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The correctness of AI depends on the correctness of the data. Although AI has brought 

numerous developments in the healthcare industry, we can’t deny the fact that there are 

security breaches as well. This synthesized framework is proposed as a solution for 

providing security and privacy. Medical images of Alzheimer’s disease are considered in 

this study. Medical images occupy huge space and also consume more bandwidth while 

being transmitted. A distributed learning model called federated learning is employed that 

allows the images to reside at any hospital. Training is performed at the client end itself and 

only the model parameters are shared to the server. It preserves privacy using Partially 

Homomorphic Encryption and the encrypted images are used for training. This proposed 

model uses FedAvg for model aggregation. Two CNN architectures are considered here-

ResNet50 and DenseNet121. The experimental results show that the DenseNet121 model 

gives more accuracy than ResNet50 for the encrypted image dataset. 
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1. INTRODUCTION

Artificial Intelligence (AI) is playing a vital role in almost 

all the day-to-day activities. Its presence has become 

inevitable in various fields including Healthcare. AI is 

revolutionizing the healthcare industry in multiple aspects [1] 

like decision making, disease prediction, surgical procedure, 

clinical data storage, rehabilitation process and so forth. Huge 

volume of data is handled by healthcare industry and these 

data can be patient’s electronic health record, supply chain 

data, clinical trial data, administrative data, medical imaging 

data, genomic data, research data, and many more [2]. 

Preserving privacy and security of data is the basic and 

essential requirement in healthcare. Medical centers preserve 

data for multiple reasons including safeguarding patient 

privacy, for preventing medical identity theft, for protecting 

against cyber and insider attacks, for protecting Intellectual 

property rights, etc. [3]. Healthcare centers must also comply 

with regulations and standards such as HIPAA (Health 

Insurance Portability and Accountability Act) and GDPR 

(General Data Protection Regulation), failing which may 

result in legal penalties and downfall of reputation. 

Performance of AI depends on the quality and quantity of 

training data, training model selection, feature engineering, 

and tuning of hyperparameters. The conventional model 

usually works by gathering all raw data at one central server 

and training happens over the collected data. The new learning 

method, called Federated Learning (FL) is a distributed 

machine learning model that works by keeping the raw data in 

the same machine where it is archived [4]. Model training 

happens locally on each of the edge device, and only the model 

updates are shared with a central server or a central 

coordinator. Since raw data is not transferred through 

communication channels, there is less threat to the data. FL is 

more suitable for the healthcare industry since a huge volume 

of data is handled at each client site and due to the high 

demand for security and privacy. 

The proposed work considers the medical images as they 

are large in size and they play a key role in disease diagnosis, 

treatment planning, monitoring disease progression, 

telemedicine and remote consultations. Medical images 

should be shielded from unwanted access since it is extremely 

private and sensitive. Securing medical images and preserving 

their privacy are crucial; otherwise, unauthorized disclosure or 

tampering may lead to incorrect diagnosis and treatment. In 

this framework, the medical images are encrypted using 

Partially Homomorphic encryption (PHE) [5, 6] at the client 

end. Although there are many methods for preserving privacy 

like split learning, differential privacy, etc., they are not used 

in this work due to their limitations. Differential Privacy (DP) 

tends to add noise to the model updates in order to protect 

privacy but there is a risk of degrading the model accuracy, 

especially in medical industry. Split Learning (SL) involves 

intermediate exchange of model updates that happens with the 
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peers, which can lead to inference attack. So, PHE is used for 

protecting the medical images. The encrypted images are 

trained using two different Convolutional Neural Network 

(CNN) models - ResNet50 and DenseNet121 for comparison. 

After training, the weights and gradients of local model are 

communicated to the central server. The central server 

aggregates the model updates from multiple clients using 

Federated Averaging algorithm (FedAvg) [7]. When 

integrating PHE with FedAvg, privacy preservation is efficient 

because of the optimized model convergence and also ensures 

robustness of the model in heterogenous environment. The 

global update is then forwarded to clients and the clients 

initiate the training process again with the new model weights 

and gradients. The local and global updates and training 

process are iterated as many times as required in order to 

achieve accuracy. For this study, the Alzheimer disease 

classification dataset is considered. 

This framework is proposed to secure medical images from 

adversarial attacks and other attacks. Medical images are huge 

in size and it is difficult to transfer these images to a central 

location for training. When huge volume of data is trained in a 

central server, the process may be slower, resource intensive 

and more vulnerable to security threats. The proposed model 

addresses this issue by deploying Federated Learning. Also, 

the model uses encryption and secure aggregation techniques 

to preserve the privacy of the medical data, thereby complying 

the regulations and standards of healthcare industry. 

Organization of the paper can be summarized as follows. 

Section 1 addresses the security challenges of medical data and 

the motivation of the proposed work. It introduces the 

proposed framework and briefs the methodologies used. 

Section 2 presents the background of important concepts used 

in the framework like Federated Learning, Partially 

Homomorphic Encryption and FedAvg aggregation for 

medical image modelling. Section 3 realizes the prevailing 

research works on privacy preserving healthcare models. 

Section 4 explains the proposed framework with the deep 

learning model employed for encrypted medical images. 

Section 5 evaluates the proposed architecture against few 

performance metrics and discusses the results. Section 6 

reviews the significance of the work done by discussing the 

framework’s advantages and possible area of improvement. 

