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This study addresses the challenge of formation control for multiple non-holonomic 

unicycle mobile robots, a critical aspect of energy-efficient multi-agent robotic systems. 

A novel Generalized Proportional-Integral-Derivative (GPID) controller is proposed, 

grounded in Generalized Proportional Integral control theory, to ensure robust trajectory 

tracking and formation maintenance under uncertainties and disturbances. A dynamic 

model of unicycle robots is derived, and the GPID controller is designed to regulate 

cooperative formations. Stability is rigorously established using Lyapunov theory. 

Extensive MATLAB simulations demonstrate the controller’s superior performance, 

achieving enhanced stability, reduced tracking errors, and robust disturbance rejection 

compared to conventional PID controllers. Evaluated formation patterns confirm the 

approach’s adaptability in dynamic, energy-constrained environments. The results validate 

precise trajectory tracking and reliable formation control, underscoring the GPID 

controller’s potential in advancing robust and scalable strategies for cooperative robotics.  
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1. INTRODUCTION

The control and coordination of multiple mobile robots have 

become critical in advancing autonomous systems, with 

applications spanning industrial automation, military 

operations, surveillance, and search-and-rescue missions. 

Formation control, which involves maintaining a predefined 

geometric configuration while navigating dynamic 

environments, is essential for enabling collaborative robot 

behavior [1-3]. Effective formation control demands precise 

trajectory tracking, robustness to external disturbances, and 

adaptability to environmental changes. Among mobile robots, 

unicycle-type robots are widely studied due to their simple yet 

practical motion dynamics. However, their non-holonomic 

constraints, which restrict lateral motion, pose significant 

challenges for achieving accurate and stable formation control. 

Prior work on formation control can be broadly categorized 

into three approaches: leader-follower, virtual structure, and 

behavior-based methods [4]. Leader-follower strategies, as 

explored by Consolini et al. [5], rely on a designated leader 

robot to guide the formation, but they often suffer from single-

point failures [2]. Virtual structure approaches, such as those 

by Ren and Beard [1], treat the formation as a rigid body, 

offering stability but lacking flexibility in dynamic 

environments. Behavior-based methods, like those 

Balasubramanian and Ascoli [4], combine multiple control 

objectives but can lead to unpredictable interactions among 

robots; classical Proportional-Integral-Derivative (PID) 

controllers are commonly employed across these approaches 

due to their simplicity and effectiveness in single-robot 

systems [6, 7]. However, PID controllers struggle with the 

complexities of multi-robot formation control, exhibiting 

limitations such as poor disturbance rejection, slow 

convergence rates, and inadequate handling of inter-robot 

dynamics and environmental uncertainties. These 

shortcomings result in tracking errors and formation instability, 

particularly under varying conditions. 

To this end, this research proposes a Generalized 

Proportional-Integral-Derivative (GPID) controller that 

integrates Generalized Proportional-Integral (GPI) principles 

[8, 9] to address these limitations. The GPID controller 

enhances disturbance rejection, improves trajectory tracking 

accuracy, and ensures stable formation control for multiple 

non-holonomic mobile robots. Building on recent advances in 

GPID and ESO-based control [10, 11], this study proposes a 

novel decentralized formulation tailored for real-time multi-

robot formation tracking under bounded disturbances, Hence, 

this study investigates the research question: How can a GPID 

controller improve the formation control and trajectory 

tracking performance of multiple non-holonomic mobile 

robots compared to conventional PID-based approaches? 

Compared to classical PID controllers, which rely on three 

gains (proportional, integral, and derivative), the proposed 

GPID controller introduces additional generalized integral and 

derivative terms based on the GPI framework. These added 

terms enhance the system’s ability to reject time-varying 

disturbances and improve transient response. Structurally, 

GPID incorporates extended internal states that offer more 

flexible shaping of system dynamics [10]. As a result, GPID 

outperforms PID in scenarios requiring high precision and 

robustness, such as formation control under inter-robot 

coupling and external perturbations. 
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Contributions of this work include: 

1. Development of a mathematical model for formation 

control of multiple non-holonomic mobile robots, 

capturing inter-robot dynamics and environmental 

interactions. 

2. Design of a GPID controller that leverages GPI 

principles to enhance robustness and tracking precision. 

3. Validation of the proposed controller through 

MATLAB-based simulations, demonstrating improved 

formation stability and trajectory tracking accuracy 

compared to traditional PID approaches. 

These contributions aim to advance the field by providing a 

robust and adaptive control strategy for multi-robot systems, 

with potential applications in complex, real-world scenarios. 

The remainder of this paper is organized as follows. Section 

2 formulates the multi‐robot model and cost functions, 

detailing assumptions and problem setup. Section 3 presents 

the control strategy, theoretical analysis of convergence and 

optimality. Section 4 describes the stability of the proposed 

control method, Section 5 reports simulation results, 

comparing performance against baseline approaches. Finally, 

Section 6 concludes with a summary of findings and outlines 

directions for future research. 

 

 

2. DYNAMIC MODEL DESCRIPTION 

 

This section presents the dynamic model for a team of N 

non-holonomic mobile robots tasked with maintaining a 

predefined formation while tracking a reference trajectory in a 

2D environment with static obstacles. The model accounts for 

the non-holonomic constraints of unicycle-type robots, 

integrates discrete-time kinematics, and defines the control 

objectives for the proposed Generalized Proportional-Integral-

Derivative (GPID) controller, which enhances formation 

stability and trajectory tracking under disturbances. 

