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Transformers are essential elements of modern power networks because they assure 

efficient electrical distribution and transportation. They are susceptible to internal faults 

though, including inter-winding short circuits, which are hard to identify in real time with 

traditional methods such as heat monitoring and gas dissolved analysis. These flaws have 

the potential to seriously impair transformer performance and result in pricey system 

failures. For the purpose of to identify winding short-circuit defects, this research proposes 

a vibration analysis-based method that makes use of artificial neural networks (ANN) and 

the Fast Fourier Transform (FFT). This method analyses vibration frequency variations as 

failure indicators and uses ANN to accurately classify a variety of situations. According 

to results from experiments, the suggested method differentiates between normal and 

defective states under various load situations, enabling early and accurate fault diagnosis. 

The ability of the system to keep monitoring transformers without needing shutdowns 

boosts efficacy in functioning, lowers repair costs, and increases the power grid's overall 

accuracy. 
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1. INTRODUCTION

Modern electrical networks, which have seen considerable 

advancements in voltage levels, rely heavily on power 

transformers. Short-circuit (SC) faults between transformer 

windings are one of the most important operational issues that 

transformers now face as a result of these advancements. In 

addition to affecting transformer performance, these faults 

also have an effect on the power system's overall dependability, 

especially during the transmission and distribution phases. 

Because maintaining a dependable power supply is so 

important, errors in these systems can be expensive and 

dangerous [1]. 

Compared to conventional methods such as Dissolved Gas 

Analysis, which requires oil sampling and laboratory testing 

using highly sensitive and costly gas chromatograph 

equipment with prices ranging from approximately 30,000 

USD to over 100,000 USD vibration analysis offers a faster 

and more practical alternative. By simply installing an 

accelerometer, typically costing less than 2,000 USD, and 

connecting it to a processing unit, it is possible to obtain 

continuous, real-time mechanical response data from the 

transformer windings. The accelerometer can remain 

permanently mounted on the transformer, enabling fully 

automated monitoring without human intervention or 

transformer shutdown. This capability ensures that developing 

faults are detected promptly, thereby reducing the risk of 

severe failures and minimizing operational disruptions. The 

objective of this study is to gain a better understanding of how 

new methods can improve the efficacy of fault detection 

methods, with an emphasis on vibration frequency analysis of 

transformer windings. Based on the idea that abnormal 

variations in the frequency and intensity of winding vibrations 

can act as a real-time indicator of a fault, this technique is 

thought to be more accurate and effective than other 

approaches in detecting SC faults. These vibration changes can 

be analysed and classified using artificial intelligence, 

especially artificial neural networks (ANN), based on training 

data and previously completed experiments. This allows for 

early transformer condition diagnosis before issues worsen 

and impact the entire electrical grid [2]. 

Vibrations can be an accurate indicator of transformer 

health, according to previous studies. For instance, in 2021, 

José Roberto et al. [3] studied how to measure transformer 

core vibrations and use a programmable FPGA matrix for 

signal processing in order to detect short circuits. For the 

analysis of data, they used support vector machines and the 

statistical time feature methodology. Similar to this study, 

Qian et al. [4] looked into vibrations brought on by winding 

movement and showed that load current affects vibration 

frequency by changing the windings inherent frequency. 

Additionally, they conducted free vibration tests under short-

circuit load conditions to investigate the impact of clamping 

force on vibration intensity. A study on the definition of axial 
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and radial vibrations and how they relate to current harmonics 

was published in 2023 by researchers Jiang et al. [5], they 

investigated this relationship using a 3D simulation model, and 

they checked the analysis method by conducting vibration 

measurements on an operational transformer. Using fiber optic 

sensors that measure temperature and humidity in addition to 

vibrations, researcher Akre et al. [6] proposed a novel way to 

monitor transformer winding vibrations during that period. 

The results showed a guarantee for monitoring transformer 

conditions. In a comparable fashion, Wang et al. [2] studied 

the consequences of abrupt external SC. Their results, which 

came from finite element analysis, showed how axial forces 

affected the winding ends and how radial forces affected the 

middle layer of the winding. 