 

 

2. BACKGROUND 

 

2.1 Federated learning 

 

Federated Learning (FL) eliminates the need for data to be 

in a centralized setting by using a decentralized, distributed, 

and cooperative approach to machine learning. FL gives the 

data, the sophistication of being in the same machine where it 

is stored. This allows a huge amount of data to be processed 

without bothering about the communication cost. The 

federation model consists of multiple clients and a server, also 

known as an aggregator [8, 9]. Every client handles its dataset 

individually without sharing it to the Server. The server, after 

connecting to the clients, sends the initial global model for 

training. Clients train the model locally using the local data 

stored in the local machine and share only the model updates, 

i.e., gradients and weights, to the central server. All clients' 

local updates are sent to the server, which aggregates them into 

a global model, as shown in Figure 1. This global model is 

communicated with the clients and these steps are iterated a 

few numbers of times until the model accuracy and expected 

performance are reached. 

 

Client 1 Client 2 Client n

1. Initial model Update by 

Server

2. Local training by Clients

3. Local Model Update

4. Global Model Update 

1 1 1

2 2 2

3 33

4

4
4

 
 

Figure 1. Overview of federated learning (FL) framework 

 

FL can be categorized to Centralized or fully decentralized 

architecture based on the underlying network topology [10]. In 

the centralized architecture, there will be a central server that 

is responsible for collecting local updates from clients and 

share the global update back to the client. In decentralized 

architecture, there are no central servers, instead, each peer 

depends on other peers for model updates. The data 

partitioning in FL is of three types – Horizontal, Vertical and 

Transfer Learning [11]. In horizontal data partitioning, the 

features of the data are the same across all the clients and only 

the number of samples vary across the machines. Each client 

holds subset of samples. In vertical data partitioning, the 

features of the dataset are shared among the clients but the 

number of samples remain the same. In transfer model, the 

knowledge of the trained model over a particular domain of 

labelled data is transferred to a target domain. 

The next criteria to be considered is the machine learning 

model to be used in a FL system. The models can be either 

homogenous or heterogenous. In homogenous model, all the 

participating clients use the same machine learning model for 

training the raw data and the server finally aggregates the 

gradients whereas in heterogenous model, each client may 

train the data with different algorithms and the server uses an 

ensemble technique to choose the accurate model. 

The devices on which the data are available determines the 

FL to be Cross-silo FL and Cross-device FL. When the same 

type of devices is used in client environment and the number 

of devices is below 200, then it is Cross-silo FL. In Cross-

device FL, the devices vary from mobile devices to smart 

phone to IoT devices and it is completely scalable. 

After devising all these classifications, the most important 

one is about the aggregation technique used by the Server to 

combine the updates from the models sent by the Clients and 

proposes a single global model. There is multiple aggregation 

techniques used in FL as FedAvg, Scaffold, Adaptive 

Federated Optimization, FedMA, FedBoost, FedProx, FedPer, 

Weighted Aggregation, etc. [12, 13]. Of these aggregation 

algorithms, FedAvg is quite popular and the most commonly 

used algorithm. In order to update the global model 

appropriately, the server averages the local updates. 

 

2.2 Partially homomorphic encryption 

 

Homomorphic encryption (HE) is a type of public-key 

ciphering technique that converts a plaintext to ciphertext, 

ensuring confidentiality. HE allows the ciphertext to be 
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processed directly as if it were in its original form. 

Mathematical operations, like addition and multiplication, are 

directly performed on the ciphertext. It is categorized into 

Partially Homomorphic Encryption (PHE), Somewhat 

Homomorphic Encryption (SHE), and Fully Homomorphic 

Encryption (FHE) [14]. The reason behind choosing PHE than 

FHE is that PHE reduces the computational cost significantly, 

and tries to offer a balanced trade-off between efficiency and 

security. Efficiency is improved in PHE as it performs 

selective encryption on the medical data, which results in less 

computation over encrypted gradients. Also, this requires less 

extensive decryption during model updates. 

In this context, HE is more useful as it helps in protecting 

regulatory compliance. Also, HE protects patient privacy by 

encrypting medical images (e.g., MRI scans, X-rays, CT scans, 

ultrasounds, etc.). Partially homomorphic encryption makes it 

possible to process the encrypted data more effectively. 

There's no need to decrypt the data first, which can take a while, 

because the mathematical operations can be done immediately 

on the ciphertext. This is especially helpful for handling big 

datasets involving images. 

 

Algorithm 1: Paillier Cryptosystem 

Key Generation: 

1 Choose the private key pair (x, y) such that 

2  x, y are large primes 

3  GCD (xy, (x-1) (y-1))=1 

4 Derive public key pair (a, b) as 

5  Compute a=x*y and £=LCM(x–1, y–1) 

6  Select a random integer b, such that 

7   b ℇ Za
2 and GCD (a, L(b£ mod a2))=1, where 

L(i)=(i–1) / a for every i in subgroup Za
2 

Encryption: (Done with Public Key pair (a, b)) 

8 C=Enc(m)=bmra (mod a2) 

 where, C–Cipher text, m–plain text, r–random number 

Decryption: (Done with Private Key pair (x, y)) 

9 m=Dec (C)=(L (C£ mod a2)/L (b£ mod a2)) mod a 

 where, C–Cipher text, m–plain text, r–random number 

 

PHE method yields a valid result even after an arbitrary 

endless number of ciphertext additions or multiplications but 

not both. Since arbitrary number of addition or multiplication 

operations are allowed in PHE on encrypted data, there is no 

limitations on depth or complexity. Of the three homomorphic 

encryption methods, PHE method is computationally efficient 

and have lower complexity than FHE [15]. It provides the most 

capability and versatility, enabling a broad range of image 

processing operations to be carried out on encrypted images.  

