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Melanoma, the most serious kind of skin cancer, is formed by a mutation in melanocytes. 

An early diagnosis is very important to reduce mortality. The proposed system categorizes 

dermoscopic images for identifying skin malignancies using Deep Learning and Cuckoo 

Search (DLCS) in conjunction with 3D Shearlet Transform (3DST). There are four different 

modules that make up the DLCS system. These modules include preprocessing, 

representation of dermoscopic images, selection of directional sub-bands and features, and 

classification. Using a straightforward median filtering strategy, the initial step eliminates 

the undesirable information which degrades the system’s performance. These details include 

noise and hair in skin images. The pre-processed image is decomposed using 3D ST during 

the feature extraction step to retrieve the textural characteristics at varying scales and 

directions. The DLCS technique is used to choose a certain proportion of features, and then, 

a straightforward DL architecture with ten hidden layers is used to create a classification 

system for the dermoscopic image. Experimental results on PH2 and ISIC databases show 

that the DLCS-3DST system’s performances are affected by the features from different 

Levels (L) and Directions (D). Training the classifier using the selected features from 3L-

8D provides the highest accuracy of 99.22% for PH2 database and 99.39% for ISIC database. 

It is also observed that when dermoscopic images are decomposed by 4L with 32D, there is 

an increase in redundant information, which negatively impacts the performance of the 

classifier. 
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1. INTRODUCTION

Skin protects our internal tissues from external substances 

and is also vulnerable to dermatological diseases. Although 

most skin lesions are generally not harmful, sometimes they 

create health concerns. The incidence rate is greater in women 

than in men up to the age of 50. Furthermore, the prevalence 

of skin cancer among those of Caucasian descent is 2.6%, 

which is 20 times higher than the prevalence among 

individuals of African descent. Malignant Melanoma (MM) 

spreads quickly to other parts of the body and is considered the 

deadliest skin cancer. It can be analyzed using both invasive 

and non-invasive methods. Histology is the only dependable 

approach for determining the nature of a lesion. However, it 

entails the analysis of samples extracted from the lesion or the 

complete excision of the lesion. These intrusive methods of 

identification are not appropriate, since they require a 

significant amount of time and money, and cause 

inconvenience to the patient.  

A non-invasive method for diagnosing skin cancer involves 

a straightforward visual inspection. Typically, skilled 

dermatologists achieve an accuracy rate of approximately 70% 

when diagnosing non-typical pigmented lesions in a clinical 

setting. Experts with more than 10 years of expertise are 

believed to achieve an accurate rate of 80%. Accurate 

Diagnosis is challenging because the lesions exhibit a limited 

clinical presentation and have distinct visual characteristics in 

common. Malignant lesions, particularly invasive melanomas, 

exhibit a significantly higher mortality rate as they progress. 

Therefore, it is crucial to detect malignant lesions as early as 

feasible throughout their development. The timely 

identification and diagnosis of melanoma are likely the most 

crucial factors contributing to the rising rates of survival 

among patients.  

Computer-based diagnostics systems can enhance the 

accuracy of diagnosis. Dermatoscope, a tool used by medical 

professionals, is employed for the purpose of diagnosing skin 

cancer by capturing detailed images of skin structures and 

patterns. It has a magnifying lens accompanied by a robust 

illumination system. An automated computer system is 

necessary due to the inconsistencies of inter and intra observer 

for diagnosing skin cancer. 

2. LITERATURE SURVEY

A Convolutional Neural Network (CNN) is used to classify 

skin cancers [1]. The EfficientNet model automatically assigns 
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the network's width and depth, and image resolution to learn 

complex patterns in dermoscopic images. It also reduces 

hyperparameter tuning by using the Ranger optimizer. A Deep 

Learning (DL) system is used to classify eight different skin 

cancers [2]. It integrates features from the Inception V3 

network and handcrafted features such as color, shape, global 

and local textures. Finally, classification is made using CNN. 

