step 4: Server-side global aggregation 

All updated models from participating clients are gathered 

by the server. 

Combines the models in a safe manner to create a better 

global model. 

For the upcoming round, all customers receive an updated 

version of the global model. 

Step 5: Iteration 

To gradually improve the global model, repeat Steps 2-4 for 

a predetermined number of communication rounds. 

Step 6: Concluding Assessment 

Use a validation dataset to assess the finished global model 

after training is finished. 

Metrics such as accuracy, precision, recall, F1-Score, and 

false rate can be used to gauge performance. 

Step 7: Implementation and Evaluation 

To detect lung cancer, use the trained model as a reference. 

Make the dataset and model available for further research 

and application in clinical environments. 

 

 
 

Figure 2. Flowchart representation 

 

The flowchart (Figure 2) represents that the detection of 

lung cancer by collecting the datasets from two different 

datasets and train the local model available for further research 

and clinical results. 

 

 

5. RESULTS AND DISCUSSION 

 

This section discusses the outcomes of the suggested FL-

DAE. The proposed FL-DAE is examined, and the results are 

contrasted with those obtained using state-of-the-art methods. 

Particular hyperparameters were established for the 

federated learning procedure and the Feature-Adaptive CNN 

in order to guarantee reproducibility. The CNN was trained 

using the Adam optimizer with a learning rate of 0.001, a batch 

size of 32, and categorical cross-entropy as the loss function. 

To avoid overfitting, hidden layers were activated using ReLU 

with a dropout rate of 0.4. Every client trained the local model 

in the federated configuration for five epochs every round, for 

a total of fifty global communication rounds. Eighty percent 

of the clientele took part in every round. To protect local 

updates, differential privacy was implemented with a noise 

multiplier of 0.5. After every round, the global model was 

verified, and early halting was employed to prevent 

overtraining. 

 

5.1 Experimental setup 

 

The proposed model is implemented in the PHYTHON 

program using the Windows 10 operating system, an Intel core 

CPU, and 4 GB RAM.  
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5.2 Dataset description 

 

The data is collected from two datasets where one is the 

Kaggle Lung Cancer detection [29] and LUNA16 (Lung 

Nodule Analysis 2016) [30].  

Dataset 1: The Kaggle Lung Cancer Detection datasets 

usually contain important information to create complete 

machine-learning models. These datasets often include high-

quality CT scan pictures of lungs, in both original and 

processed forms. Along with these images, detailed notes 

showing where the cancer spots are, where there is no cancer, 

and other important areas. Information about each scan, such 

as details about the patient (age, gender), medical details 

(smoking history, cancer stage), and how the images were 

taken, is also provided. Some datasets might also have special 

maps, detailed image features, and reports from doctors that 

make the dataset more useful for training strong and precise 

machine-learning models to detect lung cancer.  

Dataset 2: LUNA16 (Lung Nodule Analysis 2016) dataset 

yields considerable information for developing the database of 

comprehensive lung scan data for machine learning-based 

lung cancer detection. This includes CT scans of 888 patients 

which make up approximately 1,186 separate scans. Each scan 

has been annotated carefully with detailed information on 

sizes, positions and malignancy ratings of lung nodules by 

different expert radiologists.  

 

5.3 Performance analysis 

 

The constructed model is put into practice using the Python 

tool, and its improved accuracy, recall, precision, F1 score, 

and error are verified against other popular algorithms. DL 

models that are currently in use that are compared include 

RNN [22], LDC-IDRI [24], and GAN [25]. 

 

5.4 Performance metrics 

 

The performance metrics like accuracy, specificity, 

sensitivity, and precision are very crucial for finding the 

performance of the machine learning methods in the lung 

cancer detection. The following are the explanation of the 

metrics. 