PHE schemes may have simpler key generation, encryption, 

and decryption processes compared to FHE. The scheme used 

here is the Paillier cryptosystem [16], which is based on the 

composite residuosity problem. The algorithm is formally 

presented in Algorithm 1. 
 

2.3 FedAvg algorithm 
 

The most popular aggregation technique that is widely used 

in FL is FedAvg [17]. The FL Server selects few number of 

clients or all clients for each round of aggregation process. The 

weights / gradients sent by each client are aggregated by 

finding the average and a global value is proposed. This global 

update is sent to the corresponding clients and the clients 

update the local model accordingly. This particular procedure 

is iterated multiple times to derive an accurately working 

model. The speed of FedAvg highly depends on the number of 

clients that are considered for each iteration. The more the 

number of clients, the faster the convergence speed [18]. 

Assume the number of clients considered for each iteration 

as C, and the weight update that is given by each client is wi. 

By applying FedAvg, the global weight, Ŵ, is computed as in 

Eq. (1) [19]. The simplified procedure of FedAvg aggregation 

is given in Algorithm 2. 

 

Ŵ =
1

𝐶
∑ 𝑤𝑖

𝐶

𝑘=0

 (1) 

 

 

3. LITERATURE REVIEW 

 

The decentralized security model proposed by Sultana et al. 

[20] secures electronic health records using blockchain and the 

principle of zero trust. Blockchain has been widely used in 

healthcare for privacy preservation, immutability, 

transparency, and decentralized access. Zero trust security 

model enhances security by providing authentication and 

authorization to users and devices. Three layers are used for 

login authentication, checking of health parameters and 

encryption. 

 

Algorithm 2: FedAvg 

C-number of clients, Dc -data handled by each client c, Ŵ-

global model parameter, wi - local model parameter of each 

client c, ƞ-learning rate, ℇ-number of local training epochs, 

SGD (Stochastic Gradient Descent)-local optimization 

algorithm. 
1 Initialize the global model parameters Ŵ, that is a 

random or pre-trained weight. 

2 For each client c, 

3  Initialize local model parameters, wi=Ŵ. 

4  Train the local model with the local dataset Dc 

for ℇ epochs using SGD as wi=SGD (Dc, wi, ƞ) 

5 The server aggregates the model parameters as 

Ŵ =
1

C
∑ wi

C

k=0

 

6 Steps 2 to 5 are iterated multiple times until 

convergence criteria are met. 

7 End 

 

The framework presented by Feki et al. [21] uses federated 

learning to collaborate and train chest x-ray images of 

COVID-19. It takes advantage of properties like non-IID and 

unbalanced data distributions across the clients. ResNet50 and 

DenseNet121 are used for classifying the covid case and non-

covid case based on X-rays. Mini batch stochastic gradient 

descent is used for training the data locally. The model 

introduced by Adnan et al. [22] uses FL for classifying 

histopathology images based on data from both simulated and 

real-world hospital environments. The privacy is guaranteed 

by the use of the Differential Privacy (DP) framework without 

degrading the performance. The difficulty in the model is the 

lack of publicly available medical data. Histopathology image 

analysis is done using bag preparation and Multiple-Instance 

Learning (MIL) using a memory-based model. 

In reference [23], the decentralized solution called FedLCon 

is developed that uses FL for detecting COVID-19 from 

medical imaging data. FedLCon eliminates the need for a 
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coordinating server and the single point of failure as it applies 

the consensus paradigm to the Adaptive Federated Learning 

(AdaFed) algorithm, which extends the original FL algorithm. 

The privacy-preserving federated averaging (PP-FedAvg) 

protocol is put forward by Shin et al. [24] to protect the local 

dataset. This protocol uses additively homomorphic 

encryption (AHE) to securely compute and transmit encrypted 

ciphertexts between clients and the central server. The work is 

compared with BatchCrypt and PEFL in terms of computation 

and communication costs, showing a smaller number of 

operations from the server side. 

The work modelled by Makkar and Santosh [25] proffers a 

secure federated learning technique (SecureFed)-an 

aggregation method for analyzing lung abnormalities in chest 

X-rays for the diagnosis of COVID-19 infections. The 

framework compares the proposed method with FedAvg, 

FedMGDA+ and FedRAD aggregation methods. Of these, 

SecureFed claims to improve robustness, privacy and fairness 

by producing two vectors, namely Markov and Temp. The 

research performed by Han et al. [26] addresses the security 

and privacy concerns of the tele-dermatology healthcare 

system using a strong zero-watermarking technique based on 

federated learning. It trains the sparse autoencoder network 

through F to extract image features from the dermatology 

medical image. Low-frequency transform coefficients from 

the image are chosen using the Two-dimensional Discrete 

Cosine Transform (2D-DCT) for zero-watermarking creation. 