A combined Machine Learning (ML) and DL approach is used 

for skin cancer classification [3]. Features such as Haralick 

features, color histograms, and Hu moments are extracted 

from grayscale and HSV color spaces. These features are 

classified using CNN and ML algorithms such as Support 

Vector Machine (SVM), Bayes, and Random Forest (RF), and 

k-fold cross-validation techniques are adopted for 

performance evaluation. An ensemble CNN approach is used 

for dermoscopic image classification [4]. Three pre-trained 

models—VGG16, ResNet50, Xception—are utilized, and 

their outputs are fused using a weighted fusion ensemble 

strategy for classification. Thamizhamuthu and Maniraj [5] 

proposed a deep learning (DL) approach that uses k-means 

clustering for image feature extraction. They extracted 

features such as color moments, local binary patterns, and 

generalized autoregressive conditional heteroscedasticity 

(GARCH). Two hidden layers are employed to learn complex 

features. An artificial intelligence skin cancer diagnosis 

system with multilevel feature extraction is described by 

Midasala et al. [6]. Noise artifacts are removed using the 

bilateral filter. K-means clustering is used for segmentation of 

skin lesions. Redundant wavelets and Gray Level Co-

occurrence Matrix (GLCM) - based features are utilized. 

Genetic algorithms and a DL neural network for melanoma 

classification are described by Maniraj and Sardarmaran [7]. 

A three-dimensional wavelet for feature extraction and a 

genetic algorithm for selecting features are employed. An 

SVM-based skin cancer classification system has been 

described in some studies [8, 9]. From the median-filtered 

image, GLCM, shape, and ABCD rule-based features are 

extracted [8]. Then, SVM, RF, and nearest neighbor 

algorithms are employed for classifying the dermoscopic 

images. The energy features from the Shearlet transform, a 

multi-scale analysis, are employed for skin cancer diagnosis 

by Kumar and Kumanan [9] using an SVM classifier. A hybrid 

CNN-RNN architecture is used for skin cancer diagnosis by 

Zareen et al. [10]. The ResNet50 architecture is employed for 

feature extraction, whereas an LSTM layer is introduced for 

classification. A deep belief network with Sand Cat 

optimization is discussed by Anupama et al. [11]. The Dull 

Razor approach and median filters are used for hair and noise 

removal, respectively. From the detected lesion by U2Net, 

neural architecture search is employed for feature extraction. 

SVM and a Bendlet transform approach are utilized for skin 

cancer diagnosis [12]. Energies from Bendlet-transformed 

images are extracted as features. A curvelet-based DL 

approach is utilized by Sudha et al. [13] for skin cancer 

diagnosis. The low-frequency curvelet sub-band is used as 

features by the CNN classifier. Wavelet transform-based skin 

cancer diagnosis is described by Wu et al. [14]. A down-

sampling reconstruction is designed in the wavelet domain, 

and the reconstructed image is utilized for classification. A 

multilayer perceptron network is used for skin cancer 

classification [15]. It integrates contourlet, curvelet, and 

shearlet features, and exponentially weighted learning is 

utilized for classification. An empirical wavelet transform-

based system is discussed by Fadaeian et al. [16]. Gray Wolf-

optimized features are selected from shape, color, and texture 

features of the wavelet-transformed image, and an SVM 

classifier is used for classification. Different wavelet filters are 

analyzed for skin cancer diagnosis using DL [17]. From 

entropy and statistical features, Principal Component Analysis 

(PCA) selects the dominant features. DL and particle swarm 

optimization are employed by Tan et al. [18] for dermoscopic 

image classification. Feature extraction is based on algorithms 

such as LBP, HOG, ABCD, and GLRLM. A combination of 

DL and ensemble learning is described by Hosseinzadeh et al. 

[19]. Preprocessing consists of masking, grayscaling, 

cropping, resizing, and thresholding. DenseNet-201 model-

based features are extracted, and classification is achieved by 

ensemble learning with diverse techniques such as PCA, 

ANOVA, and RF. Effective skin cancer classification using 

CNN and DWT is implemented by Claret et al. [20]. 

 

 

3. METHODS AND MATERIALS 

 

The proposed system architecture for diagnosing skin 

cancer, which utilizes image processing and DL approaches 

with dermoscopic images is discussed in this section. It is a 

pattern recognition system, organized into four important 

modules: These modules include preprocessing by median 

filters, image representation of dermoscopic images by 3DST, 

selection of directional sub-bands and features using CS 

algorithm, and classification by a simple ten-layer neural 

network. The proposed DLCS-3DST system is shown in 

Figure 1. 