Multiple investigations have shown that it is possible to 

diagnose and monitor transformer conditions in addition to 

identifying SC faults in real-time without needing shutdowns. 

Differences in study findings have been observed, though, and 

numerous researchers have identified transformer design and 

current harmonics as major causes of the variation in data 

collected. Additionally, a lot of research has focused on 

measurement methods that take vibrations throughout the 

transformer structure into account [7]. 

Previous research has indicated that ANN can outperform 

other machine learning algorithms in detecting inter-turn short 

circuits in transformers using vibration analysis. In one 

comparative study, ANN, SVM, k-NN, and Random Forest 

were evaluated using vibration features extracted through 

Variational Mode Decomposition. ANN achieved the highest 

classification accuracy, supporting its use in the present work 

to model the non-linear patterns in transformer vibration data 

[8].  

The purpose of the research is to investigate the significance 

of using artificial intelligence tools, specifically ANN, to 

diagnose and identify SC faults between transformer windings 

early on, fast and accurately. 

2. THEORETICAL BACKGROUND

2.1 Vibration transformer 

Vibration signals are directly related to the mechanical and 

electrical performance of transformers. During operation, the 

transformer's core and windings produce almost all of these 

vibrations. The magnetostriction phenomenon, which 

characterises dimensional shifts in ferromagnetic materials 

when exposed to magnetic fields, is the primary cause of core 

vibrations [9, 10]. 

The nonlinear nature of the magnetostriction phenomenon 

causes larger harmonics, and the fundamental vibration 

frequency in the core is twice the input power system 

frequency. Following the reported formulation, the vibration 

amplitude in the core 𝐴𝑐𝑜𝑟𝑒  is directly proportional to the

square of the applied voltage U, as shown in Eq. (1). This 

relationship has been experimentally validated in prior 

transformer vibration studies [9]. 

𝐴𝑐𝑜𝑟𝑒 ∝  𝑈2 (1) 

The forces that arise from vibrations caused by 

magnetostriction act opposed to the core [11]. However, 

winding vibrations, which consist of axial and radial 

components, are caused by electromagnetic forces acting on 

the windings as a result of an interaction between the windings' 

current and leakage flux density. Similarly, the primary 

harmonic of winding vibrations 𝐴𝑤𝑖𝑛𝑑𝑖𝑛𝑔  is directly

proportional to the square of the current I, assuming sinusoidal 

current, as shown in Eq. (2). This proportionality has been 

established in the literature based on the electromagnetic 

forces generated by the interaction between winding currents 

and leakage flux density [10, 11]. 

𝐴𝑤𝑖𝑛𝑑𝑖𝑛𝑔 ∝ 𝐼2 (2) 

Any damage to the transformer windings, such as an SC 

condition, will change the frequency spectrum of vibration 

signals since they are connected to the electrical and 

mechanical performance of the transformer core and windings. 

This offers a chance to develop methods based on signal 

processing that can define these variations in frequency [12-

14]. However, the high level of noise and the non-stationary 

nature of the vibration signals create this task difficult [15, 16]. 

2.2 Fast Fourier Transforms 

An effective method for converting signals from the time 

domain to the frequency domain is the Fast Fourier Transform 

(FFT). The discrete Fourier Transform (DFT), on which it is 

based, breaks down a time-domain signal into its separate 

frequency components, facilitating the analysis of the signals 

characteristics in the frequency domain [17, 18]. 

The DFT of a time-domain signal x[n], of length N, is 

calculated using the following Eq. (3). 

𝑋[𝑘] =  ∑ 𝑥[𝑛]𝑒−2𝜋𝑗
𝑘𝑛

𝑁𝑁−1
𝑛=0

(3) 

where, 

The frequency spectrum at frequency k is represented by 

X[k]. N is the total number of samples in the signal, and x[n] 

is the time-domain signal value at sample n, and 𝑒2𝜋𝑗
𝑘.𝑛

𝑁  is the 

complex exponential term that performs the decomposition of 

the signal into its frequency components [17]. 