The experimental results demonstrate that the suggested 

scheme performs better and is more resilient to geometric and 

conventional attacks. 

Tan et al. [27] proposed a transfer learning approach to 

classify breast cancer using federated learning framework. It 

utilizes the three stages of FL–initial update of the model, local 

training, and aggregating the global model. The method uses 

transfer learning for extracting data features from an image's 

region of interest (ROI) in order to facilitate careful pre-

processing and data enhancement for data training purposes. 

The data is processed using the Synthetic Minority 

Oversampling Technique (SMOTE) to improve the 

performance. Also, it uses FedAvg-CNN and MobileNet in an 

FL framework to protect patient’s privacy and provide security. 

The results focus more on improving recall factor rather than 

improving accuracy in an attempt to minimize false negatives. 

A medical image encryption scheme is proposed by Castro 

et al. [28] associated with secure fingerprint-based 

authenticated communication. With the aim of ensuring 

integrity, authenticity, confidentiality of transmission of 

medical images and medical data, the scheme incorporates 

within a dominant image, an encrypted medical image, an 

encrypted physician fingerprint, and the patient’s electronic 

health record (EHR). The fingerprint feature vector and the 

medical picture are coupled with a chaotic encryption 

algorithm that utilizes a permutation key. In order to protect 

the permutation key, a hybrid asymmetric encryption scheme 

based on the Elliptic Curve encryption (ECC) and AES was 

implemented. Simulations and comparative research verified 

that this approach demonstrates lesser visual security of the 

encrypted image while maintaining higher quality in the 

reconstruction of the medical image as compared to other 

secure picture encryption methods. 

The employment of algorithms based on machine learning 

poses serious security risks to user privacy. The utilization of 

user data is a must for smart health management. Pri-HF 

technique is emphasized by Shen et al. [29], which makes use 

of federated learning to guarantee the security of data related 

to smart health management. The backbone network used for 

training is ResNet-50. The outcomes demonstrate that the Pri-

HF method's efficiency and accuracy are more suitable than 

GoogleNet, ResNet, and VGGNet. Federated learning does, 

however, restrict the algorithm’s performance, which needs to 

be addressed in the future. 

A deep learning model based on the FL framework is 

described by Kundu et al. [30] for classifying viruses that lead 

to monkeypox disease. The work is carried over in three 

sections. Initially, deep learning models like MobileNetV2, 

Vision Transformer, and ResNet50 are used for classification. 

After classifying, a cycle-consistent generative adversarial 

network (GAN) is used for training the data samples. Finally, 

the federated learning environment is employed for security. 

The tests are carried out on publicly open datasets, and the 

experiments prove that the ViT-B32 model achieves an 

astounding 97.90% accuracy rate, highlighting the stability of 

the suggested framework and its potential for safe and precise 

classification of the monkeypox virus. 

The comparative method to Federated Learning is Split 

Learning and this method is reviewed by Kiruthika et al. [31]. 

The electronic health records of patients are preserved 

securely using split learning, where no centralized servers are 

employed for aggregation. A completely distributed nature is 

followed for training and aggregation of datasets, which 

assures to provide more security and privacy. Multiple 

architectures of Split Learning, like Vanilla SL model, 

Vertical SL model, U-shaped SL model, and Extended Vanilla 

SL model are compared. Though SL seems to be a completely 

secure data management environment, there are a few open 

issues and challenges that are addressed in the work. 

Although the works discussed so far ensure security and 

privacy using FL, they lack in preserving the medical images 

in the client’s end. The proposed synthesized FL framework is 

novel as it tends to preserve the medical images using Partially 

Homomorphic encryption. The gradients/model updates that 

are communicated between the clients and the server are not 

the original image values but only the values of the encrypted 

image. This method works in compliance with GDPR and 

HIPAA, as the actual images are not collected and 

communicated to others. Hence, employing this framework 

ensures privacy and security of medical images not only 

during training but also during communication. 

 

 

4. PROPOSED FRAMEWORK 

 

4.1 Image encryption on the client side 

 

Medical images are huge in size, and multiple angles of the 

same body part are required for perfect diagnosis. Each image 

ranges from 100 kilobytes to 30 megabytes [32]. Because of 

this, the images occupy huge memory space and it is difficult 

to be transmit them to a central location for training. In the 

proposed model, this difficulty is overcome by keeping the 

images in the local / client machine itself, where they are 

stored and trained. Instead of training the original images, the 

images are encrypted using Partially Homomorphic 

Encryption, as in Figure 2. The images are converted to 

NumPy arrays based on the pixel values. Encryption is 

performed over the NumPy values only. The medical images 

are mostly in gray-scale and so the NumPy arrays consist of 

values between 0 and 1. The image dataset that is considered 

2122



 

for study is Alzheimer’s Dataset [33]. The advantage of using 

PHE is that the encrypted image can be used for training 

directly, and decryption is not needed. The trained model 

weights are sent to the server end. Since the training happens 

on an encrypted image, the weights it produces are also 

encrypted. Even if an intruder get hold of the parameters, he 

may be clueless. This assures high security and confidentiality 

of the trained model. 