 

5.4.1 Accuracy 

Accuracy is the extent to which a calculation closely 

approximates the true value. It displays the percentage of 

correctly computed data for each test. Eq. (9) expresses the 

accuracy. 
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 (9) 

 

5.4.2 Precision  

Precision is the degree of correctness or relationship that 

exists between multiple guesses. Measurement repeatability is 

determined by precision, and accuracy is a prerequisite for 

precision. Eq. (10) is utilized to determine the precision. 
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5.4.3 Specificity 

Specificity, given a negative subject, is the probability of a 

negative test result. Eq. (11) conveys the specificity, 
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5.4.4 Sensitivity 

The percentage of all important results that the algorithm 

accurately classified is known as the sensitivity. the ratio of 

the positive category to / and real positively to true negatives 

numerals. The sensitivity, as given by Eq. (12), 
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5.5 Comparison of accuracy with the existing methods 

 

When looking at how well different methods work overtime 

for creating a detailed set of lung scans to help machines find 

lung cancer, this can learn a lot from using two big sets of data: 

one from Kaggle and one called LUNA16. The Figure 3 shows 

the Comparison of the accuracy with the existing methods with 

2 datasets 1) Lung detection dataset 2) LUNA16.  

Old ways of teaching machines, which use simple rules and 

not very complex models, don't get much better even if this is 

learned for a longer time. But new ways, like using very smart 

computer networks called Convolutional Neural Networks 

(CNNs), get much better if learn for more time. For example, 

with the Kaggle data, these smart networks can tell if there's 

lung cancer about 85-90% of the time after learning for 50 

rounds, and even better, around 92-95%, if the usage is a mix 

of several smart networks together. With the LUNA16 data, 

see the same thing: the smart networks can get up to about 88-

92% right after 50 rounds of learning, and even better, around 

93-96%, when using a mix of them. 

 

 
 

Figure 3. Comparison of the accuracy with the existing 

methods with 2 datasets 1) Lung detection dataset 2) 

LUNA16 

 

5.5.1 Comparison of Precision with the existing methods 

When looking at how well different methods work in 

creating a detailed set of lung scans for using machine learning 

to find lung cancer, we can use two datasets: the Kaggle Lung 

Cancer Detection dataset and the LUNA16 dataset. The Figure 

4 shows the comparison of the precision with the existing 
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methods with 2 datasets 1) Lung detection dataset 2) LUNA16. 

Traditional methods like Support Vector Machines (SVM) and 

Random Forests don't get much better with more training 

rounds because they depend on features that are chosen by 

humans. However, deep learning methods like Convolutional 

Neural Networks (CNNs) show big improvements when 

trained more. For the Kaggle dataset, CNNs reach a precision 

of about 80-85% after 50 training rounds, and this can go up 

to around 88-92% when using methods that mix several 

models. The LUNA16 dataset shows similar results, with 

CNNs getting to about 83-88% precision after 50 training 

rounds and up to 90-94% when using methods that combine 

multiple models, taking advantage of automatically selected 

features. 

Figure 4. Comparison of the precision with the existing 

methods with 2 datasets 1) Lung detection dataset 2) 

LUNA16 

Figure 5. Comparison of the sensitivity with the existing 

methods with 2 datasets 1) Lung detection dataset 2) 

LUNA16  

The comparison (Figure 5) of the sensitivity with the 

existing methods with two different datasets for generating 

accurate results such as Lung detection dataset and LUNA16. 

5.5.2 Comparison of specificity with the existing methods 

When looking at how well different techniques can 

correctly tell if a lung scan is healthy, using two sets of data 

from Kaggle and LUNA16, we see how they perform over 

time. The Figure 3 shows the Comparison of the specificity 

with the existing methods with 2 datasets 1) Lung detection 

dataset 2) LUNA16. Older methods like Support Vector 

Machines (SVM) and Random Forests don't improve much as 

they use the same features all the time. With these methods, 

the ability to correctly identify healthy scans stays around 70-

75% for the Kaggle data and 75-80% for the LUNA16 data. 

Newer methods like Convolutional Neural Networks (CNNs) 

get much better with more practice because they can 

understand more complex patterns. For the Kaggle data, CNNs 

reach about 85-90% accuracy after 50 tries, and can get up to 

90-93% with extra techniques. On the LUNA16 data, CNNs

also show better results as they get more practice. The

suggested Federated Learning-Based Data Aggregation and

Enhancement (FL-DAE) approach shows significant

improvements in accuracy and training speed. This method

uses federated learning to gather data from various hospitals,

creating rich and varied datasets while keeping patient

information private. When tested on the Kaggle dataset, FL-

DAE achieves about 93% accuracy after 50 training cycles and

can reach 96-98% with more cycles, thanks to better data

enhancement and aggregation methods. On the LUNA16

dataset, FL-DAE reaches about 94% accuracy in 50 cycles and

can go up to 97-99% with additional training. This shows that

FL-DAE not only speeds up the model's learning process but

also achieves higher accuracy than traditional and current deep

learning methods, highlighting its potential for improving lung

cancer detection.