FFT is commonly applied to time-domain signals to extract 

their frequency content, allowing for the identification of 

fundamental frequencies and harmonics within the signal. This 

transformation is crucial in various signal processing tasks, 

such as vibration analysis or sound wave decomposition, 

where understanding the signal's frequency components is 

essential for further analysis [17]. 

The mathematical representation of a neuron's output is 

given by Eq. (4): 

𝑦 = 𝑓(∑ 𝜔𝑖𝑥𝑖 + 𝑏𝑖
𝑖=1 ) (4) 

where, xi are the input features, ꭃi are the weights, b is the bias, 

and f is the activation function, such as sigmoid, ReLU, or 

Tanh. Through a method known as back propagation, which 

uses optimisation algorithms like gradient descent to reduce 

the error between predicted and real outputs, ANNs learn by 

modifying weights and biases. ANNs are effective tools for 

applications in classification, regression, image and speech 

recognition, and natural language processing because of their 

learning capability, which allows them to generalise from 

training data. Accuracy, precision, recall, and mean squared 

error are important performance metrics that direct the 

assessment and enhancement of ANN models [19-21]. 

1496



Figure 1. ANN architecture 

The general structure of the proposed artificial neural 

network is illustrated in Figure 1.  The confusion matrix, which 

depicts the connections between expected and actual results, 

provides a number of essential metrics that are used to assess 

the performance of ANN. These metrics offer thorough 

understanding of the model's performance in a variety of 

subjects. 

2.3 Accuracy 

The overall correctness of predictions, mathematically 

expressed as Eq. (5) [17]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(5) 

where, the elements of the confusion matrix are represented by 

TP (True Positives), TN (True Negatives), FP (False Positives), 

and FN (False Negatives) [17]. 

2.4 Precision 

Measures the exactness of positive predictions, Eq. (6). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(6) 

This metric is crucial in applications where false positives 

are particularly costly [17]. 

2.5 Specificity 

Quantifies the model's ability to correctly identify negative 

cases by Eq. (7) [22]. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
(7) 

Also known as the True Negative Rate, it's particularly 

important in  diagnostics applications [23]. 

2.6 Recall 

Measures the model's ability to identify all relevant 

instances by Eq. (8). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(8) 

Also known as the True Positive Rate, it's critical in 

applications where missing positive cases is costly [24, 25]. 

3. PROPOSED METHODOLOGY

The model depicted in Figure 2 represents the proposed 

experimental setup. An alternating current with a voltage of 

220 V and a frequency of 50 Hz powers the transformer. A 

variable resistive load, ranging from 0% to 100%, is applied, 

along with the transformer’s electrical schematic, which 
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shows how the SC points are connected at different ratios. This 

setup aims to monitor the transformer’s behavior under 

varying conditions. 

Figure 2. Proposed methodology flow chart 

An accelerometer sensor, PCB 357, was used to measure the 

vibrations of the transformer winding. The sensor converts the 

acceleration values into analog signals, where 10 mV 

corresponds to an acceleration of 1 m/s². These signals were 

recorded using a Hantek 6022BE oscilloscope. Subsequently, 

the recorded signals were transformed into a frequency 

spectrum using the FFT to analyze the vibration-induced 

frequencies. 

Figure 3 illustrates a transformer with a capacity of 2000 

VA, on which an SC test was conducted. During this test, a 

portion of the secondary winding turns is shorted, and these 

shorted turns are positioned on the outer part of the 

transformer. The accelerometer was mounted in a direction 

that allows it to measure vibrations caused by the radial forces 

acting on the winding. In each experiment, a fixed short-circuit 

ratio was applied, and the load capacity was varied over time. 

Acceleration and current readings were taken after each load 

change, ensuring a time interval of more than 30 seconds. This 

experiment was repeated for each fault ratio. 