 

 
 

Figure 2. Homomorphic encryption of images 

 

4.2 Implementation of federated learning 

 

The FL model considered here is assumed to use a 

horizontal learning process as the images across the medical 

network will share the same properties. Cross-silo model is 

used here as the number of participating clients is similar and 

the clients are homogeneous as they use the same machine 

learning models. Model updates and the merging of local and 

global models are accomplished cooperatively in the 

synthesized federated learning framework. Using their data, 

each client trains a local model, and the model updates are 

done locally without exchanging raw patients’ images. The 

FedAvg algorithm is employed to aggregate and merge the 

updated local models into a global model. By using this 

aggregation procedure, data privacy is maintained, and the 

global model gains knowledge from all clients. Hence, the 

steps in implementing FL can be consolidated as model 

selection, local model training, aggregation of local models, 

and global model update. 

Let us consider that there is a Server, S, with ‘n’ number of 

clients. Each of the clients (Ci) holds a particular set of image 

dataset, IDi. Training is done at the client’s end, and each client 

produces local weights, Wi. The weights are aggregated by the 

server and it produces the output ‘W’, which is then iterated 

back to the clients. Algorithm 3 and Algorithm 4 detail the 

federated learning process at the Server and Clients’ sides 

respectively. 

 

Algorithm 3: Federated Learning at Server (S) 

Input: NOR (Number of Rounds) as integer 

Procedure Server Aggregation (Cr, n) 

Round 1: 

1 Initialize the weight of global model Ŵ0 and send to 

all Clients, Ci, where i ranges from 1 to n. 

Round 2…NOR: 

2 Select a random number ‘r’ of Clients, Cr 

3 for each client Ci ϵ Cr do 

4  Send wi to client Cr 

5  wi=ClientModel (n, wi, ƞ) 

6 end for 

7 Server aggregates the model parameters as 

Ŵ = ∑ 𝑤𝑖

𝑛

𝑘=𝑖

 

8 End procedure 

4.3 CNN architectures 

 

CNN is the most widely used mathematical based 

architecture that performs a convolution operation for medical 

image classification [33]. It includes multiple layers that are 

fully connected to provide a fine-tuned classification. CNN 

compresses the images for classification and feature learning. 

The basic architecture of CNN is composed of Convolutional 

layers, Pooling layers and Fully-connected layers. Each of 

these layers consists of multiple sub-layers that help in making 

the recognition of features in a fine-tuned manner. 

 

Algorithm 4: Federated Learning at Client (Ci) 

Input: ƞ (Learning Rate), ℇ (Local epochs), IDi (Local 

Image Dataset), § (Loss Function) 

Procedure ClientModel (wi) 

1 wi→Ŵ (local weight) 

2 for each epoch ℇ do 

4  Compute local gradient G ∇§(Ŵ) 

5  Update local model as ŴŴ - ƞG 

6 end for 

7 return Ŵ to Server 

8 End procedure 

 

A convolutional layer performs the convolution operation 

and is responsible for extracting features that are available in 

any part of the image, including corners and edges. The 

convolution parameters have Kernels, K (filters) to learns the 

image. Let us say the parts of the image as I. So, K.I (K dot I) 

is calculated by sliding the kernel over the input image. The 

output of this layer is a Feature Map that is given to the pooling 

layer. The pooling layer is responsible for reducing the size of 

the feature map, so that the computation can be faster and less 

complex. Multiple pooling functions can be applied, such as 

Max pooling, Min pooling, Average pooling, and Global 

pooling. The choice of the type of pooling completely depends 

on the application designer. The Fully Connected layer 

receives flattened input from the previous layers, and this layer 

performs the classification process. This layer consists of 

neurons that operate based on weights and biases. The output 

of the fully connected layers is given to the activation function 

like the sigmoid function, to convert the real values to target 

class probabilities. Finally, the output will classify the image 

to be demented or not. 
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Figure 3. Overview of ResNet50 architecture 

 

 
 

Figure 4. Overview of DenseNet121 architecture 

 

This architecture is applied and used by different models 

like LeNet, GoogLeNet, AlexNet, VGGNet (Visual Geometry 

Group), ResNet, DenseNet and many more. Here, ResNet50 

and DenseNet121 are considered based on the competitive 

performance of these two architectures especially in 

classifying medical images and level of complexity. 

 

4.3.1 ResNet50 

ResNet50 is a version of the convolutional neural network 

architecture that adapts the basic methodology of CNN with 

slight variations [34]. It is a trained deep-learning network that 

is capable of classifying images accurately with the help of 

Residual blocks. These blocks handle the problem of 

vanishing gradients in deep neural networks by skipping a few 

layers. They bypass a few layers, thereby not allowing the 

problem of vanishing gradient. Layers of CNN are used in 

conjunction with an additional layer in ResNet50 called the 

Identity layer, which adds the input back to the output after 

passing it through the convolutional layers. As a result, the 

network can learn residual functions, which convert input into 

desired output. Prior to the 3×3 convolutional layers, the 

number of filters is decreased by adding a 1x1 convolutional 

layer. ResNet50 extracts the features accurately by using the 

filters. In order to normalize the activation of the layers and 

enable faster and more efficient network training, ResNet50 

employs Batch normalization. Figure 3 gives an overall 

structure of the ResNet50 model. 