 

 
 

Figure 1. Proposed DLCS-3DST system 
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3.1 Preprocessing 

 

The initial step of this study employs a preprocessing stage 

to eliminate unwanted elements such as hairs and sounds from 

the dermoscopic images. This is achieved by utilizing a 

median filtering strategy. The purpose of this filter is to 

identify the middle value within a predetermined group of 

pixels and then replace the central pixel with that median 

value.  It has the following benefits compared to mean filters: 

it preserves more gradient information and is less vulnerable 

to spurious noise within the neighbourhood. It preserves the 

edge information while eliminating noise without introducing 

any new colour values. The proposed system uses a 21×21 

kernel for removing hair and noise effectively [7]. The original 

dermoscopic image and its median filtered images are shown 

in Figure 2. 

 

 
 

Figure 2. (a) Input images (b) median filtered images 

 

3.2 Representation of dermoscopic images 

 

The primary objective of utilizing frequency transformation 

techniques to represent images is to provide a suitable 

representation of the image for subsequent image processing 

tasks. The Fourier and Wavelet transformations are widely 

used and can be used for one-dimensional signals and two-

dimensional images. Since the images or signals are obtained 

and saved digitally, both transforms are also applied to the 

discrete domain. Several advanced systems have been 

developed to provide better approximations of images 

compared to wavelet, including Contourlet [21], Curvelet [22], 

and Shearlet [23]. These transforms offer more directional 

sub-bands than wavelets at a specific level of decomposition. 

Since the initial development of Curvelet was in the 

continuous domain, hence, its implementation in the discrete 

domain is very challenging. Only two directional components 

for each scale are generated by the directionlet transform [24].   

Curvelet and Contourlet transforms accurately identify the 

boundary curves within a smooth region exclusively. 

Nevertheless, Shearlet can identify curves even in areas that 

lack smoothness [25]. Therefore, the Shearlet transform is 

employed as a strategy for extracting features. In this study, 

the NSST is employed due to its adherence to the translation-

invariance property. The Shearlet is defined as: 

 

( ) ( )( )1/2 1detast as asx M M x t 
− −= −  (1) 

where, the translation variable is represented by t, the shear 

variable is represented by s and the scale variable is 

represented by a. 𝑀𝑎𝑠 is the product of dilation (𝐴𝑎) and shear 

(𝐵𝑠) which are represented by: 
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where, s is an integer. 

 

A classical Shearlet (𝜓) in the frequency domain is defined 

as: 
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where, 𝜓̂1  and 𝜓̂2  be the wavelet function that belongs to 

subspaces of 𝐿2(ℜ)  and their corresponding Fourier 

transforms also belong to the space 𝐶∞(ℜ). The frequency 

domain of the Shearlet transform is shown in Figure 3 where 

the truncated cone regions are represented by 𝐶ℎ and 𝐶𝑣 [25].  

 

 
 

Figure 3. Frequency domain by discrete shearlet 

 

The definitions for 𝐶ℎ and 𝐶𝑣 are: 
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Based on the cone regions (d) in Eqs. (5) - (6), Eq. (1) can 

be rewritten as: 

 

( ) ( ) 2 2

2 d
ˆ: suppf CdL C f L=   % %  (7) 

 

3.3 Selection of directional sub-bands 

 

The initial step is representing the provided dermoscopic 

image using NSST at different decomposition levels. It 

generates many directional Sub-Bands (SB) with valuable 

information about the decomposed image. Figure 4 displays 

the NSST SBs corresponding to various levels and 
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orientations. 

 

 
 

Figure 4. Number of NSST sub-bands corresponding to 

various levels and orientations 

 

Due to the large dimensionality of the NSST coefficient 

feature space, a statistical t-test is utilized. Based on the SBs’ 

energy levels in Eq. (8), a predominant SB of size XxY is 

chosen. 

 

1 1

1 X Y

ij

i j

Energy SB
XY = =

=   (8) 

 

where, i, j are the co-ordinates of SB. Energy characteristics 

are extracted from specific levels and orientations of 

dermoscopic images belonging to two groups. To determine 

the SB that exhibits a significant difference between normal 

(A) and abnormal (B) with 𝑛𝐴 and 𝑛𝐵 samples, the t-test in Eq. 

