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Brushless DC (BLDC) motors are widely used in industrial and automotive applications 

due to their high efficiency, reliability, and precise speed control. However, achieving 

optimal performance requires precise tuning of the Proportional-Integral-Derivative (PID) 

controller parameters. Traditional tuning methods often fail to provide the best control 

performance under varying operating conditions. In this paper, a Genetic Algorithm (GA)-

based approach is proposed to optimize PID parameters for BLDC motor drive systems. 

The GA intelligently searches for the optimal parameter set by minimizing control errors 

and improving system stability. A mathematical model of the BLDC motor and PID 

controller is developed, followed by simulation and real-time implementation. The 

performance of the GA-tuned PID controller is compared with conventional PID tuning 

methods, demonstrating significant improvements in speed regulation, torque response, and 

robustness against disturbances. The proposed technology improves the overall efficiency 

of BLDC motor control, rendering it a viable option for industrial applications.  
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1. INTRODUCTION

The growing demand for efficient electric vehicles (EVs) 

has led to a focus on Brushless DC (BLDC) motors due to 

their high efficiency, low maintenance, and compact design. 

However, controlling BLDC motors presents practical 

challenges, such as nonlinear dynamics, torque ripple 

generation, and performance degradation. Traditional control 

methods, such as Proportional-Integral-Derivative (PID) 

controllers, have inherent limitations, including sensitivity to 

parameter variations and difficulties in tuning for optimal 

performance across various operating conditions. These 

approaches are not sufficiently adaptable to dynamic changes 

and therefore cannot be used for real-time purposes. 

Applying conventional control techniques is challenging and 

time-consuming, making it relatively expensive and time-

consuming. 

New control techniques are demanded to improve the 

performance of the BLDC drive. The study is driven by the 

goal of using contemporary optimization methods, 

particularly population-based metaheuristic algorithms, to 

form adaptable speed control systems, which are expected to 

provide better torque control and to increase efficiency. This 

in-depth knowledge on problems and limitations constraining 

BLDCM controllability establishes a sound base for further 

investigation, leading to effective solutions development, 

overall increasing research motivation. 

Brushless DC (BLDC) motors have become increasingly 

popular in modern industrial applications due to their high 

efficiency, reliability, and superior performance compared to 

traditional brushed motors. BLDC motors offer several 

advantages over brushed DC and induction motors, including 

improved speed-torque characteristics, high dynamic 

response, greater efficiency, longer operational life, quieter 

operation, broader speed ranges, and reduced electromagnetic 

interference (EMI). Additionally, their high torque-to-size 

ratio makes them ideal for applications where space and 

weight are critical, such as in robotics, electric vehicles, 

aerospace, and automation systems [1-5].  

The BLDC (Brushless DC) motor belongs to the family of 

synchronous motors with torque, current, voltage, and rpm 

relationship linear, which makes its modeling similar to that 

of a DC motor. While brushed motors use mechanical 

commutation, BLDC motors rely on electronic commutation. 

In this concept, the motor has fixed electromagnets (stator) 

and rotating permanent magnets (rotor), which eliminate the 

necessity for brushes and a mechanical commutator. This 

design overcomes the challenge of transferring current to a 

moving armature, as the armature is fixed. Instead, an 

electronic controller manages power distribution, replicating 

the function of a brushed DC motor's commutator. However, 

achieving precise speed control of BLDC motors remains a 

critical challenge, as their performance is highly dependent 

on the effectiveness of the control strategy employed. 

PID controller is one of the most popular control skills in 

motor speed control because of their simplicity and 
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robustness. The PID controller's performance largely depends 

on the appropriate design of its gain constants (Kp, Ki, and 

Kd). Many attempts have been made to tune the parameters 

of the PID controller [6-9]. The Ziegler-Nichols method is 

one such method that is commonly followed, however, in 

some real systems it may not be appropriate for the reason 

that it causes the system to be marginally stable while tuning, 

hence inducing instability. Another option for performing 

correct PID parameter tuning is lambda tuning method, 

although this method is not very fast. Moreover, interval 

polynomial criterion for stability and Lyapunov’s theorem 

have been employed in PID controller parameters design 

which is complex and analytic. 

In the past few years, computational intelligence (CI) 

techniques have been increasingly used for PID tuning on 

account of their capability to address complex nonlinear 

systems. Fuzzy logic control (FLC), artificial neural networks 

(ANN), and particle swarm optimization (PSO), to give a few 

examples, have been effectively used to optimize PID gains. 

Fuzzy logic based PID controllers adjust PID parameters 

based on the system response for better performance under 

different operating conditions. PSO can also be applied to the 

PID parameter optimization, a method for incrementally 

looking for optimal solution in a predetermined search space 

[10-14]. 

In this paper, a Genetic Algorithm is proposed to optimally 

design a PID controller for speed control of a Brushless dc 

motor. This method is developed in order to enhance and 

optimize the PID parameters for accurate speed regulation 

under load variations and external disturbances. A 

comparative study is conducted to establish the superiority of 

the GA tuned PID Networks controller over the existing PID 

controller by presenting some simulation and experimental 

results. The results of this study will promote the 

development of intelligent control methods of BLDC motors 

towards higher performance and reliability of motorized 

systems.  

2. LITERATURE REVIEW FOR RELATED WORK

The application of Genetic Algorithms (GAs) for the 

intelligent tuning of PID parameters in BLDC motors has 

been extensively investigated to enhance performance and 

efficiency. Researchers have employed GAs to address 

nonlinear dynamics and optimize control parameters 

efficiently, hence enhancing stability, accuracy in speed, and 

torque control across various situations. Table 1 encapsulates 

essential studies and approaches pertinent to this strategy, 

emphasizing their strategies and results in enhancing BLDC 

motor function.