The vibration signals were sampled at a frequency of 10 

kHz, which is well above the Nyquist criterion for the analyzed 

frequency range, ensuring accurate capture of the waveform 

without aliasing. Prior to performing the FFT, a Hamming 

window was applied to the time-domain data to reduce spectral 

leakage and improve frequency resolution. After computing 

the FFT, only the magnitudes corresponding to the 

fundamental frequency of 50 Hz and its harmonics (up to 400 

Hz) were selected by extracting their values from the FFT 

output vector containing the amplitude for each frequency bin. 

In our experimental setup, the total time from vibration signal 

acquisition to ANN-based fault diagnosis varied between 

approximately 1 s and 3 s, depending on the overall system 

operating conditions. This variation is mainly influenced by 

the USB-based data transfer between the oscilloscope and the 

computer running MATLAB, as well as the concurrent tasks 

performed during the experiment. 

Subsequently, an ANN model was trained using MATLAB. 

The measured values were filtered, focusing on the harmonics 

of the supply frequency of 50 Hz. A total of 9 frequency values, 

ranging from 0 Hz to 400 Hz in 50 Hz steps, were used. 

Through these experiments and analyses, a set of results was 

obtained under different conditions applied to the transformer, 

including varying load ratios and SC ratios simultaneously. 

Figure 3. Experimental setup 
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The experimental dataset and the ANN training set used in 

this study cover inter-turn short-circuit ratios of 0%, 1%, 3% 

and 4% only. While the transformer was initially prepared to 

allow higher SC ratios, an attempt to operate it at 7% SC 

resulted in a significant increase in the input current, triggering 

the magnetothermic circuit breaker (rated at 10 A) 

immediately upon energization. This incident indicated a high 

risk of damaging the test setup and associated equipment; 

therefore, no experiments were conducted for SC ratios above 

4% in this study. 

4. VIBRATION RESULTS

This section presents the results obtained from experiments 

on the transformer under various conditions. The values of the 

transformer winding vibrations, after being filtered and 

transformed using FFT, reveal variations in the recorded data. 

The vibration intensity is influenced by the presence of an SC 

between the transformer windings.  

Figure 4. The vibrations of windings with a fault rate of 0% 

Figure 5. The vibrations of windings with a fault rate of 1% 

During testing of the transformer in its normal state, with 

varying load ratios applied, Figure 4 shows a change in 

vibration intensity at 150 Hz while the transformer operates 

without load, where this value drops to approximately 0.0005, 

while other frequencies maintain the same intensity around 

0.01 in terms of vibration magnitude. Additionally, an increase 

in vibration intensity at 300 Hz is observed after applying a 

1000 W load to the transformer. After introducing a short 

circuit between the windings at levels of 1%, 3%, and 4%, their 

results are found to be closely aligned, with only minor 

differences. Furthermore, the recorded changes at 150 Hz and 

300 Hz in the initial test disappear under the SC conditions. 

As shown in Figure 5, the vibration pattern for a 1% SC 

ratio presents noticeable variations compared to the healthy 

state. Figures 6 and 7 further illustrate the vibration responses 

for 3% and 4% SC ratios, respectively. It should be noted that 

high-severity inter-turn short-circuit cases were not tested in 

this work. An experimental attempt at 7% SC caused an 

immediate trip of the 10 A magnetothermic protection, 

indicating a significant risk of equipment damage. 

Figure 6. The vibrations of windings with a fault rate of 3% 

Figure 7. The vibrations of windings with a fault rate of 4% 

5. ANN RESULTS

ANN was chosen as the model for this work. Following 

extensive testing to achieve satisfactory classification results, 

ten inputs (i.e., the index value for each vibration axis) make 

up the ANN architecture that was produced. Two networks 

with two hidden layers and varying numbers of neurons were 

employed. Five neurons were selected for the first hidden layer 

in the first network, and nine neurons were selected for the 

second hidden layer. We employed 9 neurons in the second 

network’s second hidden layer and 10 neurons in the first 

hidden layer. 70% of the training data was used for training, 

15% for testing, and 15% for validation. The confusion 

matrices from the ANNs are shown in Figures 8 and 9.  The 

classification performance metrics corresponding to 
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Confusion Matrix 1 are summarized in Table 1, while the 

results for Confusion Matrix 2 are reported in Table 2. The 

first ANNs overall accuracy results were 92.6%, the second 

networks were 96.3%. 