 

2.1 System overview 

 

We consider a 2D workspace containing N unicycle-type 

mobile robots, each subject to non-holonomic constraints due 

to wheel rolling without slipping, and M static obstacles. The 

robots aim to maintain a specified geometric formation while 

tracking a reference trajectory defined by a virtual or physical 

leader [3]. The system objectives are threefold (see Figure 1): 

• Trajectory Tracking: Follow the reference trajectory 

with minimal tracking error. 

• Formation Maintenance: Preserve the desired 

geometric configuration relative to the team centroid. 

• Collision Avoidance: Avoid collisions with obstacles 

and other robots. 

Each robot is modeled as a circular agent with a fixed radius, 

operating under constrained unicycle dynamics, as described 

in. The environment includes static obstacles with fixed 

positions, and all positions are defined in a global Cartesian 

coordinate frame updated at discrete time steps ∆𝑡. 

 

2.2 State variables 

 

For each robot 𝑖 (𝑖 = 1, … , 𝑁), the state is defined by its 

position and orientation at time t: 

• Position: 𝑝𝑖(𝑡𝑛) = [𝑥𝑖(𝑡𝑛), 𝑦𝑖(𝑡𝑛)]⊺ ∈ ℛ2 , 

representing the robot's coordinates in the global frame. 

• Orientation: 𝜃𝑖(𝑡𝑛)  ∈ [0,2𝜋] , the heading angle 

relative to the global x-axis. 

• Team Centroid: 𝑝𝑐(𝑡𝑛) =
1

𝑁
∑ 𝑝𝑖(𝑡𝑛)𝑁

𝑖=1 , the average 

position of all robots. 

• Reference Trajectory: 𝑝𝑟(𝑡𝑛) = [𝑥𝑟(𝑡𝑛), 𝑦𝑟(𝑡𝑛)]⊺ , 

the desired trajectory to track. 

• Obstacle Positions: 𝑂𝑗 ∈ ℛ2(𝑗 = 1, … , 𝑀) , fixed 

positions of static obstacles. 

 

2.3 Robot kinematics and dynamics 

 

Each robot 𝑖  follows unicycle kinematics with non-

holonomic constraints, restricting lateral motion [12] (i.e., no 

sliding perpendicular to the wheels). The kinematic model is 

given by: 

 
𝑥𝑖̇(𝑡𝑛) = 𝑣𝑖(𝑡) cos ( 𝜃𝑖(𝑡𝑛))  
𝑦𝑖̇(𝑡𝑛) = 𝑣𝑖(𝑡) sin ( 𝜃𝑖(𝑡𝑛)) 

𝜃̇𝑖(𝑡𝑛) = 𝜔𝑖(𝑡) 

(1) 

 

 
 

Figure 1. Multi-robot coordination setup 
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where, 𝑣𝑖(𝑡)  is the translational velocity and 𝜔𝑖(𝑡)  is the 

angular velocity, both serving as control inputs. The non-

holonomic constraint is expressed as: 

 

𝑥𝑖̇(𝑡𝑛) sin ( 𝜃𝑖(𝑡𝑛) − 𝑦𝑖̇(𝑡𝑛) cos (𝜃𝑖(𝑡𝑛))) = 0 (2) 

 

Ensuring that motion occurs only along the robot’s heading. 

the dynamic model, derived using the Lagrange formulation, 

accounts for the robot’s mass 𝑚𝑖 , moment of inertia 𝐼𝑖 , and 

external forces/torques [13]. The dynamic equations are:  

 

𝑚𝑖𝑝𝑖̈ = 𝐹𝑖(𝑡), 𝐼𝑖𝜃𝑖̈ = 𝜏𝑖(𝑡) (3) 

 

where, 𝐹𝑖(𝑡) is the force and 𝜏𝑖(𝑡)is the torque, related to the 

control inputs 𝑣𝑖(𝑡) and 𝜔𝑖(𝑡) through actuator dynamics. For 

simplicity, we assume a direct mapping between control inputs 

and velocities, with disturbances modeled as additive terms  

𝑑𝑣(𝑡) and 𝑑𝜔(𝑡): 

 

𝑣𝑖(𝑡) = 𝑢𝑣,𝑖(𝑡) + 𝑑𝑣(𝑡), 𝜔𝑖(𝑡) = 𝑢𝜔,𝑖(𝑡) + 𝑑𝜔(𝑡) (4) 

 

where, 𝑢𝑣,𝑖(𝑡) and 𝑢𝜔,𝑖(𝑡) are the control signals generated by 

the GPID controller. 

 

2.4 Control inputs 

 

The control input vector for robot 𝑖 is:  

 

𝑢𝑖(𝑡) = [𝑢𝑣,𝑖(𝑡), 𝑢𝜔,𝑖(𝑡)]
𝑇
  (5) 

 

where, 𝑢𝑣,𝑖(𝑡) adjusts the translational velocity to track the 

reference trajectory and maintain formation, and 𝑢𝜔,𝑖(𝑡) steers 

the robot to align its heading with the desired path. The GPID 

controller, incorporating Generalized Proportional-Integral 

(GPI) principles, computes these inputs to enhance 

disturbance rejection and tracking accuracy [14]. 