Table 1. Literature review on tuning techniques for PID control in BLDC motors 

Author(s) 

& Year 
Methodology Optimization Approach Key Findings 

Zhao and Xi, 

2020, [15] 

Adaptive Genetic Algorithm 

(AGA) for PID 

Dynamic adjustment of crossover 

and mutation probabilities based 

on fitness 

AGA improves convergence speed, reduces 

overshoot, and enhances steady-state accuracy 

Suseno, and 

Ma’Arif, 2021, 

[16] 

Simulation and Hardware 

Testing 
Genetic Algorithm (GA) 

GA tuning reduces overshoot (<10%), improves 

rise/settling time, and outperforms trial-and-

error methods 

Kristiyono and 

Wiyono, 2021, 

[17] 

Two-level control system 

combining PID and fuzzy logic 

Fuzzy logic-based real-time 

autotuning 

Improved rise time (0.0025s), settling time 

(0.057s), and overshoot (5.42%) 

Zeng et al., 

2023, [18] 

ADRC system design for five-

phase motors using Tracking 

Differentiator (TD) and 

Extended State Observer 

(ESO), validated through 

simulation and experiments 

Genetic Algorithm (GA) for 

multi-objective optimization; 

iterative tuning with fitness 

functions; three-step optimization 

of current and speed loops 

GAADRC outperformed ADRC and PI 

controllers in overshoot, adjustment time, and 

disturbance rejection; reduced tuning time and 

improved robustness for real-world applications 

Naqvi et al., 

2024, [19] 

Multi-objective optimization of 

PI controllers for BLDC motor 

speed control and energy 

efficiency in EVs using 

simulation models 

PSO (Particle Swarm 

Optimization) and DE 

(Differential 

Evolution) algorithms for 

constrained optimization 

DE outperformed PSO in minimizing MSE 

(0.1809) and energy consumption (0.984 kWh). 

Speed control efficiency improved by ~95.4%, 

energy efficiency by ~3.1% 

Kroičs and 

Būmanis, 2024, 

[20] 

MATLAB/Simulink simulation 

and experimental testing 

Adaptive Fuzzy-PID controller 

combined with sinusoidal PWM 

Improved speed response, reduced overshoot, 

minimized torque ripple, and harmonic content 

Krishnamoorthy 

et al., 2024, [21] 

EWOA-Tuned PID Controller 

for BLDC Motors 

Enhanced Whale Optimization 

Algorithm 

Achieved faster rise time (0.1600s), shorter 

settling time (0.1900s), and minimal overshoot 

(0.0001%), improving speed control and 

stability significantly 

Moloody et al., 

2024, [22] 

PID tuning for vibration control 

in flexible manipulators using 

MATLAB simulations 

Modified Differential Evolution 

Optimization Algorithm 

(MDEOA) combining dynamic 

mutation and crossover strategies 

Achieved 25–30% improvement in vibration 

suppression and system stability compared to 

traditional methods 

Zhang et al., 

2024, [23] 

Air suspension control using 

fuzzy PID and dynamic 

modeling of a 1/4 vehicle model 

in MATLAB/Simulink 

Genetic Algorithm (GA) 

optimization 

GA-optimized fuzzy PID control markedly 

enhanced ride comfort by diminishing vehicle 

vertical acceleration by 30%, suspension travel 

by 26%, and tire dynamic load by 9% in 

comparison to passive and fuzzy PID controls 

Moali et al., 

2024, [24] 

Backstepping, PID-Type-1 

FLC, PID-Type-2 FLC 
Genetic Algorithm (GA) 

PID-Type-2 FLC with GA offers superior 

robustness and precision in windy conditions 
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3. MATHEMATICAL MODELING

The suggested controller architecture for a 3-phase 

Brushless DC motor, depicted in Figure 1, incorporates 

numerous essential components to guarantee efficient and 

accurate performance.  The system initiates with a reference 

source that supplies the required speed or torque input for the 

motor. This inputs functions as the reference value for the 

control system. A PID controller processes the error signal, 

defined as the discrepancy between the reference input and 

the actual motor performance, and modifies control 

parameters like voltage or current to reduce the error and 

ensure stable operation. The driver circuit acts as an interface 

between the controller and the motor, amplifying the control 

signals to drive the power electronics in the inverter. Hall 

effect sensors are employed to detect the rotor position and 

provide feedback to the controller, enabling precise switching 

of the inverter phases based on the rotor’s position.  

The converter circuit modifies the DC input power to an 

appropriate voltage level for the motor, while the inverter 

circuit transforms this DC power into three-phase AC power 

by six-step switching. The transition between steps is 

coordinated with the rotor position, as identified by the Hall 

effect sensors. Table 2 illustrates the correlation between the 

rotor position and the respective inverter switching step. The 

3-phase Brushless DC motor functions according to control

signals from the inverter, generating mechanical motion in

reaction to the electrical input. This integrated system

guarantees seamless and effective functioning of the motor.

Figure 1. Block diagram of the proposed controller for three-phase Brushless DC motor 

Table 2. Switching intervals, hall effect signals, and phase switch states for 3-phase BLDC motor 

Switching Interval 
0° 

60° 

60° 

120° 

120° 

180° 

180° 

240° 

240° 

300° 

300° 

360° 

Sequence 1 2 3 4 5 6 

Hall Effect Signals 

HA 1 1 0 0 0 1 

HB 0 1 1 1 0 0 

HC 0 0 0 1 1 1 

Switches 

Ph. A S1,S1′ S1,S1′ OFF S1,S1′ S1,S1′ OFF 

Ph. B S2,S2′ OFF S2,S2′ S2,S2′ OFF S2,S2′ 

Ph. C OFF S3,S3′ S3,S3′ OFF S3,S3′ S3,S3′ 

The Genetic Algorithm (GA) optimization has 

significantly improved motor control performance for 

Brushless DC (BLDC) motors. The GA-PID controller 

consistently achieves lower overshoot compared to the Z-N 

method, demonstrating its ability to fine-tune PID 

parameters, resulting in a more stable response to changes in 

setpoint or load conditions. This reduction in overshoot is 

crucial for applications requiring quick stabilization after 

disturbances or setpoint changes. The GA's iterative nature 

allows it to refine PID parameters effectively, resulting in a 

control strategy that reacts promptly while avoiding 

overshoot. This balance between responsiveness and stability 

significantly enhances the overall control performance of the 

BLDC motor. 