(9) is used. 

 

( ) ( ) ( )( )
( ) ( )2 2

/
A B

A B

A B

S x S x
tscore x M x M x

n n
= − +  (9) 

 

where, Mx and Sx represent the mean and standard deviations 

of class x. Once the t-score has been calculated for all 

directional SBs at each level, the SB with the highest t-score is 

selected, indicating that it is significantly different from the 

others. The chosen directional SB is used to extract 

characteristics. 

 

3.4 Selection of dominant features 

 

After selecting the directional SB, the dominant Shearlet 

coefficients are selected using CS algorithm [26], a nature-

inspired optimization algorithm. It mimics the brood parasitic 

conduct observed in certain cuckoo species, along with the 

Lévy flight behaviour exhibited by birds and fruit flies. For 

optimization, the following assumptions or rules are made: 

• Each cuckoo lays a single egg and dumps it in a nest 

chosen at random. 

• Nests that contain high-quality eggs (solutions) are passed 

on to the next generation.  

• The quantity of accessible host nests remains constant, and 

a host bird has a likelihood (𝑝𝑎 ∈ [0,1]) of encountering an 

extraneous egg. Under these circumstances, the host bird will 

either discard the egg or abandon the nest and construct a new 

nest elsewhere. 

An important component of CS is the utilization of Lévy 

flights to improve the overall ability to search globally. Lévy 

flights are a type of random walk where the distances between 

steps are determined by a probability distribution that has a 

strong tail. The step length (L) can be described by the Lévy 

distribution: 

 

~ ( ) ,(1 3)L Le vy s


 
−

     (10) 

 

The algorithm can be summarized as follows: 

Initialization: A population of n host nests {𝑥𝑖}, where 𝑖 =
1,2, . . . 𝑛. Set algorithm parameters, including 𝑝𝑎 and 𝜆. 

Generate New Solutions: For each cuckoo i, generate a new 

solution 𝑥𝑖
𝑡+1  using a Lévy flight: 𝑥𝑖

𝑡+1 = 𝑥𝑖
𝑡 + 𝛼 ⋅ 𝐿(𝑠, 𝜆) 

where α is the step size scaling factor, and 𝐿(𝑠, 𝜆) represents 

the step length drawn from the Lévy distribution. 

Evaluate Fitness: Evaluate the fitness of the new solution 

𝑓(𝑥𝑖
𝑡+1). If it is better than the current solution 𝑓(𝑥𝑗

𝑡) in a 

randomly chosen nest j, replace j with i. 

Abandoning Poor Solutions: Abandon a fraction 𝑝𝑎 of the 

worse nests and build new ones at new locations using 

randomization: 𝑥𝑗
𝑡+1 = 𝑥𝑗

𝑡 + 𝛽 ⋅ (𝑥𝑖
𝑡 − 𝑥𝑘

𝑡 ) , where 𝑥𝑖  and 𝑥𝑘 

re two randomly selected solutions, and 𝛽 is a random number 

drawn from a uniform distribution. 

Selection of Best Solutions: Select the best solutions or nests 

based on their fitness values for the next iteration. 

Iteration: Repeat steps 2-5 until the termination criterion is 

met, typically a maximum number of generations or a 

convergence threshold. 

The use of Lévy flights ensures that the search process can 

escape local optima, enhancing global search capabilities. The 

algorithm is easy to implement and requires few parameters to 

tune. It can be applied to a wide range of optimization 

problems without significant modifications. In the proposed 

DLCS-3DST system, feature selection is performed using the 

CS algorithm, where the subset size is not predefined but 

adaptively determined during the optimization process. Each 

candidate solution (or "nest") in CS algorithm is encoded as a 

binary vector of length N where N is the total number of 

features extracted via the DST.  A value of '1' at a given index 

indicates that the corresponding feature is selected, while '0' 

indicates exclusion. Thus, the number of selected features S in 

a solution corresponds to the number of ones in the binary 

vector. The objective function (𝑓(𝑥)) is defined by: 

 

( )( ) 1
S

f x w CE w
N

=  + −  (11) 

 

where, 𝑓(𝑥) is the fitness function, CE is the classification 

error rate, and w is a constant controlling the classification 

performance to the number of features used. The parameter 

values for the CS are selected based on a combination of 

empirical testing and literature guidelines. Specifically, the 

discovery probability (𝑃𝑎 ) is set to 0.25 and the step size 

scaling factor (𝛼) to 1.5, consistent with values recommended 

in Yang and Deb [26]. These settings provided the best trade-

off between convergence speed and classification performance 

to diagnose skin cancer. The proportion of selected features is 

defined by S/N in Eq. (11). 
 