 

2.5 Cost function 

 

Each robot 𝑖 optimizes a local cost function to balance the 

control objectives: 

 

𝐽𝑖(𝑡) = 𝑤1 𝐽𝑐𝑎,𝑖(𝑡) + 𝑤2 𝐽𝑓𝑚,𝑖(𝑡) + 𝑤3 𝐽𝑡𝑡,𝑖(𝑡) +

𝑤4 𝐽𝑒𝑒,𝑖(𝑡)  
(6) 

 

where, 𝑤1, 𝑤2, 𝑤3, 𝑤4 are empirically tuned weights, and the 

terms are: 

• Collision Avoidance (𝐽𝑐𝑎,𝑖(𝑡)): 

 

𝐽𝑐𝑎,𝑖(𝑡) = ∑ 𝑒𝑥𝑝 (
|𝑝𝑖(𝑡)−𝑝𝑗(𝑡)|

2

𝜎2 )𝑗≠𝑖 +

∑ 𝑒𝑥𝑝 (
|𝑝𝑖(𝑡)−𝑂𝑘|2

𝜎2 )𝑀
𝑘=1   

(7) 

 

penalizing proximity to other robots (𝑝𝑗(𝑡)) and obstacles (𝑂𝑘), 

with 𝜎 as the safety radius. 

• Formation Maintenance (𝐽𝑓𝑚,𝑖(𝑡)): 

 

𝐽𝑓𝑚,𝑖(𝑡) = |𝑝𝑖(𝑡) − (𝑝𝑐(𝑡) − 𝑑𝑖)|2 (8) 

 

where, 𝑑𝑖 is the desired position of robot 𝑖 relative to the team 

centroid 𝑝𝑐(𝑡), ensuring adherence to the formation geometry. 

 Trajectory Tracking (𝐽𝑡𝑡,𝑖(𝑡)): 

 

𝐽𝑡𝑡,𝑖(𝑡) = |𝑝𝑖(𝑡) − (𝑝𝑟(𝑡) − 𝑟𝑖)|2 (9) 

 

where, 𝑟𝑖  is the desired offset from the reference trajectory 

𝑝𝑟(𝑡), minimizing tracking error. 

• Energy Efficiency (𝐽𝑒𝑒,𝑖(𝑡)): 

 

𝐽𝑒𝑒,𝑖(𝑡) = |𝑢𝑖(𝑡)|2 (10) 

 

penalizing excessive control effort to optimize energy 

consumption. 

 

2.6 GPID controller design 

 

The GPID controller extends the classical PID framework 

by incorporating GPI principles to handle non-holonomic 

constraints and external disturbances. For each robot 𝑖 , the 

control inputs are computed as: 

Linear Velocity Control (translation): 

 

𝑢𝑣,𝑖(𝑡) = 𝑘𝑝,𝑣 𝑒𝑡𝑡,𝑖(𝑡) + 𝑘𝑖,𝑣 ∫  𝑒𝑡𝑡,𝑖(𝜏) 𝑑𝜏
𝑡

0
+

𝑘𝑑,𝑣𝑒̇𝑡𝑡,𝑖(𝑡) + 𝑢𝑔𝑝𝑖,𝑣(𝑡)  
(11) 

 

Angular Velocity Control (rotation): 

 

𝑢𝜔,𝑖(𝑡) = 𝑘𝑝,𝜔 𝑒𝑓𝑚,𝑖(𝑡) + 𝑘𝑖,𝜔 ∫  𝑒𝑓𝑚,𝑖(𝜏) 𝑑𝜏
𝑡

0
+

𝑘𝑑,𝜔𝑒̇𝑓𝑚,𝑖(𝑡) + 𝑢𝑔𝑝𝑖,𝜔(𝑡)  
(12) 

 

where,  𝑒𝑡𝑡,𝑖(𝑡) = 𝑝𝑟(𝑡) + 𝑟𝑖 − 𝑝𝑖(𝑡)  is the tracking error, 
𝑒𝑓𝑚,𝑖(𝑡) = 𝑝𝑐(𝑡) + 𝑑𝑖 − 𝑝𝑖(𝑡) is the formation error, and 𝑘𝑝,.., 

𝑘𝑖,.. , 𝑘𝑑,..  are proportional, integral, and derivative gains, 

respectively. The GPI term 𝑢𝑔𝑝𝑖,..(𝑡)  estimates and 

compensates for disturbances 𝑑𝑣(𝑡)  and 𝑑𝜔(𝑡)  using an 

Extended State Observer (ESO), enhancing robustness. 

This dynamic model provides a foundation for the 

decentralized GPID control strategy, enabling precise 

formation control and trajectory tracking while mitigating the 

effects of non-holonomic constraints and environmental 

disturbances. The subsequent sections detail the control 

algorithm, stability analysis, and simulation results to validate 

the proposed approach. 

 

 

3. CONTROL STRATEGY 

 

This section presents the proposed Generalized 

Proportional-Integral-Derivative (GPID) control strategy for 

decentralized formation control of multiple non-holonomic 

mobile robots. We propose a hybrid strategy that integrates 

classical PID control with Generalized Proportional-Integral 

(GPI) principles to address the challenges of trajectory 

tracking, formation maintenance, and disturbance rejection in 

dynamic environments. The controller ensures robust 

performance under non-holonomic constraints and external 

disturbances by combining feedback control with disturbance 

estimation. The strategy is structured into modular 

components, detailed in the following subsections, and is 

validated through mathematical formulation and simulation 

results. 
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Figure 2. GPID control architecture for multi-robot formation 

 

3.1 Overview of the GPID control framework 

 

The GPID controller is designed to achieve three primary 

objectives: (1) precise tracking of a reference trajectory, (2) 

maintenance of a predefined formation geometry, and (3) 

robust collision avoidance with static obstacles and other 

robots [15, 16]. Unlike traditional PID controllers, which 

struggle with non-holonomic constraints and disturbances, the 

GPID incorporates a GPID module to estimate and 

compensate for external disturbances and model uncertainties. 