The GA-PID controller exhibits a lower steady-state error 

compared to traditional methods, indicating that the motor 

can maintain its desired speed or position more accurately 

over time. The optimization process of the GA allows for the 

integral component of the PID controller to be finely tuned, 

eliminating persistent errors that can arise due to load 

variations or external disturbances. This improvement in 

steady-state performance not only enhances the accuracy of 

the motor control but also contributes to the overall 

efficiency of the system. 

The results in Tables 1 and 2 highlight the robustness of 

the GA-PID controller under varying operating conditions, 
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suggesting that its optimization capabilities enable it to adapt 

to changes in system dynamics more effectively than 

traditional tuning methods. This adaptability is crucial in 

real-world applications where conditions can fluctuate and 

performance maintenance is paramount. 

3.1 Mathematical modeling of BLDC motor 

Although the principal difference between conventional 

DC and BLDC motors is their more complex composition, 

which directly affects performance and control. In contrast, 

the inductive and resistive components of the BLDC motor 

are time-varying variables due to the phase change and 

therefore need an elaborate analysis. As shown in Figure 2, 

the motor is connected in a symmetrical 3-phase "wye" 

configuration, and its mathematical model is based on a 

classic DC motor model modified for the peculiarities of 

BLDC motors. 

Figure 2. Mathematical model and symmetrical 3-Phase star 

connection of BLDC motor 

The basic voltage equation using the armature voltage of 

the BLDC motor is proposed and shown as Eq. (1), providing 

the foundation for studying the electrical behavior and 

performance properties of the motor. 

𝑉𝑎 = 𝑅 ⋅ 𝐼𝑎 +
𝑑

𝑑𝑡
(𝐿𝑎 ⋅ 𝐼𝑎 +𝑀𝑎𝑏 ⋅ 𝐼𝑏 +𝑀𝑎𝑐 ⋅ 𝐼𝑐) + 𝑒𝑎

𝑉𝑏 = 𝑅 ⋅ 𝐼𝑏 +
𝑑

𝑑𝑡
(𝐿𝑏 ⋅ 𝐼𝑏 +𝑀𝑏𝑎 ⋅ 𝐼𝑎 +𝑀𝑏𝑐 ⋅ 𝐼𝑐) + 𝑒𝑏

𝑉𝑐 = 𝑅 ⋅ 𝐼𝑐 +
𝑑

𝑑𝑡
(𝐿𝑐 ⋅ 𝐼𝑐 +𝑀𝑐𝑎 ⋅ 𝐼𝑎 +𝑀𝑐𝑏 ⋅ 𝐼𝑏) + 𝑒𝑐

(1) 

As the three-phase currents of the BLDC motor satisfy Eq. 

(2), this dependence is essential to provide symmetrical 

operation and realistic modeling of the electrical dynamics of 

the motor. 

𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 = 0 (2) 

Eq. (1) can now be simplified to obtain a more concise 

representation, thus rendering the phase voltage equation of 

BLDC motors in matrix notation, as presented in Eq. (3). 

This expression leads to a simple and tractable form, which 

can be easily handled for both analysis and computation of 

motor dynamics. 

[

𝑉𝑎
𝑉𝑏
𝑉𝑐

] = [
𝑅 0 0
0 𝑅 0
0 0 𝑅

] [

𝐼𝑎
𝐼𝑏
𝐼𝑐

] +

[
𝐿 − 𝑀 0 0
0 𝐿 − 𝑀 0
0 0 𝐿 − 𝑀

]
𝑑

𝑑𝑡
[

𝐼𝑎
𝐼𝑏
𝐼𝑐

] + [

𝑒𝑎
𝑒𝑏
𝑒𝑐
]

(3) 

To formulate a full mathematical model of the 

electromechanical system, it is imperative to integrate the 

motor's equations of motion, as delineated in Eq. (4). These 

equations delineate the correlation between electrical inputs 

and mechanical outputs, facilitating a comprehensive 

examination of system dynamics. 

𝑇𝑒 − 𝑇𝐿 = 𝑗
𝑑𝜔𝑚

𝑑𝑡
+ 𝐵 ⋅ 𝜔𝑚 (4) 

3.2 PID controller 

The "error" signal, as shown in the PID (Proportional-

Integral-Derivative) controller Figure 3, is a parameter that 

indicates the error between the desired set point and the 

measured value of the process variable. The process 

controller takes the minimum error and adjusts the 

commanded process control inputs dynamically to reduce 

the minimum error to near zero to improve system 

performance. The PID method involves tuning three separate 

constant coefficients: proportional, integral, and derivative 

(Kp, Ki, and Kd, respectively). These parameters are usually 

further identified by taking an empirical approach or using a 

trial-and-error method. The PID controller can be described 

as where the integral, derivative, and proportional gain, 

respectively, and the formulation is given by Eq. (5). 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝐷
𝑑

𝑑𝑡
𝑒(𝑡) (5) 

Figure 3. Block diagram of the PID controller 3-phase 

Brushless DC motor 

4. GENETIC ALGORITHM-BASED PID PARAMETER

OPTIMIZATION

4.1 Genetic Algorithm-based PID tuning 

GAs is an optimization algorithm based on the 

evolutionary principles of natural selection, and therefore, 

they are good for solving nonlinear equation systems and 

complex modeling problems. Contrary to deterministic 

techniques, GA utilizes probabilistic transition rules, which 

enable it to efficiently search the solution space. It works on 

a population of candidate solutions, called individuals or 

chromosomes, which develop iteratively over several 

generations. 