3.5 Classification 
 

Neural networks are a computational approach that mimics 

the functioning of the human brain to analyze numerical data 

and then establish complex connections between input and 

output. Typically, these networks are trained using back-
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propagation techniques, which further improve the error 

function using gradient descent. They include non-linearity by 

incorporating a layer of hidden processing units.  

The proposed DLCS-3DST system uses ten hidden layers 

for DL features. The connection between the input nodes and 

the hidden layer is trained using the chain rule to calculate the 

gradient of the error function for each weight. Widrow-Hoff 

learning rule is employed to update the weights between 

hidden layer and output layer. During training, cross-entropy 

loss is utilized in this study to update the weights and is shown 

in Eq. (12): 

 

( )
1

log
m

n n

n

Cross Entropy Loss t s
=

= −  (12) 

 

where, true label (𝑡𝑛) and the sigmoid function output (𝑠𝑛) 

and total number of classes (m). The activation function used 

in the hidden layer is given in Eq. (13), which is a Rectified 

Linear Unit (ReLU) function. It is defined for an input value 

(I) by: 

 

max(0, )O I=  (13) 

 

where, O is the input value. It is observed from Eq. (13) that 

the function propagates just positive values while disregarding 

the negative values. The outcome of a particular layer is passed 

on to the next layer in a sequential manner. Ultimately, the 

predictions will be determined by the softmax layer, which 

utilizes the distribution of probabilities of the kth output layer. 

It is defined by: 

 

( )
x

k

o

x o

k

e
O y

e
=


 
(14) 

 

where, xth layer’s output is denoted by ox. Table 1 provides the 

neural network parameters used in the DLCS-3DST system. 

 
Table 1. DLCS-3DST system - network parameters 

 
Parameters Settings 

Epochs/iterations 200 

hidden layers 10 

Optimizer Gradient Descent 

Learning rate 0.01 

Momentum 0.9 

Loss function Cross-entropy 

Dropout 0.5 

Activation 

function  

Rectified Linear (Hidden layer) & Softmax 

(Output layer) 

 

The simulation settings presented in Table 1 represent the 

optimal combination that yields the highest performance for 

the proposed DLCS-3DST system. These settings are selected 

by iterative experimentation. 

 

 
4. RESULTS AND DISCUSSION 

 

The PH2 database [27] is used to conduct an analysis of the 

designed DLCS-3DST system. More than two hundred 

dermoscopic colour images (RGB), including melanocytic 

lesions, are included in PH2. The dermoscopic images stored 

(200 images) in the database have a resolution of 768 by 560 

pixels. Another powerful benchmark database, ISIC 2017 

[28], is also used to do more analysis on the system. The ISIC 

2017 database contains a total of 2750 images. Figure 5 shows 

the distribution of images in both databases. 

 

 
 

Figure 5. Database distribution (image for each category) 
 

To achieve optimal performance, it is necessary to have a 

larger quantity of images for training the DL architecture. 

Additionally, image augmentation is employed to address the 

issue of class imbalance by increasing the images in the 

dataset. The PH2 database images have been augmented from 

200 to 3000 (1000 per category), while the ISIC images have 

been augmented from 2000 to 6000 (2000 per category) for 

analysis purposes. To achieve a balanced dataset for robust 

model training, a structured augmentation strategy is 

implemented, primarily using image rotation combined with 

other simple transformations.  

For the PH2 dataset, each image in the normal and benign 

classes (originally 80 images each) was augmented 12 times 

using rotations at various angles (±15°, ±30°, ±45°), along 

with horizontal and vertical flips, scaling (Zoom in/out), and 

brightness adjustments, resulting in approximately 1000 

images per class. The malignant class, with only 40 original 

images, required a more intensive augmentation scheme with 

24 variants per image using a wider range of rotations (±10° 

to ±90°), flips, scaling, brightness/contrast changes, and 

Gaussian noise, to generate a total of 1000 images.  