The controller ensures stable and accurate formation control 

by leveraging local state information and minimizing a multi-

objective cost function, as defined in Section 2.5. 

The control architecture is decentralized, with each robot 𝑖 
(𝑖 = 1, … , 𝑁)  computing its control inputs based on local 

measurements of its position 𝑝𝑖(𝑡) [17], orientation 𝜃𝑖(𝑡), and 

relative positions to the team centroid 𝑝𝑐(𝑡) , reference 

trajectory 𝑝𝑟(𝑡) , and obstacles 𝑂𝑗 . Figure 2 illustrates the 

control framework, highlighting the interaction between 

feedback control, disturbance estimation, and control input 

computation.  

 

3.2 Control laws 

 

The GPID controller computes control inputs 𝑢𝑖(𝑡) =

[𝑢𝑣,𝑖(𝑡), 𝑢𝜔,𝑖(𝑡)]
𝑇

, for each robot 𝑖 , where 𝑢𝑣,𝑖(𝑡)  is the 

translational velocity input and 𝑢𝜔,𝑖(𝑡) is the angular velocity 

input. These inputs are designed to minimize the cost function 

𝐽𝑖(𝑡) defined in Section 2.5, which balances trajectory tracking, 

formation maintenance, collision avoidance, and energy 

efficiency. The control laws are: 

 

𝑢𝑣,𝑖(𝑡) = 𝑘𝑝,𝑣 𝑒𝑡𝑡,𝑖(𝑡) + 𝑘𝑖,𝑣 ∫  𝑒𝑡𝑡,𝑖(𝜏) 𝑑𝜏
𝑡

0
+

𝑘𝑑,𝑣𝑒̇𝑡𝑡,𝑖(𝑡) + 𝑢𝑔𝑝𝑖,𝑣(𝑡)  
(13) 

 

𝑢𝜔,𝑖(𝑡) = 𝑘𝑝,𝜔 𝑒𝑓𝑚,𝑖(𝑡) + 𝑘𝑖,𝜔 ∫  𝑒𝑓𝑚,𝑖(𝜏) 𝑑𝜏
𝑡

0
+

𝑘𝑑,𝜔𝑒̇𝑓𝑚,𝑖(𝑡)  + 𝑢𝑔𝑝𝑖,𝜔(𝑡)  
(14) 

 

where, 

• 𝑒𝑡𝑡,𝑖(𝑡) = 𝑝𝑟(𝑡) + 𝑟𝑖 − 𝑝𝑖(𝑡) is the trajectory tracking 

error, with 𝑝𝑟(𝑡) as the reference trajectory and 𝑟𝑖  as 

the desired offset. 

• 𝑒𝑓𝑚,𝑖(𝑡) = 𝑝𝑐(𝑡) + 𝑑𝑖 − 𝑝𝑖(𝑡)  is the formation 

maintenance error, with 𝑝𝑐(𝑡) as the team centroid and 

𝑑𝑖  as the desired relative position. 

• 𝑘𝑝,𝑣 , 𝑘𝑖,𝑣 , 𝑘𝑑,𝑣  are the proportional, integral, and 

derivative gains for translational control. 

• 𝑘𝑝,𝜔, 𝑘𝑖,𝜔, 𝑘𝑑,𝜔 are the corresponding gains for angular 

control. 

• 𝑢𝑔𝑝𝑖,𝑣(𝑡)  and 𝑢𝑔𝑝𝑖,𝜔(𝑡)  are the GPI compensation 

terms for disturbances. 

The controller ensures precise tracking by aligning the 

robot’s velocity with the reference trajectory while 

maintaining the desired formation geometry through angular 

adjustments. The GPID terms enhance robustness by 

compensating for external disturbances  𝑑𝑣(𝑡) and 𝑑𝜔(𝑡), as 

described in Section 2.3. 

 

3.3 GPID module for disturbance rejection 

 

The GPID module extends the classical PID framework by 

incorporating an ESO to estimate and compensate for 

disturbances and model uncertainties [18]. For each robot 𝑖, 
the ESO models the system dynamics as: 

 

𝑣̇𝑖(𝑡) = 𝑢𝑣,𝑖(𝑡) + 𝑑𝑣(𝑡) 

𝜔̇𝑖(𝑡) = 𝑢𝜔,𝑖(𝑡) + 𝑑𝜔(𝑡) 
(15) 

 

where, 𝑑𝑣(𝑡) and 𝑑𝜔(𝑡) represent external disturbances (e.g., 

wind, uneven terrain) [19] and unmodeled dynamics. The ESO 

estimates the state variables (𝑣𝑖(𝑡), 𝜔𝑖(𝑡)) and disturbances 

(𝑑𝑣(𝑡), 𝑑𝜔(𝑡)) using: 

 

𝑣̇̂𝑖(𝑡) = 𝑢𝑣,𝑖(𝑡) + 𝑑̂𝑣(𝑡) + 𝑙𝑣,1(𝑣𝑖(𝑡) − 𝑣̂𝑖(𝑡)), 

𝑑̇̂𝑣(𝑡) = 𝑙𝑣,2(𝑣𝑖(𝑡) − 𝑣̂𝑖(𝑡)) 