Each generation of each population is simulated 

generation-wise, guiding the solutions to evolve with a 

fitness function and genetic operators (reproduce, crossover, 

and mutate). These operators are similar to operators realized 

in biological processes and make the algorithm improve the 

obtained candidate solutions. The Genetic Algorithm 

traditionally starts off with a randomly produced initial 
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population, as shown in Figure 4. This population is encoded 

into a set of real or binary strings as chromosomes. 

The performance of each individual is assessed by an 

objective function that assigns a fitness value to measure the 

extent to which the solution satisfies the specified 

requirements. The fitness function directs the selection 

process, guaranteeing that people with superior performance 

are more likely to influence the subsequent generation. The 

GAs uses a repeated process to get closer to the best solutions, 

making it a useful tool for solving tough, complex 

optimization problems. 

Figure 4. The flowchart of the PID controller 3-phase 

Brushless DC motor 

The integral of Time-weighted Absolute Error (ITAE) 

plays an important role for PID controllers. It evaluates the 

performance of the control both in terms of the accuracy of 

the error and for how long the error persists. This metric is 

especially relevant for dynamic systems, because it penalizes 

settled error from the setpoint. This is especially critical in 

systems such as temperature, speed, and position controls, 

which a long error can drive the system into instability or 

sufficiently reduce the performance. 

The influence of ITAE in control can change greatly with 

operating conditions (as in Eq (6)). In applications with 

rapid-load or setpoint changes, a PID controller with an 

ITAE-optimized tuning may respond more stably and rapidly. 

This strategy permits better disturbance rejection since the 

controller responds more quickly in order to keep the plant's 

output under control. Alternatively, slower or less variable 

systems tend to result in over-aggressive control by pursuing 

minimum ITAE, which can lead to oscillations or loss of 

control. 

ITAE = ∫  
∞

0
𝑡 ⋅ |𝑒(𝑡)|𝑑𝑡 (6) 

where, e(t) is the error signal at t. 

The selection of PID tuning parameters, e.g., proportional 

gain, integral time, and derivative time, can also have an 

effect on the performance of the controller according to the 

ITAE criterion. For instance, if the proportional gain is 

increased, then the steady-state error can be reduced, at the 

expense of an increased overshoot and oscillation, which can 

result in a lower ITAE score. 

4.2 Genetic Algorithm steps 

A GA application for optimal design of a control system, 

specifically BLDC motor control, needs a proper choice of 

parameters: not only of the control algorithm, but also of the 

GA operator: population size, number of generations, 

crossover rate, and mutation rate. The size of the population 

and the number of solutions in one generation, it can enlarge 

the population to generate diversity and facilitate exploration 

of the solution space. However, when the number of 

individuals is large, more computational time is required, and 

it takes excessive time for an overall evaluation, and 

balancing between diversity and computation time are 

required. 

The number of generations corresponds to the number of 

times the generations of the algorithm are moved to evolve 

the population. The more generations there are, the more 

chances we have to optimize and refine solutions, which can 

result in better optimization. But too large value of this 

parameter may cause the yielding of lesser and lack of 

exploitation of the solution space, which affects the quality of 

the final solution. 

The crossover rate regulates the number of crossover 

operations that take place between pairs of parents to create 

offspring. The greater the possible rate of crossover, the more 

the genetic pieces might mix, but it is too large genetic 

exchange in too-well-adapted individuals or deletion of 

valuable genetic material may occur. The right crossover rate 

for balancing between exploration and exploitation is 

important. 

Finally, the mutation rate affects the probability of random 

detrimental mutations on members of the population. The 

mutation rate is typically 1% to 5% as a way to preserve 

diversity and avoid premature convergence. 

The Genetic Algorithm employs iterative processes of 

initialization, fitness assessment, selection, crossover, and 

mutation to advance a population of solutions towards 

optimal outcomes. 

Step 1: Initialize the parameters with a population of 

stochastic solutions, including crossover rate, mutation rate, 

number of clusters, and number of generations.  Ascertain the 

coding mode. 

Step 2: Calculate and assess the value of the fitness 

function. 

Step 3: Execute the crossover and mutation operations to 

form the new cluster.  

Step 4: Continue Step 2 until the optimal value is achieved. 

4.2.1 Coding and decoding 

Genetic Algorithms do not operate on the parameters but 

rather work on a population of strings (also called 

chromosomes). To overcome this problem, the vector of 

controller parameters has to be transformed into a well-

structured string referred to as a chromosome to guarantee a 

proper optimization procedure. 

4.2.2 Fitness serves 

Fitness is a quantitative measure to estimate how good a 

chromosome is at solving a given problem. According to the 

“survival of the fittest” philosophy, chromosomes having a 
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higher fitness value will get more opportunities to donate 

more offspring to subsequent generations to accelerate 

evolution. performance measure is inherently related to 

fitness function when the function determines how good the 

solution performs in the context of Genetic Algorithms. 

These values are determined by minimizing an objective 

function, the minimizing process being repeated iteratively 

until the optimization algorithm converges to a solution. 

4.2.3 Reproduction 

Reproduction is a fundamental operator in Genetic 

Algorithms, rooted in the principle of "survival of the fittest." 