For the ISIC-2017 dataset, the normal class needed minimal 

augmentation, with just 157 additional samples created 

through light rotation and flipping. In contrast, the benign and 

malignant classes required 5 and 3 augmentations per image, 

respectively. These augmentations included combinations of 

rotations (±15° to ±60°), flips, scaling, and contrast adjustment 

to expand each class to 2000 images. This rotation-centered 

augmentation approach ensures class balance, enhances data 

diversity, and mitigates overfitting during model training. The 

DLCS-3DST system’s performance is assessed by empirically 

testing the system by counting the misclassifications on a 

testing set. It is important that the samples in both testing and 

training are statistically distinct. To evaluate the generalization 

performance of the proposed DLCS-3DST system, the dataset 

is split into training (60%), validation (20%), and test (20%) 

sets. The DLCS-3DST system is trained exclusively on the 

training set, with parameters such as the number of selected 

features and the controlling parameter (w) being tuned using 

the validation set. Final performance metrics are computed on 

the test set, which remained completely unseen during both 

training and validation. The consistent performance across 
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validation and test sets indicates that the DLCS-3DST system 

generalizes well to unseen data. Table 2 shows the confusion 

matrix for a 3-class problem and the performance measures 

used for evaluating the proposed DLCS-3DST system. 

To analyze the performance of the DLCS-3DST system, 

performance criteria such as sensitivity, specificity, and 

accuracy are computed from the obtained parameters TP, TN, 

FP, and FN. Table 3 shows the performances of the DLCS-

3DST system on PH2 database images. 

 

Table 2. Confusion matrix - 3-class problem and performance measurements 

 
Confusion Matrix Parameters 

Performance Measures 
 CL1 CL2 CL3 TP TN FP FN 

CL1 P11 P12 P13 P11 P22+ P23+P32+P33 P21+ P31 P12+ P13 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

CL2 P21 P22 P23 P22 P11 +P31+P13+P33 P12+ P32 P21+ P23 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

CL3 P31 P32 P33 P33 P11 + P12+P21+P22 P13+ P23 P31+ P32 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑆𝑝 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

where, CLj represents jth class, Pxy is the predicted class ‘y’ for the class ‘x’. 

 

Table 3. Performances of the DLCS-3DST system on PH2 

database images 

 

Dir Lev 
Performance Measures 

Accuracy Sensitivity Specificity 

2D 

1 83.00 74.50 87.25 

2 86.44 79.67 89.83 

3 89.22 83.83 91.92 

4 85.89 78.83 89.42 

4D 

1 90.00 85.00 92.50 

2 93.22 89.83 94.92 

3 96.00 94.00 97.00 

4 92.89 89.33 94.67 

8D 

1 93.11 89.67 94.83 

2 96.78 95.17 97.58 

3 99.22 98.83 99.42 

4 96.33 94.50 97.25 

16D 

1 91.44 87.17 93.58 

2 95.11 92.67 96.33 

3 96.78 95.17 97.58 

4 94.89 92.33 96.17 

32D 

1 88.00 82.00 91.00 

2 92.44 88.67 94.33 

3 95.67 93.50 96.75 

4 91.44 87.17 93.58 

 

The selection of decomposition levels (#Lev) and 

directional components (#Dir) in the DST plays a critical role 

in capturing discriminative features for classification tasks. 

The proposed system empirically evaluated multiple 

configurations to determine the optimal parameters for skin 

lesion image analysis such as four decomposition levels and 

increasing numbers of directional sub-bands (2, 4, 8, 16, and 

32) at each level. It is observed from Table 3 that the DLCS-

3DST system’s performance for skin cancer classification 

reveals notable trends. Increasing the number of directions 

from 2D to 32D generally improves classification metrics. For 

instance, at the highest level (Level 3), the accuracy rises from 

89.22% for 2D to 99.22% for 8D and then reduces to 96.78% 

for 16D. Sensitivity and specificity measures also show an 

upward trend with increasing directions and levels of DST. 