𝜔̇𝑖(𝑡) = 𝑢𝜔,𝑖(𝑡) + 𝑑̂𝜔(𝑡) + 𝑙𝜔,1(𝜔𝑖(𝑡) − 𝜔̂𝑖(𝑡)) 

𝑑̇̂𝜔(𝑡) = 𝑙𝜔,2(𝜔𝑖(𝑡) − 𝜔̂𝑖(𝑡)) 

(16) 

 

where, 𝑙𝑣,1, 𝑙𝑣,2, 𝑙𝜔,1, 𝑙𝜔,2 are observer gains, and 𝑣̂𝑖(𝑡), 𝑑̂𝑣(𝑡), 

𝜔̂𝑖(𝑡), 𝑑̂𝜔(𝑡) are the estimated states and disturbances. The 

GPID compensation terms are then computed as: 

 

𝑢𝑔𝑝𝑖,𝑣(𝑡) = −𝑑̂𝑣(𝑡), 𝑢𝑔𝑝𝑖,𝜔(𝑡) = −𝑑̂𝜔(𝑡) (17) 

 

The GPID module extends classical PID control by 

embedding integral and derivative actions with higher-order 

internal states, which shape the closed-loop dynamics more 

flexibly [20]. In the GPID framework, GPI generates 

feedforward-like terms that compensate for model 

uncertainties and nonlinearities. Physically, it acts as a 

dynamic corrector that adjusts control effort beyond 

instantaneous error, improving robustness and transient 

behavior. Its effectiveness is enhanced by the ESO, which 

estimates external disturbances in real time. The GPID term 

then cancels these disturbances by injecting an equal and 

opposite correction into the control signal, thus achieving 

active disturbance rejection. 

The controller ensures robust performance by actively 

canceling estimated disturbances [21], improving tracking 

accuracy and formation stability compared to classical PID 

controllers, which lack such compensation. 

 

3.4 Parameter selection and justification 

 

The control parameters (𝑘𝑝,𝑣 , 𝑘𝑖,𝑣 , 𝑘𝑑,𝑣 , 𝑘𝑝,𝜔 , 𝑘𝑖,𝜔 , 𝑘𝑑,𝜔 , 
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𝑙𝑣,1 , 𝑙𝑣,2 , 𝑙𝜔,1 , 𝑙𝜔,2 ) are tuned to balance responsiveness, 

stability, and disturbance rejection [22]. The following 

guidelines justify the parameter choices: 

• PID Gains (𝒌𝒑,.., 𝒌𝒊,.., 𝒌𝒅,..): Proportional gains (𝑘𝑝,𝑣 , 

𝑘𝑝,𝜔) are set to achieve fast response to tracking and 

formation errors, typically in the range [0.5, 2.0] to 

avoid overshooting. Integral gains ( 𝑘𝑖,𝑣 , 𝑘𝑖,𝑣 ) are 

smaller, [0.01, 0.1], to eliminate steady-state errors 

without inducing oscillations. Derivative gains (𝑘𝑑,𝑣 , 

𝑘𝑑,𝜔) are tuned in [0.1, 0.5] to dampen rapid changes 

and enhance stability, as suggested by [22]. 

• Observer Gains ( 𝒍𝒗,𝟏 , 𝒍𝒗,𝟐 , 𝒍𝝎,𝟏 , 𝒍𝝎,𝟐 ): These are 

selected to ensure fast convergence of the ESO while 

avoiding noise amplification. Following, we set 𝑙𝑣,1 , 

𝑙𝜔,1 in [8, 13] for rapid state estimation and 𝑙𝑣,2, 𝑙𝜔,2 in 

[13, 23] for disturbance estimation, ensuring robust 

performance under bounded disturbances. 

• Cost Function Weights ( 𝒘𝟏 , 𝒘𝟐 , 𝒘𝟑 , 𝒘𝟒 ): The 

weights in 𝐽𝑖(𝑡) (Section 2.5) are tuned empirically to 

prioritize objectives. For example, 𝑤1  (collision 

avoidance) is set high ([8, 13]) to ensure safety, 𝑤2 and 

𝑤3  (formation and tracking) are balanced ([1, 3]) to 

maintain accuracy, and 𝑤4 (energy efficiency) is lower 

([0.1, 0.5]) to minimize control effort without 

compromising performance. 

These parameters are validated through simulations 

(Section 5), ensuring the controller achieves stable 

convergence and robust performance under varying conditions. 

 

3.5 Collision avoidance mechanism 

 

To ensure safe navigation, [15] the GPID controller 

incorporates a collision avoidance term in the cost function 

𝐽𝑐𝑎,𝑖(𝑡) (Section 2.5). When the distance between robot 𝑖 and 

another robot or obstacle falls below a safety threshold σ, the 

exponential penalty increases sharply, prompting the 

controller to adjust 𝑢𝑣,𝑖(𝑡)  and 𝑢𝜔,𝑖(𝑡)  to steer away from 

potential collisions. The controller ensures collision-free 

navigation by prioritizing 𝐽𝑐𝑎,𝑖(𝑡) through a high weight 𝑤1, as 

validated in simulations. 

 

3.6 Implementation details 

 

The GPID control algorithm is implemented in a 

decentralized manner, with each robot executing the following 

steps at each time step ∆𝑡: 

1. Measure local states (𝑝𝑖(𝑡), 𝜃𝑖(𝑡)) and compute errors 

(𝑒𝑡𝑡,𝑖(𝑡), 𝑒𝑓𝑚,𝑖(𝑡)). 