During each generation, chromosomes from the current 

population are selected and replicated into the next 

generation based on their reproduction probability (𝑃𝑟𝑖 ), as

defined in Eq. (7). This process ensures that fitter 

chromosomes, with higher fitness values, have a greater 

likelihood of being propagated, thereby preserving and 

amplifying advantageous traits in subsequent generations. 

𝑃𝑟𝑖 =
𝐹𝑖(𝜃)

∑  
𝑃𝑙
𝑖=1

𝐹𝑖(𝜃)
(7) 

where, 𝑃𝑙  is the population size.

4.2.4 Crossover 

Reproduction steers the Genetic Algorithm's search 

process toward the most promising individuals, ensuring that 

the fittest solutions are prioritized for propagation. The 

crossover operation complements this by facilitating the 

exchange of genetic information between pairs of 

chromosomes selected from the mating pool. Through a 

probabilistic approach, crossover introduces diversity and 

enables the mixing of genetic material at designated splice 

points, fostering the creation of new, potentially superior 

offspring while preserving advantageous traits from parent 

chromosomes. 

4.2.5 Mutation 

In Genetic Algorithms, the gene pool often becomes 

increasingly homogeneous as superior genes dominate over 

successive generations, potentially causing premature 

convergence to a suboptimal solution. To address this 

limitation, the mutation operator is introduced with an 

appropriate probability to maintain genetic diversity within 

the population. Mutation involves introducing occasional 

random changes to selected genes, with mutation points 

chosen randomly across the population. This mechanism 

ensures the exploration of new areas in the solution space, 

reduces the risk of stagnation, and prevents the algorithm 

from being trapped in a non-optimal solution, thereby 

enhancing its ability to find global optima. 

Genetic Algorithm-Based PID Tuning: The process can be 

summarized as follows: GA begins by generating an initial 

random population, typically with a small population size, to 

enable faster optimization and convergence of the controller. 

The PID parameters (Kc), (Ti), and (Td) encoded into 

chromosomes, forming the initial population. The fitness of 

each chromosome corresponds to the performance of the PID 

parameters it represents. Each set of PID parameters is 

passed to the PID controller, and the system's complete 

response for each parameter set is evaluated using a cost 

function. The Integral of Time-weighted Absolute Error 

(ITAE) is chosen as the cost function due to its superior 

performance in minimizing error over time (as in a Eq. 6).  

The optimization process iteratively cycles through genetic 

operations selection, crossover, mutation until the specified 

number of generations is completed, ultimately achieving the 

best fitness value. The primary objective of the GA is to 

identify global PID values ((Kc), (Ti), and (Td)) that 

minimize the fitness value, ensuring optimal system 

performance.  

5. EXPERIMENTAL RESULTS

5.1 Simulation results 

This section presents the simulation of a BLDC motor 

controlled by a PID controller, as illustrated in Figure 1. The 

simulation studies encompass various scenarios, including a 

sudden step increase in speed, a sudden decrease in speed, 

and gradual variations in speed (both increase and decrease). 

The MATLAB/Simulink simulation model for BLDC motor 

speed control is depicted in Figure 5. Tables 3 and 4 outline 

the BLDC motor specifications and driving characteristics 

utilized in this study. The simulation evaluates the 

performance of the PID controller, which has been optimally 

tuned using the Genetic Algorithm, ensuring precise speed 

regulation and robust control under diverse operating 

conditions.

Figure 5. MATLAB/Simulink model for BLDC motor speed control using PID controller 
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Table 3. Main specifications of the BLDC motor used in the 

simulation 

Parameters Specifications 

Rated power (w) 125 

Rated voltage (V) 24 

Rated speed (r.p.m) 3000 

Rated torque (N.m) 0.44 

Table 4. Genetic algorithm parameters for PID controller 

tuning 

Parameters Specifications 

Rated power 120W 

Input voltage 12-30VDC 

Output current 5A-8A 

Hall electrical degree 60°/300° 120°/240° 

Usually, a 3-phase BLDC motor uses six power switches 

in its full-bridge power converter to generate 3-phase voltage 

synchronously. The turn-on and turn-off of these transistors 

is controlled by the rotor position, which is key for the high 

performance of the motor. Typically, the motor starter is 

supervised with three Hall sensor units. These Hall sensors 

are essential in that the rotor position is sensed by the 

decoder block for the estimation of the reference current 

signal vector aligned with BEMF. The goal is to guarantee 

accurate control and synchronization of the movement of the 

motor. 

Figure 6 shows the MATLAB simulation block diagram 

exhibiting back EMF creation inside the decoder. This 

arrangement accurately and reliably combines the Hall sensor 

data with the control system. 

Figure 6. MATLAB simulation block diagram for generating 

back EMF using decoder 

Back electromotive force (BEMF) of the BLDC motor for 

different achievable speeds from 1000 RPM to 3000 RPM is 

shown in Figure 7. This change also illustrates the complex 

characteristics of BEMF through motor speed variation, 

which can also be regarded as the stability and efficiency of 

the motor controller. Figure 7(b): A zoomed view of the 

BEMF profile around the critical interval of time (1.8 s < t < 

2.15 s) is given in Figure 7(b). In this case study, we have 

concentrated on the smooth and steady shape of the BEMF 

waveform as a motor speed up and slows down, thereby 

keeping distortion to a minimum and tracking of rotor 

position more accurate. The simulation results in 

MATLAB/Simulink validate that the control strategy ensures 

stable and predictable BEMF characteristics at varying 

speeds, which is necessary for precise motor driving and best 

performance. 

Figure 8 shows the response of motor speed utilizing the 

GA-PID tuning method as opposed to the conventional PID 

tuning method based on the Ziegler-Nichols (Z-N) approach. 