Notably, the system achieves a maximum sensitivity of 

98.83% and specificity of 99.42% at Level 3 with 8D 

directions. Too few directions (2 and 4) at low-level (Level 1 

and Level 2) may not capture the complex orientations of 

lesion textures, potentially degrading classifier performance. 

The third level with 8 directions provided the most effective 

balance, enabling the DST to capture rich, directional 

information while maintaining compactness and robustness in 

the feature set. While increasing the number of directions (16 

and 32) theoretically enhances the angular resolution and 

ability to capture fine orientation-specific features. However, 

they can introduce noise and reduce the discriminative power 

of the extracted features. Additionally, it increases the 

dimensionality of the feature space, which may negatively 

affect classifier generalization. Thus, 8D at level 3 provided 

an optimal trade-off between richness of directional 

representation and feature compactness. 

While analyzing the misclassified samples, it is observed 

that misclassifications predominantly occurred in cases 

characterized by low contrast, ambiguous pigmentation, or 

indistinct lesion borders. These features often lead to 

overlapping intra-class and inter-class feature representations 

in the latent space, thereby reducing classification confidence. 

This limitation underscores the potential benefit of 

incorporating auxiliary clinical metadata such as anatomical 

site, patient demographics, or lesion evolution history as 

additional input modalities. Such multimodal fusion could 

enhance the model's discriminative capacity in challenging 

scenarios and mitigate feature ambiguity arising from visually 

similar lesion types.  

 

 
 

Figure 6. Performances of the proposed DLCS-3DST system 

for different values of w 

 

The effect of controlling parameter (w) in Eq. (10) for skin 

cancer classification is shown in Figure 6 by varying w from 

0.1 to 1 with an increasing value of 0.1. The objective function 

in Eq. (11) encourages the CS algorithm to find a balance 

between minimizing classification error and reducing the 

number of features. As a result, the optimal subset size S 

emerges empirically during the search process. Experiments 

showed that CS algorithm typically selected around ~35% of 
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the original feature set, demonstrating its effectiveness in 

producing compact and discriminative feature subsets without 

requiring manual specification of the subset size. 

The observations drawn from Figure 6 show intriguing 

patterns in the system's performance as it relates to different 

values of w. As "w" increases from 0.1, the system's 

performance gradually improves. This improvement is 

attributed to the incorporation of increasingly dominant 

features within the selected subset. This relationship between 

"w" and the performances of the proposed system highlights 

that the inclusion of dominant features enhances the model's 

predictive capabilities. Upon attaining the highest accuracy 

(w=0.8), the system's performance begins to decrease. This is 

due to the incorporation of redundant features into the subset. 

Moreover, it's notable that the system defaults to utilizing the 

entire set of features for performance evaluation when "w" 

reaches 1. Further analysis of the proposed systems is done on 

ISIC database images, and the performances are shown in 

Table 4. 

 

Table 4. Performances of the DLCS-3DST system on ISIC 

database images 

 

Dir Lev 
Performance Measures 

Accuracy Sensitivity Specificity 

2D 

1 83.44 75.17 87.58 

2 86.83 80.25 90.13 

3 89.50 84.25 92.13 

4 86.27 79.40 89.70 

4D 

1 90.22 85.33 92.67 

2 93.33 90.00 95.00 

3 96.22 94.33 97.17 

4 93.28 89.92 94.96 

8D 

1 93.39 90.08 95.04 

2 97.06 95.58 97.79 

3 99.39 99.08 99.54 

4 96.67 95.00 97.50 

16D 

1 91.78 87.67 93.83 

2 95.22 92.83 96.42 

3 97.11 95.67 97.83 

4 94.96 92.44 96.22 

32D 

1 88.17 82.25 91.13 

2 92.83 89.25 94.63 

3 96.06 94.08 97.04 

4 91.72 87.58 93.79 

 

It is observed from Table 4 that the same performance trend 

as PH2 is noticed for ISIC database images. The proposed 

DLCS-3DST system gives a maximum classification accuracy 

of 99.39% for ISIC images at 3L-8D features. The 

computational complexity of the proposed system is primarily 

influenced by the 3DST decomposition and the CS 

optimization. The average classification time per image is 

approximately 0.65 seconds on an Intel i7 processor with 

16GB RAM and an NVIDIA GTX 1080 GPU, indicating 

feasibility for near-real-time clinical applications. 