5.5.3 Comparison of specificity with the existing methods 

When looking at how well different techniques can tell apart 

scans that do not show lung cancer over time, using two sets 

of data from Kaggle and LUNA16. The Figure 6 shows the 

Comparison of the specificity with the existing methods with 

2 datasets 1) Lung detection dataset 2) LUNA16. Older 

methods like Support Vector Machines (SVM) and Random 

Forests don't improve much as they use the same features all 

the time. With these methods, the ability to correctly identify 

non-cancerous scans stays around 70-75% for the Kaggle data 

and 75-80% for the LUNA16 data. Newer methods like 

Convolutional Neural Networks (CNNs), which can learn 

more complex patterns, get much better with more practice. 

For the Kaggle data, CNNs reach about 85-90% accuracy after 

50 tries, and can get even better, up to 90-93%, when 

combined with other techniques. For the LUNA16 data, CNNs 

also show improvements. 

The suggested method, called Federated Learning-Driven 

Data Aggregation and Enhancement (FL-DAE), shows 

significant improvements in how well it works and how 

quickly it learns. This method uses federated learning to gather 

data from various hospitals, creating a rich and varied dataset 

while keeping patient information private. When tested on the 

Kaggle dataset, FL-DAE achieves a performance rate of about 

93% after 50 training sessions and can reach 96-98% with 

more sessions, thanks to better ways of improving and 

combining data. On the LUNA16 dataset, FL-DAE reaches 

about 94% after 50 sessions and can go up to 97-99% with 

additional training. This shows that FL-DAE not only speeds 

up the learning process but also performs better than 

traditional and other deep learning methods, suggesting it 

could be very useful for detecting lung cancer. 

5.5.4 Comparison of false positive rate with the existing 

methods 

Traditional machine learning methods like Support Vector 

Machines (SVM) and Random Forests could not improve 
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much in lowering the false positive rate (FPR) as the number 

of training cycles (epochs) increases because they use fixed 

sets of features. The Figure 7 shows the Comparison of the 

accuracy with the existing methods with 2 datasets 1) Lung 

detection dataset 2) LUNA16. These methods usually stop 

improving at a higher FPR, around 25-30% for the Kaggle 

dataset and 20-25% for the LUNA16 dataset. Deep learning 

methods, especially Convolutional Neural Networks (CNNs), 

show a bigger drop in FPR as the number of epochs increases 

because they can learn more complex patterns. For the Kaggle 

dataset, CNNs get an FPR of about 15-20% after 50 epochs, 

and this can go down to around 10-12% with combined 

methods. On the LUNA16 dataset, CNNs reach an FPR of 

about 10-15% after 50 epochs, and this improves to 7-10% 

with combined methods. Using federated learning, the FL-

DAE method collects data from various hospitals, making sure 

the data is varied and complete while keeping patient 

information private. With the Kaggle dataset, the FL-DAE 

method gets an FPR of about 8% after 50 rounds of training 

and lowers it to 4-6% with more rounds, thanks to better ways 

of adding and combining data. On the LUNA16 dataset, the 

FL-DAE method gets to about 6% FPR after 50 rounds and 

drops to 3-5% with more training. This shows that the FL-

DAE method not only speeds up how fast the model gets better 

but also ends up with a much lower FPR than usual deep 

learning methods, suggesting it could greatly improve how we 

find lung cancer. 