In this paper, ResNet50 model is employed for extracting 

features in medical images. The output of the last 

convolutional layer is fed via a flattened layer, which 

transforms the output to a 2D array. After the feature map has 

been flattened, it is run through a Dropout layer that has a drop 

rate of 0.5. This layer serves as regularisation to stop 

overfitting. The final output of the network, which indicates 

the expected probability that the input image belongs to the 

target class, is obtained by passing the output of the dropout 

layer through a dense layer with one unit and a sigmoid 

activation function. Since ResNet50 is not as complex as its 

successors ResNet101 and ResNet152, it makes it more 

suitable for classifying medical images encrypted with 

partially homomorphic encryption. 

 

4.3.2 DenseNet121 

Unlike ResNet, DenseNet is a denser convolutional neural 

network. Though it performs similar to ResNet, DenseNet 

does not skip any layer with the help of residual blocks. The 

output of previous layer is fed as the input to the future layers. 

That is, when there are 100 layers, then the 100th layer will 

receive feature maps as input from all the previous 99 layers 

[35]. Let us assume a DenseNet with N number of layers, then 

the number of connections between the layers in DenseNet can 

be given as N (N+1)/2. This presumes that accuracy is 

achieved with a smaller number of layers itself, during the 

training process. Because of this property, there may be a 

problem of collision of feature maps from different layers. In 

order to overcome this issue, separate dense blocks are created, 

where each dense block may have a fixed number of layers 

inside them. Each dense block produces an output that is fed 

to the transition/convolution layer. Max pooling is performed 

over the output of the transition layer, which reduces the 

feature map’s size. 

Figure 4 gives an overview of DenseNet model Architecture. 

DesNet121 is comprised of 4 dense blocks, each of which has 

6, 12, 24, and 16 layers, respectively. Four dense blocks are 

followed by a classification layer, and this layer performs 

classification based on the feature maps received from all the 

previous layers. DenseNet121 is less complex than the other 

three versions–DenseNet169, DenseNet201, and 

DenseNet264. DenseNet is particularly useful in classifying 

the gray scale images that are used in the medical industry. 

ResNet50 is a deep residual network that effectively 

performs gradient propagation. This aspect is crucial when 

training medical images, because a small loss can even result 

in major drift in encryption. Skip connections help in 

mitigating the vanishing gradients problem, at the same time 

ensuring stable training. DenseNet121 facilitates feature reuse, 

which is an amicable benefit when dealing with encrypted 

images. Also, DenseNet can propagate features, which is 

essential in processing medical images, where few losses are 

unpredictable during encryption. Other architectures such as 

EfficientNet, VGGNet, and MobileNet are not considered in 

this work because of the listed reasons. EfficientNet requires 

extensive tuning to moderate the computational cost and 

accuracy, which may not be suitable for a federated learning 

environment, where resource constraints are high. VGGNet is 

not considered in this study as it works on more parameters 

than ResNet and DenseNet, resulting in a higher 

computational cost. MobileNet is more suitable and efficient 

for a federated edge computing environment, but it may fail to 

address the intricate details necessary for processing medical 

images. In addition to this, ResNet20 and DenseNet121 are 

highly suitable for encrypted data because of their ability to 

extract features and robust gradient flow for encrypted images. 

EfficientNet, VGGNet and MobileNet showcases moderate to 
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low suitability for working with encrypted images. So, this 

study considers ResNet50 and DenseNet121, as they tend to 

balance model efficiency and performance, making them 

suitable for medical image’s privacy preservation. 

 

4.4 Model aggregation 

 

Each client systems employ the above-specified deep 

learning models–ResNet50 and DenseNet121–to train the 

encrypted image. Once the training is over, the clients send the 

model parameters to the Server in order to update the global 

model. There are two methods of model aggregation – 

parameter-based aggregation and output-based aggregation. 

Here, parameter-based aggregation is employed, and so the 

weights and gradients of the local model are transferred to the 

Server. There are various FL aggregation algorithms used for 

the purpose of fusing the client models, such as FedAvg, 

FedProx, FedNova, Scaffold, Zeno, Per-FedAvg, FedMax, 

FedMin, etc. [36]. 

Here, FedAvg is used by the Server to aggregate the models 

into a global model. The parameters passed to the Server by 

the clients are the values received out of encrypted images. So, 

the same public key is used by the clients and the server use 

the additive homomorphic property to add the encrypted 

values. The secret key is shared among the clients using the 

Paillier cryptosystem. 

 

4.5 Synthesized framework 

 

The details discussed so far are combined to frame the 

proposed synthesized architecture, as in Figure 5. The 

framework takes in the medical images and it is converts to 

NumPy array that has values between o and 1. This is 

encrypted using Partially Homomorphic Encryption. The 

encrypted images are kept in the client side itself and two CNN 

models – ResNet50 and DenseNet121 are used for training. 

After recursive training, the model parameters are passed to 

the server. The same procedure is followed by all the clients, 

thereby following horizontal federated learning. Initially, the 

client uses the global model parameter sent by the server and 

trains the data. After that, it iterates the training process. The 

server collects the updated model parameters from all the 

connected clients or from specific number of clients and 

performs FedAvg aggregation. The global model is updated 

and the same is iterated back to the clients. This procedure is 

repeated until the epochs and desired accuracy are reached. 