 

Table 5. Classification performance (mean ± 95% CI) of the 

DLCS-3DST system 

 

Database 
Performance Measure (%)±95%CI 

Accuracy  Sensitivity  Specificity  

PH2 99  0.22 98.51  0.33 99.25  0.16 

ISIC 99.16  0.21 98.73  0.31 99.37  0.15 

 

To validate the robustness of the results, a statistical 

significance analysis is performed over 10 independent runs 

using different training and testing samples. For both 

databases, the mean performance and 95% confidence 

intervals (CIs) are computed for accuracy, sensitivity and 

specificity. Table 5 shows the classification performance 

(mean ± 95% CI) of the DLCS-3DST system. 

The results in Table 5 demonstrate high stability and 

consistent performance across multiple runs, as evidenced by 

the narrow 95% CI. This confirms that the system's 

performance is not due to randomness or chance, thus 

supporting the statistical robustness of the model. The skin 

cancer diagnosis performance in terms of classification 

accuracy of four different techniques, such as DWT [29], WPT 

[30], DConT [21], DCurT [22], and the proposed DLCS-3DST 

[23] system, is evaluated on the PH2 and ISIC skin lesion 

datasets. Figure 7 shows the performance comparison of state-

of-the-art image representation systems. 

It can be seen from Figure 7 that the DWT [29] achieved 

83% on PH2 and 83.44% on ISIC database, and the WPT [30] 

improved upon DWT, attaining 88% (PH2) and 89.5% (ISIC).  

Both can capture both time and frequency information, making 

it well-suited for texture-based feature extraction. However, it 

lacks directional selectivity, which limits its performance in 

handling lesions with complex boundaries. DConT [21] 

achieved 91.44% on PH2 and 92.83% on ISIC as it captures 

smooth contours and edges compared to wavelet methods. The 

DCurT [22] slightly outperformed DConT, reaching 93.11% 

(PH2) and 93.28% (ISIC) due to that it can capture curve-like 

features and elongated structures, which are commonly found 

in medical images. Its high directional sensitivity and edge 

representation make it highly effective for boundary-aware 

skin lesion analysis. When compared to DWT, WPT, DConT 

and DCurT, 3DST can effectively capture complex lesion 

morphology and pigment distribution, resulting in a highly 

robust and generalizable feature representation. Hence, the 

proposed DLCS-3DST achieved the highest performance 

across both datasets, with 99.22% on PH2 and 99.39% on ISIC. 

 

 
 

Figure 7. Performance comparison of state-of-the-art image 

representation systems 

 

The multi-scale and multi-directionals models DConT and 

DCurT showed notable improvements, reaching accuracy of 

up to 93.28% on the ISIC dataset. However, the proposed 

3DST method significantly outperformed all other 

approaches, achieving the highest classification accuracies of 

99.22% on PH2 and 99.39% on ISIC. These results underscore 

the superior feature representation and generalization 
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capability of the 3DST framework across diverse datasets, 

especially in comparison with traditional approaches. 

 

 

5. CONCLUSIONS  

 

An efficient DLCS-3DST system for dermoscopic image 

classification is presented in this paper. The undesired 

information such as noises and hairs that affects system 

performance is removed at first using median filtering. The 

proposed DLCS-3DST system selects texture descriptors 

using CS from the dominating SBs of 3DST, and then ten-

layer DLCS uses these features to provide classification of 

dermoscopic images. Two databases; PH2 and ISIC 2017 are 

utilized for performance evaluation. Results demonstrate that 

the DLCS-3DST system achieves a classification accuracy of 

99.22% using PH2 images and 99.39% using ISIC images 

when the features are extracted from 3rd levels and 8D. The 

most correlated SB at each level is chosen by statistical t-test. 

In future, the SB selection can be done out via optimization 

methods like in feature selection by CS.  Though the 

evaluation of the proposed DLCS-3DST system is conducted 

on PH2 and ISIC datasets, the proposed DLCS-3DST system 

can be evaluated on external datasets such as HAM10000 and 

Dermofit. The robust performance on both PH2 and ISIC 

indicates promising generalization capabilities of the proposed 

DLCS-3DST system for skin cancer diagnosis. 
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