Figure 6. Comparison of the specificity with the existing 

methods with 2 datasets 1) Lung detection dataset 2) 

LUNA16 

5.5.5 Comparison of false negative rate with the existing 

methods 

Traditional machine learning methods like Support Vector 

Machines (SVM) and Random Forests usually show small 

improvements in lowering the false negative Rate (FNR) as 

they process more data because they depend on features that 

are manually selected. The Figure 8 shows the Comparison of 

the accuracy with the existing methods with 2 datasets 1) Lung 

detection dataset 2) LUNA16. These methods tend to level off 

at a higher FNR, around 20-25% for the Kaggle dataset and 

18-22% for the LUNA16 dataset. Deep learning techniques,

especially Convolutional Neural Networks (CNNs),

significantly lower the FNR as they process more data because

they can learn complex patterns and features on their own. For 

the Kaggle dataset, CNNs reach an FNR of about 10-15% after 

50 rounds of processing, and this can drop to around 8-10% 

when using methods that combine several models. On the 

LUNA16 dataset, CNNs achieve an FNR of about 8-12% after 

50 rounds of processing, and this improves to 5-8% when 

using methods that combine several models.  

Figure 7. Comparison of the FPR with the existing methods 

with 2 datasets 1) Lung detection dataset 2) LUNA16 

The new method called Federated Learning-Driven Data 

Aggregation and Enhancement (FL-DAE) shows big 

improvements in reducing the false negative rate (FNR) and 

making the training process faster. This method uses federated 

learning to gather data from many hospitals, making sure the 

data is varied and complete while keeping patient information 

private. When tested on the Kaggle dataset, FL-DAE reaches 

an FNR of about 7% after 50 training sessions and can lower 

it to 3-5% with more sessions, to better ways of adding and 

combining data. On the LUNA16 dataset, FL-DAE gets to 

about 5% FNR after 50 sessions and can drop to 2-4% with 

more training. This shows that FL-DAE not only speeds up 

how fast the model learns but also ends up with a much lower 

FNR than older and current deep-learning methods, suggesting 

it could greatly improve how to detect lung cancer. 

Figure 8. Comparison of the FNR with the existing methods 

with 2 datasets 1) Lung detection dataset 2) LUNA16 

Table 1 shows the comparison of proposed approaches with 

existing approaches. While differentiating with existing 

approaches proposed approach gain superior performances. 
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Table 1. Comparison over existing approaches 

 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

RNN 93.74 92.85 91.92 92.38 

GA-based 95.26 94.70 94.12 94.41 

FedAvg 96.32 95.65 95.10 95.37 

FedProx 96.85 96.08 95.70 95.89 

FL-DAE 

(Proposed) 
99.00 98.00 99.08 99.10 

 

5.5.6 Receiver operating characteristic curve 

The Receiver Operating Characteristic (ROC) curve is an 

important tool for assessing how well a model can detect lung 

cancer. The Figures 9 and 10 show the comparison of the 

accuracy with the existing methods with 2 datasets 1) Lung 

detection dataset 2) LUNA16., It shows the balance between 

correctly identifying cancer cases (true positives) and 

incorrectly identifying non-cancer cases (false positives) at 

different levels of certainty. When creating a dataset for 

machine learning to detect lung cancer from the Kaggle Lung 

Cancer Detection dataset, the ROC curve helps us see how 

well the model can tell the difference between scans of 

cancerous and non-cancerous lungs. Traditional methods like 

Support Vector Machines (SVMs) and Random Forests 

usually get ROC curves with area under the curve (AUC) 

values between 0.75 and 0.85. More advanced methods like 

Convolutional Neural Networks (CNNs), especially when 

trained for a longer time (like 50 epochs), can boost the AUC 

to about 0.90 to 0.95. 

Older techniques usually create ROC curves with AUC 

scores from 0.78 to 0.88. Advanced models, like those using 

CNNs, show significant improvements with AUC scores 

between 0.92 and 0.96 after 50 rounds of training. The FL-

DAE method, which uses federated learning and improved 

data combination, achieves even better AUC scores, typically 

between 0.97 and 0.99. This big improvement shows how 

effective the FL-DAE method is at making the model better at 

correctly identifying lung nodules, which lowers both 

incorrect positive and negative results. 

 

 
 

Figure 9. ROC representation curve for the dataset 1 

 

The ROC curves for both datasets show that the FL-DAE 

approach not only boosts overall performance but also makes 

the lung cancer detection system more dependable and 

accurate. 

