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This paper presents a new algorithm for automatic skin cancerous ulcer detection, leveraging 

image processing and machine learning techniques to improve diagnostic accuracy. The 

proposed method consists of two main phases: learning and detection, preceded by a crucial 

pre-processing step to enhance image quality. The presence of hair can obscure ulcerated 

regions, leading to inaccurate detection. To address this, the DullRazor algorithm is applied, 

effectively removing hairs while preserving critical lesion details. This step ensures clearer 

feature extraction in subsequent stages. A dataset of 200 manually annotated ulcer images 

is analyzed to identify distinguishing characteristics. Three key reference feature vectors are 

derived: Texture (Capturing roughness and irregularity patterns), Relative Color 

(Comparing ulcer hues against surrounding healthy skin), and Color (Identifying disease-

specific pigmentations). An analysis window scans the lesion, comparing local features 

against the reference vectors. If the extracted features closely match, the region is classified 

as ulcerated. Distance metrics or machine learning classifiers likely determine similarity 

thresholds. Two methods are used to evaluate the suggested algorithm. A dermatologist will 

subjectively (qualitatively) determine if the detection is "Good", "Fairly good", or "not 

detected", objectively, based on whether the ulcer is there or not. The results of the proposed 

algorithm are encouraging, as they gave promising results.   
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1. INTRODUCTION

The Basal cell carcinoma (BCC) is the most common of all 

cancers in North America and Europe [1], accounting for 

approximately 70% to 90% of carcinomas. It is common in 

men over the age of 50 [2]. In Switzerland, there are about 

15,000 new cases of skin cancer [2]. This rate is much higher 

in the United States, where more than 3 million people are 

diagnosed with skin cancer each year [3]. 

In France, there are about 60,000 new cases (70 individuals 

per 100,000 inhabitants per year), and in Australia up to 400 

cases per 100,000 inhabitants per year [4]. The surgical 

procedure is the most effective method to eliminate early 

cancerous lesions. Dermoscopy is effective in the naked eye 

diagnosis in terms of improving the detection rate of CBCs and 

reducing the number of biopsies [5, 6]. For wide screening, an 

automated system for the analysis of dermoscopy images is a 

practical, rapid, and objective tool for decision support. 

The purpose of our work is to use image processing 

techniques to automate the detection of one of the 

characteristics of basal cell carcinoma, which is the ulcer. We 

will explain the different steps of the proposed algorithm, 

whose goal is the detection of ulcers in cancerous carcinoma 

lesions. After a pre-processing that consists of removing hair 

by the DullRazor method, the proposed algorithm consists of 

two phases. Learning and detection phase. 

The implementation of the proposed algorithm is presented 

in Section 3. In Section 4 we present the performance of the 

proposed algorithm. Finally, the conclusion is presented in 

Section 5. 

2. ULCER FEATURES DETECTION

Ulcers are frequently seen in basal cell carcinoma lesions. 

An ulcer without a history of trauma, called "atraumatic", is an 

important identifier for basal cell carcinoma [7]. The ulcers 

change in intensity of the red color with time. The mild early 

ulcers appear bright red with a saturated color due to undiluted 

fresh blood (Figure 1 (a)), progress to larger areas (Figure 1 

(b)), and finally appear reddish-brown and dry during the stage. 

healing (Figure 1 (c)) [7]. 

2.1 Pre-processing 

In order to remove the hairs that cover the lesion, the 

DullRazor algorithm [8] is used in Many techniques to remove 

hair and to cover lesion [9-11]. 

• DullRazor algorithm

The algorithm is based on three basic steps: 
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Figure 1. Ulcer evolution 

 

A) Hair location 

The three R, G, and B planes of the image are separately 

submitted to the closure morphological operation. Using the 

linear structuring element of 11 pixels according to the three 

orientations 0°, 45° and 90°. 

• The horizontal structuring element (0°) 

 

𝑆0 = [0 1 1 1 1 1 1 1 1 1 1 1 0] 
 

• The vertical structuring element (90 °) 

 

𝑆90 =

[
 
 
 
 
 
 
 
 
 
 
 
 
0
1
1
1
1
1
1
1
1
1
1
1
0]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

• The diagonal structuring element (45°) 

 

S45=

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 
 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0
 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 1 0 
 0 0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 

 

 

Tests have shown that these three structuring elements in 

the different orientations are more suitable for the detection of 

hairs. The DullRazor algorithm calculates for each closing 

operation, in the three directions, the maximum of matrix 

components obtained. The difference between the color 

component and the matrix obtained is calculated as: 

 

Gr = |Ir − max (Ir • S0, Ir • S90, Ir • S45) | (1) 

 

Gv = |Iv − max(Iv • S0, Iv • S90, Iv • S45)| (2) 

Gb = |Ib − max(Ib • S0, Ib • S90, Ib • S45)| (3) 

 

• Ir, Iv , Ib : Respectively the red, green and blue 

components of the original image. 

• Gr, Gv, Gb: Closing at gray level, red, green and blue 

color components of the original image. 