The performance of both controllers is assessed using a 

comparison spanning 0 RPM, 1000 RPM, 2000 RPM, and 

3000 RPM. The simulation results in MATLAB/Simulink 

reveal that the performance of the GA-PID controller is better 

than that of the PID in terms of settling time as well as 

overshoot and stability with all speed levels. Which means 

with less error, GA-PID controller always achieves accurate 

and steady precision speed tracking and the traditional Z-N 

tuned PID controller shows apparent oscillations and slower 

convergence at higher speeds. 

The evolutionary algorithm-derived optimal parameters 

assist the GA-PID controller facilitate a more precise 

response to dynamic changes in speed, ensuring strict control 

and robust operation. The difference is most noticeable in 

speed level transitions where the GA-PID controller 

maintains a smooth response without losing performance. On 

the whole, the findings have revealed that the GA-PID tuning 

method significantly outperforms the classical Z-N approach, 

and accordingly, it is the more promising approach for BLDC 

motor speed control. 

(a) from 0 to 5S

(b) from1.8ms to 2.15ms

Figure 7. Back EMF profile of BLDC motor at variable 

speeds (1000 RPM to 3000 RPM) 

The comparison between the GA-PID controller and the 

conventional Ziegler-Nichols (Z-N) tuned PID controller 

with nominal speed is also illustrated in Figure 9. The 

simulation results show that the GA-PID controller can 

obtain accurate speed tracking and has better dynamic 

performance than the Z-N PID controller. As for step 

changes in reference speed, the response of the GA-PID 
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controller happens sooner with no overshoot and a smaller 

steady-state error, and the motor speed follows the reference 

value more closely. 

Figure 8. Comparison of speed response using GA-PID and 

traditional Z-N PID controllers at various speeds (0 RPM, 

1000 RPM, 2000 RPM, 3000 RPM) 

Figure 9. Comparison of speed tracking between GA-PID 

and Z-N PID controllers with reference speed 

By comparison, the Z-N PID controller tends to take more 

time for settling, and the speed is more deviated away from 

its reference, especially during a speed that’s varying or step 

speed. The GA-PID controller’s feature of being able to 

adapt and optimize PID parameters under different operating 

conditions can cope with the changing objects, so that it has 

the advantages of good completion quality and stability, etc. 

The findings support that the GA-PID controller is a robust 

and stable solution for controlling BLDC motors as 

compared to the Z-N based tuning method in all transient and 

steady states. 

The advantages of Genetic Algorithms in PID tuning can 

be demonstrated by the comparison, so that GA-PID 

controller is the optimum one in applications required 

relatively high precision and strong dynamic self-tuning 

performance. 

The present research also examines GA-PID controller 

performance in relation to the Z-N method. Key performance 

measures, like overshoot, settling time, and steady-state error, 

are essential in evaluating how effectively these control 

strategies are able to control various system dynamics. 

The overshoot for the GA-PID controller is much lower 

than that for the Z-N method, because the Genetic Algorithm 

could perform optimization. This makes PID AP parameters 

more nuanced in order to reduce overshooting and achieve 

smoother responses. The Z-N based method, being fast, can 

lead to over-aggressive parameter values, which lead to 

increased overshoot especially in systems having higher 

order of dynamics. 

Sitting time is smaller for the GA-PID controller than the 

Z-N method because it covers more the solution's field and it

also optimizes the PID parameter with desired dynamics of

the system. The integral part of the GA-PID controller has

been modified to eliminate steady-state error in a particular

time, such that this control is suitable for any application that

demands quick and accurate control.

Figure 10 shows the signals of the Hall sensor and the 

phase-to-phase BEMF of the BLDC motor, highlight its 

importance for the operation of the motor. The Hall-sensor 

signals delivered as digital pulses serve for precision 

monitoring of the position of the rotor, and thus for precise 

synchronization to commutate. 

Figure 10. Hall sensor signals and phase-to-phase back EMF 

of BLDC motor 

The phase-to-phase BEMF waveform itself is a sine wave, 

which is indicative of the motor's electromagnetic response 

while it is spinning and can take on any number of forms 

based on rotor speed and position. The relationship between 

the Hall sensor signals and the BEMF is employed to give a 

smooth operation characteristic in the motor with low torque 

ripple and high efficiency. This synchronization is essential 

for stable speed control and the best performance, 

particularly on a dynamic velocity or load change. 

The BLDC motor's variable speed range (1000–3000 RPM) 

and matching back electromotive force (BEMF) waveform 

are depicted in Figure 11. The outcomes demonstrate steady 

motor functioning at different speeds and smooth BEMF 

generation. 

Figures 12 and 13 demonstrate the efficacy of the GA-PID 

controller. Speed to Torque Figure 12 shows the torque 

response and immediate response with smooth operations, 

low overshoot, and smooth transitions. Figure 13 shows the 

GA-PID speed responses for different speeds. (1000 to 3000 
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RPM), verifying accurate speed following and dynamic 

adaptability. 

Figure 14 shows the response of the continuously varying 

proportional-type speed controller system at an initial 

frequency of 500 RPM, which is increased to a maximum of 

3000 RPM and then brought down to 1500 RPM. The graph 

shows the PID signal response for the complete process, 

clearly demonstrating the system's precision and stability 

during acceleration and deceleration. The PID control law 

has the capability to adapt the control signal such that smooth 

transitions are made and overshoots are minimized, 

demonstrating its stability for handling the system dynamics 

of speed changes. 13 This value is an important yardstick in 

evaluating the performance of the control system at different 

operating conditions. 