2. Estimate disturbances using the ESO (Section 3.3). 

3. Compute control inputs  𝑢𝑣,𝑖(𝑡) and 𝑢𝜔,𝑖(𝑡)  using the 

GPID laws. 

4. Update robot position and orientation using the 

kinematic model (Section 2.3). 

The algorithm’s computational complexity scales linearly 

with N, as each robot processes only local information, making 

it suitable for large-scale multi-robot systems. 

The proposed GPID controller is designed for decentralized 

execution, allowing each robot to compute its control input 

independently using only local measurements and 

communication with immediate neighbors. Each control cycle 

involves evaluating error vectors, computing control laws with 

fixed gain matrices, and estimating disturbances using a low-

order ESO. These operations involve basic vector arithmetic 

and first-order filters, with constant time complexity per robot. 

As a result, the overall computational complexity scales 

linearly with the number of robots, making the controller 

suitable for real-time deployment in moderately large teams. 

Our MATLAB simulation achieves faster-than-real-time 

performance on standard hardware, and the structure lends 

itself to embedded implementation on resource-constrained 

microcontrollers, as also supported by related 

implementations in [10, 24]. 

 

 

4. STABILITY ANALYSIS OF THE CONTROL LAW  

 

This section analyzes the stability of the proposed 

Generalized Proportional-Integral-Derivative (GPID) control 

law for coordinating N non-holonomic mobile robots in 

formation while tracking a reference trajectory and avoiding 

collisions. The controller ensures asymptotic convergence to 

the desired formation and trajectory by leveraging Lyapunov 

stability theory. The analysis accounts for non-holonomic 

constraints, external disturbances, and the decentralized nature 

of the control strategy, with the GPID’s Generalized 

Proportional-Integral (GPI) module enhancing robustness. 

The following subsections define the Lyapunov function, 

derive stability conditions, and discuss robustness properties. 

 

4.1 Lyapunov function 

 

To assess stability  [25], we define a Lyapunov candidate 

function 𝑉(𝑡) that quantifies the deviation of the multi-robot 

system from its objectives, to evaluate the system’s stability 

under the proposed GPID controller, we define the following 

error terms for each robot (i = 1, ..., N), let: 

 

𝑒𝑡𝑡,𝑖(𝑡) = 𝑝𝑟(𝑡) + 𝑟𝑖 − 𝑝𝑖(𝑡) 

𝑒𝑓𝑚,𝑖(𝑡) = 𝑝𝑐(𝑡) + 𝑑𝑖 − 𝑝𝑖(𝑡) 

𝑒𝜃,𝑖(𝑡) =  𝜃𝑑,𝑖(𝑡) −  𝜃𝑖(𝑡) 

(18) 

 

where, pr(𝑡) is the reference trajectory,ri  and di  denote the 

desired relative displacements for tracking and formation 

respectively, and 𝜃𝑖(𝑡) is the robot’s heading. 

We define the following Lyapunov candidate function for 

the overall system: 

 

𝑉(𝑡) = ∑ [
𝑤1

2
| 𝑒𝑡𝑡,𝑖(𝑡)|

2
+

𝑤2

2
| 𝑒𝑓𝑚,𝑖(𝑡)|

2
+𝑁

𝑖=1

𝑤3

2
( 𝑒𝜃,𝑖(𝑡))

2

+ 𝑤4 ∫ | 𝑒𝑡𝑡,𝑖(𝜏)|
2𝑡

0
𝑑𝜏 +

𝑤5 ∫ | 𝑒𝑓𝑚,𝑖(𝜏)|
2𝑡

0
𝑑𝜏]  

(19) 

 

where, 𝑤1, 𝑤2 , 𝑤3 , 𝑤4 , 𝑤5 > 0 are cost function weights to 

balance trajectory tracking, formation cohesion, orientation 

accuracy, and energy use. 

 

4.2 Stability analysis 

 

We analyze stability by examining the time derivative of the 

Lyapunov function, 𝑉̇(𝑡)  [26], to ensure it is non-positive, 

indicating that the system converges to the desired state. 

Differentiating 𝑉(𝑡) yields: 

 

𝑉̇(𝑡) = ∑ [𝑤1 𝑒𝑡𝑡,𝑖(𝑡)𝑇 𝑒̇𝑡𝑡,𝑖(𝑡) +𝑁
𝑖=1

𝑤2 𝑒𝑓𝑚,𝑖(𝑡)𝑇 𝑒̇𝑓𝑚,𝑖 + 𝑤3 𝑒𝜃,𝑖(𝑡) 𝑒̇𝜃,𝑖(𝑡) +
(20) 
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𝑤4| 𝑒𝑡𝑡,𝑖(𝜏)|
2

+ 𝑤5| 𝑒𝑓𝑚,𝑖(𝜏)|
2

]  

 

Assuming that the ESO effectively estimates external 

disturbances and that orientation errors remain small, the error 

dynamics under the GPID controller yield negative 

contributions to 𝑉̇(𝑡). In particular: 

 

𝑉̇(𝑡) ≤ − ∑ [𝑤1𝑘𝑝,𝑣‖𝑒𝑡𝑡,𝑖(𝑡)‖
2

+𝑁
𝑖=1

𝑤2𝑘𝑝,𝜔‖𝑒𝑓𝑚,𝑖(𝑡)‖
2

+ 𝑤3𝑘𝑝,𝜔 𝑒𝜃,𝑖(𝑡)2]  
(21) 

 

The negative definite terms ensure 𝑉̇(𝑡) ≤ 0, with equality 

only when 𝑒𝑡𝑡,𝑖(𝑡) = 𝑒𝑓𝑚,𝑖(𝑡) = 𝑒𝜃,𝑖(𝑡) = 0 . The integral 

terms in 𝑉(𝑡) and the GPI disturbance compensation prevent 

steady-state errors and ensure asymptotic convergence to the 

equilibrium state. By LaSalle’s invariance principle, the 

system converges to the set where all errors are zero, implying 

stable formation and trajectory tracking. 