Table 2. Computational complexity comparison 

 

Evaluation 

Metric 

Centralized 

CNN 
FedAvg FedProx 

FL 

with 

DP 

FL-DAE 

(Proposed) 

Training Time 

(se) 
3.12 3.8 2.16 1.36 0.54 

Communication 

Overhead 
- 400 MB 420 MB 

450 

MB 
320 MB 

 

Table 2 shows the computational complexity comparison. 

While comparing with existing approaches proposed approach 

takes less training time to obtain superior performances. 

 

 
 

Figure 10. ROC representation curve for the dataset 2 

 

5.5.7 Statistical analysis 

A two-tailed paired t-test was used to verify that the 

observed performance gains of the suggested FL-DAE 

technique are not the result of chance. Since the baseline 

models (RNN, GAN, FedAvg, FedProx) and FL-DAE 

performance metrics (accuracy, precision, recall, and F1-

Score) were calculated using the identical data splits under 10-

fold cross-validation, proving a reliance between matched 

findings, this test is appropriate. To determine whether the 

performance differences were statistically significant, the t-

test compared the mean values of each metric across folds. To 

determine significance, a p-value threshold of 0.05 was 

employed. The findings confirmed the robustness and 

dependability of the suggested strategy above current 

techniques by showing that FL-DAE's improvements were 

statistically significant (p < 0.05) across all criteria. Table 3 

shows the statistical analysis. 

 

Table 3. Statistical analysis 

 

Performance 

Metric 

FL-

DAE 

vs. 

RNN 

FL-

DAE 

vs. 

GAN 

FL-DAE 

vs. 

FedAvg 

FL-DAE 

vs. 

FedProx 

Accuracy 
p = 

0.0031 

p = 

0.0018 

p = 

0.0052 
p = 0.0045 

Precision 
p = 

0.0049 

p = 

0.0026 

p = 

0.0064 
p = 0.0039 

Recall 
p = 

0.0023 

p = 

0.0014 

p = 

0.0047 
p = 0.0033 

F1-Score 
p = 

0.0035 

p = 

0.0020 

p = 

0.0050 
p = 0.0041 

 

5.5.8 Clinical validation and real-world limitations 

A collection of anonymized clinical case studies from 

affiliated medical institutes was used to validate the suggested 

model in order to assess its practical usefulness. These 
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comprised lung scans of actual patients with verified 

diagnoses, allowing evaluation of the model's capacity to 

identify anomalies in their early stages. The model's diagnostic 

relevance was supported by its high sensitivity in detecting 

nodules and aberrant tissue patterns that are consistent with 

early-stage lung cancer. Nevertheless, a number of restrictions 

were noted during practical implementation. Generalization 

was complicated by differences in image quality, annotation 

protocols, and scanner types amongst institutions. 

Furthermore, strong interpretability, regulatory permissions, 

and clinician trust are necessary for real-time connection with 

hospital information systems. Although privacy concerns were 

resolved by federated learning, network latency and the 

computing loads on client devices continue to be potential 

barriers. These results demonstrate the model's great potential 

for clinical use, but they also underline the necessity of 

additional testing in various healthcare environments to 

guarantee scalability and dependability. 

6. CONCLUSIONS

In conclusion, creating a detailed set of lung scan images 

for use in machine learning to find lung cancer, using data 

from Kaggle and LUNA16, shows big improvements in how 

to look at medical images and make diagnoses. This method 

uses a special way of combining and improving data (called 

FL-DAE) that keeps patient information private but uses 

information from many places. This FL-DAE method does 

better in tests like accuracy, how well it finds true positives, 

how well it avoids false positives, and how often it misses 

cancer cases, compared to older and other deep learning 

methods. The better ways of combining, changing, and 

training models lead to more accurate and dependable ways to 

find lung cancer, as shown by better results in tests across both 

sets of data. This research shows that the FL-DAE method 

could improve how to detect lung cancer. It does better than 

older methods by lowering the chances of mistakes, like 

saying someone has cancer when they could not or missing 

cancer when it was there. This helps doctors find lung cancer 

earlier and more accurately, which can lead to better health for 

patients and more successful treatments. The detailed lung 

scan data from this study is also useful for other researchers 

working on new ways to use medical imaging and machine 

learning. In future work, looking into sophisticated methods 

such as understandable AI and incorporating immediate data 

updates from current medical research could enhance the 

system's dependability and usefulness in clinical settings. 
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