Figure 11. Variable speed (1000 to 3000 RPM) and 

corresponding back EMF of BLDC motor 

Figure 12. Speed, torque response, and current response of 

BLDC motor using GA-PID controller 

Figure 13. Speed response of BLDC motor using GA-PID 

controller at variable speeds (1000 to 3000 RPM) 

Figure 14. PID control signal response for gradual speed 

variation (500 to 3000 RPM, then 3000 to 1500 RPM) 

The dynamic behavior of the control system GA-PID, at 

which the wind is blowing at variable speeds, is also 

described in Figure 15. As you can see, the graph shows the 

PID control, which warms up to follow the setpoint change 

and slows down to catch the setpoint and overspeed in a 

controlled manner, and will oscillate to stop. The Genetic 

Algorithm (GA) is combined with the PID controller to 

improve the parameter tuning of the PID, resulting in better 

performance under disturbance. This value showed the 

stability of the GA-PID method for accurate speed control 

even in a real-time implementation. Performance of GA-PID 

for VS is given in Figure 16. This figure helps explain how 

the Proportional-Integral-Derivative (PID) parameters are 

tuned by using the Genetic Algorithm (GA) according to the 

system dynamic behavior at different operating conditions. 

A BLDC(GA-PID) system, as an example of load torque 

variation, is depicted in Figure 17. It could be observed from 

the data how well the GA-PID controller accommodates load 

changes, reducing overshoot and settling time, yet maintains 

steady and rapid speed control. 

Figure 18 shows the GA-PID controller's speed response 

as it progressively raises and lowers speed relative to the 

target speed.  By successfully reducing overshoot and 

undershoot during transitions, the graph shows how well the 

GA-PID algorithm maintains a steady and smooth response. 

This feature demonstrates how well the controller can adapt 

to dynamic changes in load conditions, guaranteeing that the 

real speed barely deviates from the intended trajectory. 

Figure 15. Dynamic response of GA-PID controlled variable 

speed system 
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Figure 16. Variable speed of GA-PID controlled 

Figure 17. GA-PID speed response under variable load 

torque conditions 

Figure 18. Speed response comparison of GA-PID controller 

with desired speed trajectory 

The speed response of the N-Z (Ziegler-Nichols) PID 

controller and the GA (Genetic Algorithm) PID controller is 

compared in Figure 19 for two different speed ranges: 1000 

to 3000 RPM and then 3000 to 1000 RPM. The findings 

show that, especially when adjusting from high to low speeds, 

the GA PID controller performs better due to less overshoot 

and quicker settling periods. When compared to the 

conventional N-Z method, this illustrates how well the GA 

PID tuning method improves system stability and dynamic 

response. 

(a) 1000-3000 RPM

(b) 3000-1000 RPM

Figure 19. Comparison of N-Z PID and GA PID controller 

performance at varying speeds 

In this study Parallel Genetic Algorithm (GA) has been 

compared with other intelligent techniques, including Particle 

Swarm Optimization (PSO) and Fuzzy Logic Control (FLC) 

in controlling the performance of a Brushless DC motor. 

The Genetic Algorithm (GA) is a distributed search 

algorithm that is good at searching diverse solution spaces, 

which is very suitable for the problem of complex and 

nonlinear systems. However, such method may be 

computationally expensive and need much experimentation 

for tuning parameters properly. Particle Swarm Optimization 

(PSO) is one of the popular intelligent optimization 

algorithms that model the social behavior of birds or fish 

which provide simplicity and convenience in codes writing. It 

needs less tuning parameters, so it converges faster and 

adapts immediately to the variations in the search space. But 

it is susceptible to premature convergence in high-

dimensional spaces and the selection of inertia weight and 

acceleration factors. 

Fuzzy Logic control (FLC) It is a control method that 

simulates human reasoning. It is useful in systems with 

imprecise or uncertain data, it deals with nonlinearities, and it 

can deliver robust control when no accurate model exists. But 

they must be designed by an expert in rules and membership 

functions, and can be slow, needing a lot of tuning. 

GA is well suited to solving complex optimization 
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problems, PSO is suitable for real-time systems with SMPS 

goals and low computational burden, and Fuzzy Logic 

Controller works very well in systems with unpredictable 

worlds and has adaptation features. 

5.2 Hardware implementation and real-time testing 

The experimental testing bench for the GA-PID controller 

is described in detail in the section "Hardware 

Implementation" in the study. The quality of the sensors 

employed in the experiences is a key parameter influencing 

the measurement and, overall, the performance of the control 

system. The motor speed, position, and torque were measured 

by high-accuracy sensors, and thus, reliable data were 

obtained within an assigned tolerance. Speed sensor 

Accuracy of ± 0.5% of full-scale is critical for the accurate 

control of motor performance. 

The data acquisition was set to 1 kHz to allow to capture 

of fast dynamics of the system and to allow the controller to 

react quickly to changing operating points. But the 

performance of the data acquisition system was limited by 

the processing ability of the utilized hardware, and would 

bring in the latency if the total computational load was higher 

than the hardware power. 

There was several hardware constraints encountered in the 

experiment that can have an influence on the results. The 

control hardware of the system was of bounded processing 

capabilities, and as such could introduce delays to the 

implementation of control commands, ultimately affecting 

the controller's overall performance. The stability of the 

power source also affected the experiments, as change in 

voltage level could cause motor performance and sensor 

readings to change. These constraints highlight the necessity 

to take the hardware into account for the results' 

interpretation and to optimize the control strategies. 

Figure 20. Hardware setup for BLDC motor operation with 

arduino mega 2560 

Figure 20 presents the hardware implementation and real-

time testing setup using a Brushless DC (BLDC) motor 

controlled by an Arduino Mega 2560. The Arduino Mega 

2560 is a powerful microcontroller board equipped with 54 

digital input/output pins and 16 analog inputs, making it 

suitable for complex projects that require multiple sensors 

and actuators. In this configuration, the Arduino interfaces 

with the BLDC motor to demonstrate effective real-time 

control, validating the proposed control algorithms and 

showcasing their practical application in managing motor 

performance under varying conditions. 