 

4.3 Boundedness and robustness 

 

The GPID controller ensures boundedness and robustness 

through the following properties: 

• Bounded Inputs: The control inputs 𝑢𝑣,𝑖(𝑡)  and 

𝑢𝜔,𝑖(𝑡)  are constrained by maximum velocity and 

angular velocity limits ( 𝑣𝑚𝑎𝑥 , 𝜔𝑚𝑎𝑥 ), preventing 

unbounded behavior. 

• Disturbance Rejection: The GPI module’s Extended 

State Observer (Section 3.3) accurately estimates and 

compensates for disturbances 𝑑𝑣(𝑡)  and 𝑑𝜔(𝑡) , 

ensuring robust performance under environmental 

uncertainties (e.g., wind, terrain variations), as 

supported by [18, 21, 27, 28]. 

• Collision Avoidance: The cost function 𝐽𝑐𝑎,𝑖(𝑡) 

(Section 2.5) [29] imposes a high penalty for proximity 

to obstacles and other robots, ensuring safe navigation. 

The weight 𝑤1 is tuned to prioritize collision avoidance, 

as validated in simulations. 

• Parameter Tuning: The gains(𝑘𝑝,𝑣 , 𝑘𝑖,𝑣 , 𝑘𝑑,𝑣 , 𝑘𝑝,𝜔 , 

𝑘𝑖,𝜔, 𝑘𝑑,𝜔) and observer parameters (𝑙𝑣,1, 𝑙𝑣,2, 𝑙𝜔,1, 𝑙𝜔,2) 

are chosen to balance responsiveness and stability 

(Section 3.4), ensuring convergence under bounded 

disturbances. 

The controller ensures robust stability by maintaining 

bounded tracking and formation errors even in the presence of 

disturbances, with the GPI module enhancing performance 

compared to classical PID controllers. The decentralized 

nature of the control law ensures scalability, as each robot 

computes its inputs independently, with computational 

complexity scaling linearly with N. 

 

 

5. RESULT OF SIMULATION 

 

To assess the effectiveness of the proposed GPID controller 

in maintaining multi-robot formation and rejecting external 

disturbances, we simulate two control architectures: a classical 

PID and the GPID with disturbance estimation. Each robot 

begins in a triangular formation and is tasked with reaching a 

final pentagon formation while navigating around a circular 

obstacle. During the simulation, a disturbance force is injected 

selectively on GPID-controlled robots. This setup highlights 

the controller's robustness and its ability to preserve safe inter-

robot distances while ensuring smooth convergence to the 

desired configuration. 

 

 
(a) PID trajectories 

 
(b) GPID trajectories 

 

Figure 3. Comparison of PID and GPID trajectories 

 

To ensure reliable formation control under uncertainty, each 

parameter in the proposed GPID architecture was carefully 

selected based on a combination of prior studies, theoretical 

guidelines, and task-specific tuning. For translational motion, 

the gains were initialized as 𝑘𝑝,𝑣 = 10, 𝑘𝑖,𝑣 = 0.3, and 𝑘𝑑,𝑣 =

0.2, selected to achieve fast convergence, eliminate steady-

state error, and reduce overshoot respectively similar to the 

tuning strategies in [8, 10, 13]. Rotational control gains were 

set to 𝑘𝑝,𝜔 = 2.0 , 𝑘𝑖,𝜔 = 0.1 , and 𝑘𝑑,𝜔 = 0.3 , prioritizing 

heading stability and smooth reorientation [5, 12], the ESO 

bandwidth was selected 𝜔𝑜 = 5.7 to balance fast disturbance 

estimation with robustness, following guidance from ADRC 

literature [18, 19]. Obstacle avoidance used a repulsion gain 

𝐾obs = 3.0, a decay factor 𝛼 = 1, and a detection threshold 

𝑑obs = 7.0 to ensure safe maneuvering near obstacles [15, 29]. 

The formation tolerance was set to 𝑑safe = 0.07 m, defining 

the maximum admissible deviation in inter-robot spacing [6, 

13], cost function weights for local utility optimization were 

tuned to balance control priorities: 𝑤1  =  7  (collision 

avoidance), 𝑤2  =  𝑤3  =  2  (formation and tracking), and 

𝑤4  =  0.2 (control effort), based on common heuristics used 

in formation literature [2, 15, 30]. These values reflect the 

compromise between safety, accuracy, and energy efficiency. 
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For robustness testing, a 0.2 N disturbance force was applied 

to GPID-controlled robots between 5 s and 10 s. The overall 

scenario involved transitioning from an initial triangular 

formation ([0,1,2,3,4]; [0,1,2,1,0])  to a regular pentagonal 

configuration centered at (10, 10) with radius 2 m. This 

geometric transformation, subject to obstacle interference, was 

selected to evaluate convergence, spacing preservation, and 

disturbance rejection in dynamic conditions, as recommended 

in formation benchmarks [1, 2, 5]. 