Figure 8. Confusion matrix 1 

Figure 9. Confusion matrix 2 

Table 1. Contains the calculation for the values of Confusion 

Matrix 1, as shown in Figure 8 

Class Accuracy Recall Specificity Precision 

1 

92.6% 

71.4% 100% 100% 

2 83.3% 100% 100% 

3 90.9% 100% 100% 

4 100% 100% 100% 

Table 2. Contains the calculation for the values of Confusion 

Matrix 2, as shown in Figure 9 

Class Accuracy Recall Specificity Precision 

1 

96.3% 

75.0% 100% 100% 

2 83.3% 100% 100% 

3 90.9% 100% 100% 

4 100% 100% 100% 

6. DISCUSSION OF RESULTS

6.1 Confusion Matrix 1 

The overall accuracy dropped to 92.6%, indicating that 

some classifications were incorrect, particularly in the case of 

healthy transformers (Class 1). The recall for Class 1 suggests 

that the model failed to identify 28.6% of healthy transformers, 

misclassifying them as faulty. This poses a risk, as healthy 

transformers could be incorrectly diagnosed as faulty and 

subjected to unnecessary maintenance. Recall for classes 2, 3, 

and 4 indicates that the model performed better in identifying 

faulty transformers. Notably, the recall for Class 4 (severely 

faulty transformers) was perfect (100%). This is important 

because transformers with serious defects need precise 

detection to avoid operational failures. 

6.2 Confusion Matrix 2 

Accuracy improved to 96.3%, indicating a more accurate 

performance compared to Matrix 1. The recall for Class 1 

increased to 75%, showing lower misclassifications of healthy 

transformers, although 25% of healthy transformers are still 

incorrectly classified as faulty. Recall for classes 2, 3, and 4 

remains high (83.3% for Class 2, 90.9% for Class 3, and 100% 

for Class 4). This indicates that the model is extremely 

effective in identifying faulty transformers, particularly the 

critically faulty ones in Class 4. 

In some healthy transformer cases, peaks in the vibration 

spectrum possibly due to slight sensor placement changes or 

specific load levels caused misclassification as faulty. 

Standardizing sensor mounting and diversifying load 

conditions in training could reduce this effect. 

7. CONCLUSIONS

This study uses vibration analysis, FFT, and ANN to 

propose and develop a novel methodology for power 

transformer fault diagnosis. In comparison with traditional 

techniques, this method offers a more accurate and efficient 

fault detection system by focusing on the vibration signals 

generated by the transformer windings, especially during SC 

problems. The results of the study show that the ANN model 

classifies multiple transformer conditions, in some situations 

the model’s accuracy may exceed 96.3%. Specific frequency 

components associated with transformer health were identified 

by the use of FFT for analysing the vibration frequencies, and 

the ANN efficiently processed these features to classify the 

transformer state with high precision. One of the main benefits 

of this strategy is its capacity to identify problems swiftly, 

even before significant damage takes place, that could avoid 

expensive disruptions and guarantee system dependability. 

Additionally, the suggested approach has the advantage of 

real-time monitoring without needing transformer shut downs, 

which reduces operational interruptions and boosts the general 

efficiency of maintenance. This technique improves the 

diagnosis procedure by combining vibration analysis and 

artificial intelligence, which results in improved power system 

monitoring and maintenance efficiency. The model of ANNs 

may be additional optimised in future research, and this 

method can be applied to various types of transformer faults. 
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NOMENCLATURE 

Acore Core vibrations, m.s-2 

Awinding Winding vibrations, m.s-2 

X[k] Frequency spectrum 

k Frequency, Hz 

N Total number of samples 

x[n] Time-domain signal 

n Signal value at sample 

xi Input features 

ꭃi Weights 

b Bias 

f Activation function 
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