The proposed framework effectively secures medical 

images using PHE while utilizing ResNet50 and DenseNet121 

for robust feature extraction. FedAvg reduces the 

communication overhead as it performs local updates before 

updating the encrypted gradients to the server. Scalability is 

ensured even with multiple health centers in different places. 

The clients can also be selected dynamically and randomly to 

minimize the computational load and to optimize the training 

efficiency. Although, PHE is computationally efficient than 

FHE, PHE incurs approximately 15-25% increase in 

computational cost for encrypting gradients. The training time 

of encrypted images is 20-30% higher than plain text training 

with ResNet50 and DenseNet121. But, training plain images 

is not secured and PHE is used for encryption. 

The encrypted images still possess enough structural 

patterns that are essential for feature extraction and data 

confidentiality. However, the encryption performed provides 

a certain amount of transformation that may result in the loss 

of fine details of the image. To counteract this optimistic loss 

of image quality, our model utilizes robust CNN architecture 

models, ResNet50 and DenseNet121, to perform an optimum 

level of feature extraction even with little distortions. 

 

 
 

Figure 5. Proposed synthesized framework 

 

 

5. RESULTS AND DISCUSSIONS 

 

The Alzheimer’s dataset [37] consists of MRI images and 

the dataset is divided into training data and testing data. The 

training and testing images are classified as mild demented, 

Moderate demented, Non-demented, and very mild demented. 

The images are resized to 128128 and they are converted to 

NumPy array based on pixel values. Since these are almost 

grey-scale images, the NumPy values range between 0 and 1. 

After converting to NumPy, it is encrypted using PHE. Only 

the encrypted images are trained using the CNN models–

ResNet50 and DenseNet121. Since four types of 

classifications are done in medical image, multi-class 

classification is done. Let us consider the Alzheimer disease 

classifications under multiple classes where Class A denotes 

Non-demented cases, Class B denotes Very mild demented 

cases, Class C denotes mild demented cases and Class D 

denotes Moderate demented cases. The metrics considered are 

model Accuracy, Precision, Recall and F1-Score. These 

metrics are calculated for each class categorization as in Eqs. 

(2)-(5), where TP refers to True Positives, TN refers to True 

Negatives, FP refers to False Positives and FN refers to False 

Negatives. The same calculation is performed for each of the 

classes. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶𝑙𝑎𝑠𝑠 𝐴

=
𝑇𝑃𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝑇𝑁𝐶𝑙𝑎𝑠𝑠 𝐴

𝑇𝑃𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝑇𝑁𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝐹𝑃𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝐹𝑁𝐶𝑙𝑎𝑠𝑠 𝐴

 
(2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 𝐴 =
𝑇𝑃𝐶𝑙𝑎𝑠𝑠 𝐴

𝑇𝑃𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝐹𝑃𝐶𝑙𝑎𝑠𝑠 𝐴

 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠 𝐴 =
𝑇𝑃𝐶𝑙𝑎𝑠𝑠 𝐴

𝑇𝑃𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝐹𝑁𝐶𝑙𝑎𝑠𝑠 𝐴

 (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝐶𝑙𝑎𝑠𝑠 𝐴

= 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝑅𝑒𝑐𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠 𝐴

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝑅𝑒𝑐𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠 𝐴

 
(5) 
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Table 1. Performance comparison of ResNet50 and 

DenseNet121 

 

Class 

ResNet50 DenseNet121 

Recall Precision 
F1-

Score 
Recall Precision 

F1-

Score 

A 93% 91% 92% 93% 88% 90% 

B 90% 81% 85% 90% 85% 88% 

C 76% 75% 75% 76% 83% 79% 

D 72% 75% 80% 77% 83% 75% 

Accuracy 84% 86% 

 

 
 

Figure 6. Confusion matrix of ResNet50 
 

 
 

Figure 7. Confusion matrix of DenseNet121 
 

 
(a) Confusion matrix for class A 

 
(b) Confusion matrix for class B 

 

 
 

(c) Confusion matrix for class C 

 

 
 

(d) Confusion matrix for class D 

 

Figure 8. Confusion matrices of ResNet50 with binary 

classification of classes 

 

The confusion matrix of ResNet50 and DenseNet121 are in 

Figure 6 and Figure 7, respectively. It can be evidenced that 

562 Non – demented cases are identified correctly in ResNet50, 

while DenseNet121 identified 581, providing more value of 

True Positives. Accuracy is the ratio of correctly identified 

cases to the total of all cases. Here, DenseNet121 showed up 

an accuracy rate of 86% while the accuracy of ResNet50 is 
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84%. There may be huge difference when unencrypted images 

are used in the process. Table 1 shows the accuracy of 

DenseNet121 is greater than Resnet50. 

 

 
(a) Confusion matrix for class A 

 

 
(b) Confusion matrix for class B 

 

 
(c) Confusion matrix for class C 

 
(d) Confusion matrix for class D 

 

Figure 9. Confusion matrices of DenseNet121 with binary 

classification of classes 
 

The confusion matrix generated can be redefined by 

following a one-vs-all approach, where each class is 

considered separately, that is, one at a time. This makes the 

selected class positive and all other classes are considered to 

be negative. A binary confusion matrix can be derived for all 

classes discussed. Figures 8 and 9 show the confusion matrix 

of all classes for ResNet50 and DenseNet121, respectively, for 

a more comprehensive evaluation. 