Figure 3 shows the comparison of multi-robot trajectories 

using (a) conventional PID and (b) GPID controllers. Both 

controllers guide five robots from an initial triangular 

formation (dashed lines) to a final pentagon formation (solid 

lines), while avoiding an obstacle (red circle). GPID 

demonstrates smoother paths with more consistent spacing 

and orientation, highlighting the benefit of active disturbance 

estimation and compensation through its integrated Extended 

State Observer (ESO). which actively estimates and cancels 

disturbances - a capability PID lacks. The ESO enables GPID 

to anticipate perturbations (as will be shown in the disturbance 

plot Figure 4), resulting in: 1) more precise trajectory tracking, 

2) better maintained safety margins between robots, and 3)

faster recovery after disturbances. While both controllers

complete the formation task, GPID achieves superior

performance with only marginally higher control effort,

making it particularly valuable for real-world applications

where environmental disturbances are common.

Figure 4. GPID disturbance estimation performance 

The disturbance estimation results in Figure 4 demonstrate 

GPID's critical advantage over conventional PID control. The 

ESO accurately tracks the true disturbance profile (dashed line) 

within ≈2 seconds, enabling real-time compensation that PID 

cannot provide. This rapid convergence of the estimated 

disturbance explains GPID's superior performance in previous 

Figure 3 by actively canceling perturbations rather than just 

reacting to them, GPID maintains tighter formations and 

smoother trajectories. While PID must rely solely on error 

feedback, GPID's predictive capability prevents the 

overshoots and delays characteristic of PID's reactive 

approach. The plot clearly visualizes how GPID's disturbance-

aware architecture achieves more robust control with only 

minimal additional computational cost. 

Figure 5 illustrates the control behavior of Robot 1 under 

both PID and GPID schemes during a disturbance event. In 

Figure 5a, GPID intelligently modulates the linear velocity, 

injecting an adaptive response that helps the robot maintain 

formation while remaining responsive to external forces. 

Figure 5b, shows that GPID produces smooth angular velocity 

adjustments, ensuring continuity in rotational motion even 

during sudden perturbations. A brief transient is observed in 

both profiles shortly after the disturbance onset, which is 

attributed to the Extended State Observer (ESO) rapidly 

estimating the disturbance. This short-lived oscillation reflects 

the dynamic learning process of the observer as it converges 

to the true force profile. Despite the initial mismatch, GPID 

quickly stabilizes and resumes nominal tracking 

demonstrating its ability to react decisively and maintain 

reliable control in uncertain conditions. 

(a) Linear velocity 𝑣1(𝑡)

(b) Angular velocity 𝜔1(𝑡)

Figure 5. Comparison of linear and angular velocity profiles 

for PID and GPID 

(a) Minimum inter-robot distance over time

(b) Formation error with respect to the final shape

Figure 6. Formation-keeping performance comparison 

between PID and GPID 

Despite being the only controller exposed to external 

disturbances, the GPID approach manages to maintain safe 

inter-robot distances and converge to the desired formation 
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with impressive precision. As shown in Figure 6(a), the 

minimum distance between robots always remains above the 

safety threshold, reflecting the controller’s ability to preserve 

cohesion even under challenging conditions. Figure 6b further 

illustrates that GPID drives the robots to the final pentagon 

formation just as effectively as an undisturbed baseline, 

achieving near-zero error by the end. These results highlight 

GPID’s capacity to absorb unexpected changes while still 

delivering reliable, coordinated multi-robot behavior without 

compromising safety or formation quality. 

 

 

6. CONCLUSIONS 

 

This study presents a decentralized Generalized 

Proportional-Integral-Derivative (GPID) control framework 

for formation control of multiple non-holonomic mobile 

robots, addressing the challenges of precise trajectory tracking, 

formation maintenance, and collision avoidance in dynamic 

environments. By integrating Generalized Proportional-

Integral (GPI) principles with classical PID control, the 

proposed approach enhances robustness against external 

disturbances and model uncertainties, overcoming the 

limitations of traditional PID controllers, such as poor 

disturbance rejection and slow convergence. The controller 

ensures stable and accurate formation control by leveraging an 

ESO to estimate and compensate for disturbances, as 

demonstrated through rigorous Lyapunov-based stability 

analysis. 

The key contributions of this work include the development 

of a comprehensive dynamic model for non-holonomic 

unicycle robots, the design of a scalable GPID controller, and 

its validation through MATLAB-based simulations. The 

results confirm that the GPID controller achieves superior 

performance compared to conventional PID approaches, with 

improved tracking accuracy, faster formation recovery, and 

robust collision avoidance under varying conditions. The 

decentralized nature of the control law ensures linear 

scalability in computational complexity, making it suitable for 

large-scale multi-robot systems in applications such as 

industrial automation, surveillance, and search-and-rescue 

missions. 

Future research will explore the integration of adaptive gain 

tuning to further enhance the controller’s adaptability to 

dynamic environments and heterogeneous robot teams. 

Additionally, the proposed GPID framework will be validated 

through real-world experiments using differential-drive 

mobile robots equipped with onboard sensors and embedded 

processors. These experiments will assess real-time 

performance under sensor noise, actuation limits, and 

communication delays. Hardware implementation will also 

investigate integration with ROS-based platforms and wireless 

multi-agent communication. This step will bridge the gap 

between simulation and field deployment, demonstrating the 

controller's viability in practical mission scenarios. This work 

thus advances the field of multi-robot systems by providing a 

robust, scalable, and theoretically grounded control strategy, 

paving the way for reliable autonomous coordination in 

complex, mission-critical environments. 
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