Figure 21 shows the Hall sensor signals recorded from a 

Brushless DC (BLDC) motor running at three different 

speeds: 1000, 3000 and 5000 RPM. Hall sensor signals help 

communicate the motor, so you can have good control of the 

motor. 

(a) 1000 RPM

(b) 3000 RPM

(c) 5000 RPM

Figure 21. Hall sensor signals recorded from a Brushless DC 

(BLDC) motor 

Figure 22 shows the phase EMF signal generated by the 

brushless DC (BLDC) motor at three different speeds: 1000, 

3000, and 5000 RPM, respectively. The phase EMF signals 

are important for analyzing motor performance and 

1473



efficiency. With this type of signal, we can observe the 

voltage induced in each phase due to rotation. The amplitude 

and frequency of the signals increase with the speed; the 

higher the speed, the more back EMF is generated by the 

motor. At 1000 RPM, the signals are of relatively small 

magnitudes and frequency, while at 5000 RPM, the signals 

have large amplitudes and fast oscillations. Such information 

is crucial to study the motor dynamics and to optimize the 

control arrangement. 

(a) 

(b) 

(c) 

Figure 22. Phase EMF signals recorded from a Brushless DC 

(BLDC) motor: a)1000 RPM, b)3000 RPM, and c)5000 RPM 

The phase-to-phase EMF signals of a BLDC motor at 

1000, 3000, and 5000 RPM are displayed in Figure 23. Each 

waveform represents the voltage difference across a pair of 

motor phases, providing an example of motor operation at 

different loads. Amplitude of phase-to-phase EMF signals 

increases with increasing speed, indicating positive voltage 

generation and improved performance of the motor. The 

distinctive features that appear in the signals at multiple 

RPMs are rich in information about motor performance and 

are essential tuning parameters for control algorithms in 

applications such as robotics and electric vehicles. 

The Fitness Function: F is one of the important purposes 

for maximizing the performance of the Brushless DC 

(BLDC) motor based on the Genetic Algorithm (GA) (As in 

Eq (9)). The PIDCO methodology measures PID controller 

performance through key performance indicators, including 

overshoot, settling time, and steady-state error. The objective 

of the GA is to reduce the steady state value of the F, in this 

way driving it toward the values of PID of the set of PID 

parameters, leading to the best dynamic behavior of the 

control system for the BLDC motor. 

𝐹 = 𝜔1 ⋅ Overshoot + 𝜔2 ⋅ Setting ⋅ Time + 𝜔3

⋅ Steady − State ⋅ Error
(9) 

where, 𝜔1 , 𝜔2  and 𝜔3  are weights assigned to each

performance metric. 

(a) 1000 RPM

(b) 3000 RPM

(c) 5000RPM

Figure 23. Brushless DC (BLDC) motor phase-to-phase 

EMF signals were recorded 

The optimization functions of the GA are associated with 

improving the performance characteristics of the BLDC 
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motor. The GA is intended to minimize the fitness function in 

order to minimize overshoot, settling time, and grand steady 

state error in order to keep the motor accurate in performance 

with time. GA can iteratively search different PID parameters 

to meet the requirement of load variations and external 

disturbances. As the GA runs through generations to 

determine the fitness to the function, it discovers sets of 

parameters that guarantee low iterations of F, and in this way 

it tunes the controller strategy for the known dynamics of the 

BLDC motor. 

The fitness function may be further extended to 

incorporate other performance characteristics, such as energy 

efficiency or response time under other levels of loading, can 

be as a result provides a more integrated optimization 

methodology that takes into account the overall efficiency of 

the BLDC motor. This all GAs approach further makes the 

GA practical to use in realistic settings where more than one 

performance objective shall be optimally balanced in the 

motor operation situation. 

6. CONCLUSIONS

The paper shows that the use of GA for closed-loop tuning 

of PID parameters gives much better results in terms of the 

Brushless Direct Current (BLDC) motor performance. This 

GA method, in the sense that the search engine is 

automatically programmed, can reduce the tuning time of the 

motor parameters while enhancing the control’s accuracy and 

stability by tuning the motors. The simulation results show 

that the new control strategy can significantly improve the 

dynamic characteristics of the rotor system. Hence, a new 

WPD-PR controller based on the input shaping and the PID 

control theory is formed. 

For Future work should concentrate on improving the 

Genetic Algorithm for more efficient and flexible control of 

these generators in different operating conditions. 

Furthermore, extension studies that integrate hybrid methods 

of GA, for example, with fuzzy logic or machine learning, 

can yield more effective solutions for dynamic environments. 

Furthermore, the investigation into the adoption of this 

intelligent tuning function to various sorts of motors and 

control systems would be another powerful tool to extend the 

applicability and to evolve the automation industry and the 

robot field. Moreover, experimental validation in different 

operating conditions will also be necessary to validate the 

generality of the results and to mitigate possible drawbacks 

discussed in this paper. 

The study highlights the potential of integrating Genetic 

Algorithm methods with advanced technologies like machine 

learning and deep learning to improve control performance in 

complex systems, including Brushless DC motors. Machine 

learning can improve fitness evaluation by identifying 

patterns and correlations, while deep learning can predict 

system behavior, providing valuable insights for 

optimization. Hybrid optimization techniques, combining GA 

with other algorithms like Particle Swarm Optimization 

(PSO) or Differential Evolution (DE), can create more robust 

frameworks for complex solution spaces. Edge computing 

and the Internet of Things (IoT) can enhance the application 

of GA in real-time control systems, allowing for more 

responsive and adaptive control strategies in rapidly changing 

system dynamics. 
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