Accuracy curves of ResNet50 and DenseNet121 over the 

encrypted image dataset and the unencrypted image dataset are 

shown in Figure 10. It can be noted that DenseNet121 gives 

better accuracy than ResNet50 because of the fact that the 

number of datasets considered is relatively smaller. This 

suggests that in the case of a small dataset, some specially 

created small-scale networks might be more appropriate for 

medical image classification than heavyweight networks. 

Since client-side machines handle a limited dataset, 

DenseNet121 is more appropriate for image classification than 

ResNet50. Although PHE provides a stronger encryption 

mechanism that eventually results in higher privacy, it can 

marginally reduce the overall performance this is depicted in 

Figure 10. 

In addition to this, Receiver Operating Characteristic–Area 

Under Curve (ROC-AUC) is used for evaluating the trade-off 

between True Positive Rate (TPR) and False Positive Rate 

(FPR). TPR, also called Recall or Sensitivity, is defined in Eq. 

(4). FPR for class A can be defined as in Eq. (6). The same is 

applied for other classes as well. 
 

𝐹𝑃𝑅𝐶𝑙𝑎𝑠𝑠 𝐴 =
𝐹𝑃𝐶𝑙𝑎𝑠𝑠 𝐴 

𝐹𝑃𝐶𝑙𝑎𝑠𝑠 𝐴 + 𝑇𝑁𝐶𝑙𝑎𝑠𝑠 𝐴

 (6) 

 

Figure 11 and Figure 12 give the One-vs-All Receiver 

Operating Characteristic Curve (OvA ROC) of ResNet50 and 

DenseNet121, respectively. While ROC is used for evaluating 

the performance of binary classification models, OvA ROC is 

used for evaluating multi-class classification models. ROC 

curves are plotted between the true positive rate (TPR) and 

false positive rate (FPR) for different threshold values. Each 

point on the ROC curve represents a TPR-FPR pair 

corresponding to a particular decision threshold. In the OvA 
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strategy, each class is treated as the positive class while the 

other classes are treated as negative. This way, a separate ROC 

curve is generated for each class, resulting in multiple ROC 

curves (one for each class). 

 

 
 

Figure 10. Performance of ResNet50 and DenseNet121 over 

encrypted and unencrypted data 

 

Our dataset contains four classes and Class A is given as 

Class 0, B as 1, C as 3 and D as 4. For each class in the dataset, 

a separate binary classifier distinguishes that class from all 

other classes combined. Here, we have 4 classes (A, B, C, D), 

so 4 binary classifiers are trained as A vs (B+C+D), B vs 

(A+C+D), C vs (A+B+D) and D vs (A+B+C). Once the binary 

classifiers are trained, ROC curve for each class is computed 

individually. Area under the ROC curve (AUC) is calculated 

for each class separately. AUC represents the performance of 

the classifier at distinguishing the positive class from the 

negative class. A higher AUC indicates better performance. 
 

 
 

Figure 11. Receiver operating characteristic of ResNet50 

 

 
 

Figure 12. Receiver operating characteristic of DenseNet121 

 

 
 

Figure 13. Comparison of performance metrics of different 

privacy-preserving methods 

 

Table 2. Performance comparison of the proposed encrypted 

model with DP and SL 

 
Method Accuracy Precision Recall F1-Score 

FL with Encryption 86% 91% 93% 90% 

DP 80% 87.5% 88.2% 86.6% 

SL 81.5% 89% 90.1% 88.4% 

 

The proposed FL with encryption model considered now is 

the encrypted DenseNet121 model and it can be compared 

with Differential Privacy (DP) and Split Learning (SL). When 

evaluating the performance metrics, the proposed method 

achieves better model accuracy without degrading the 

performance. When DP is used, the performance of the model 

slightly degrades due to noise addition in images. when 

compared with split learning, the encryption process in FL is 

computationally efficient because SL requires complex data 

exchanges between the peers. Table 2 shows the performance 

metrics of the proposed model in comparison with DP and SL. 

Figure 13 gives the performance comparison of the three 

different privacy-preserving model for better clarification. 
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6. CONCLUSION 

 

The work demonstrates a synthesized framework that uses 

federated learning and PHE for medical image encryption. The 

model allows the medical images to reside on the client end 

itself, without the need to move to a central location. Two pre-

trained CNN models, ResNet50 and DenseNet121, are used 

for training the encrypted images on the client side. Using FL 

and PHE ensures data integrity, confidentiality, privacy, and 

availability. The results show that DenseNet121 performs 

better than ResNet50. Despite several advantages, there are a 

few setbacks also. ResNet-50 is more suitable when the 

framework is used for large datasets with a large number of 

classes, while DenseNet-121 is more parameter-efficient and 

effective in dealing with limited training data or smaller 

datasets as in our case. The proposed framework demonstrates 

improved model accuracy and privacy preservation, with 

results showing that the model consumes less computation and 

communication overhead. 

FedAvg aggregation can be replaced with Secure 

Multiparty Computation. In the future, the results of these two 

models can be compared with a few more advanced deep 

learning models. The dataset considered in this work is images, 

but the medical practitioner predicts the diseases not only 

based on images but also using clinical records, genetic 

information, and lab reports. So, in the future, FL can be 

trained to handle these multi-modal sources for more accuracy. 
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