A binary mask M(x, y) is generated for each color 

component by comparing the value of each pixel with a 

predefined T empirical threshold (Figure 2). 

 

Mr(x, y) = {
1 if G𝑟 > T

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

 
 

Figure 2. Process results 

 

The process is the same for the green and blue components. 

For maximum detection, the final mask of the hairs M of the 

original image is obtained by the union of the three masks red, 

green and blue. 

 

M = Mr ∪ Mv ∪ Mb (5) 

 

B) Hair replacement 

The mask M is used to locate the pixels of the bristles. The 

pixel is considered only if it is within a structure of maximum 

dimension greater than 50 and of minimum dimension of less 

than 10 pixels. For each pixel I (x, y) of the mask, the eight 

directions are considered. To avoid using pixel hair, the 

algorithm records the values I1 (x1, y1) and I2 (x2, y2) of the 

eleventh pixels from the edge of the hair, along the shortest 

line. 

The new intensity value of the pixel I (x, y) denoted 

 In (x, y)depends on the pixels I1and I2as: 

 

In(x, y)

=  I2(x2, y2)
D(I(x, y), I1(x1, y1))

D(I1(x1, y1), I2(x2, y2))

+ I1(𝑥1, 𝑦1)
D(I(x, y), I2(x2, y2))

D(I1(x1, y1), I2(x2, y2))
 

(6) 

 

where, 

 

D(I2(x2, y2), I1(x1, y1))

= √(x2 − x1)
2 + (y2 − y1)

2 
(7) 

D: The Euclidean distance between the two 

pixels I2(x2, y2) and I1(x1, y1). 

 

C) Smoothing 

The algorithm proposes for this a smoothing by a window 

5×5 follow of a morphological operation dilation with a 

structuring element square of size 5×5 [12, 13] (Figure 3). 
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Figure 3. DullRazor algorithm 

 

2.2 Ulcer features extraction 

 

In order to identify the features that best represent the ulcer, 

features were extracted solely from the ulcer. To do this, parts 

of the ulcer are manually framed and saved as thumbnails 

image as shown in Figure 4. A base of 200 thumbnails is 

extracted and used to search for a reference vector. 

 

 
 

Figure 4. Image extraction 

 

The extraction process of the reference characteristic vector 

is represented by the following flowchart (Figure 5). 

 

 
 

Figure 5. Ulcer reference features extraction 

2.3 Texture features 

 

The texture features are extracted from the co-occurrence 

matrix for each blue (B) plane image. The choice of the plane 

and the parameters of the co-occurrence matrix: distance 

between a pair of pixels (d=1) and its orientation (θ=0) are 

fixed by experiment [14-16]. 

From each image, 23 Harlick features [17, 18] are calculated 

as follows: 

• Contrast 

 

F1 = ∑∑|i − j|2p (i, j)

ji

 (8) 

 

where, 

p(i, j): standardized co-occurrence matrix. 

• Reverse difference 

 

F2 = ∑
p(i, j)

1 + |i − j|
 (9) 

 

Ng: number of distinct gray levels in the quantized image. 

 

• Correlation 

Is a measure of linear gray level dependencies in the image. 

Quantified with two equations. 

 

• Correlation 1 

 

F3 = ∑∑
(i − μ𝑥)(j − μ𝑦)p(i, j)

σxσy
ji

 (10) 

 
where, 

 

μx = ∑∑i. p(i, j)

ji

 

μ𝑦 = ∑ ∑j. p(i, j)

ji

 

σx = ∑∑(i − μx). p(i, j)

ji

 

𝜎y = ∑∑(i − μy). p(i, j)

ji

 

 

• Correlation 2 

 

F4 = ∑∑
(i. j) p( i, j) − μx μ𝒚

σxσy
ji

 (11) 

 

• Energy 

It measures the uniformity of the texture which is the 

repetition of the pairs of pixels. 

 
F5 = ∑ ∑ P(i, j)ji

2 (12) 
 

• Homogeneity 

This statistic is also called reversed moment of difference, 

it measures the homogeneity of the image; it is more sensitive 

to the presence of elements close to the diagonal in the GLCM 

and to a maximum value when all the elements of the image 

are identical. 

- Homogeneity 1 
 

F6 = ∑∑
p(i, j)

1 + |i − j|
ji

 (13) 
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- Homogeneity 2 
 

F7 = ∑∑
p(i, j)

1 + |i − j|.2
ji

 (14) 

 

• Entropy 

 

Measures the disorder of an image. 

 

F8 = −∑ ∑p(i, j). log(𝑝(𝑖, 𝑗))

ji

 (15) 

 

• Auto-correlation 

 

F9 = ∑ ∑(i. j)p(i, j)

ji

 (16) 

 

• Cluster prominence 

 

F10 = ∑∑(i + j − μx − μy)
4p(i, j)

ji

 (17) 

 

• Cluster shadow 

 

F11 = ∑∑(i + j −

j i

μx − μy)
3p(i, j) (18) 

 

• Unlikeness 

 

F12 = ∑ ∑|i − j| p(i, j)

ji

 (19) 

 

• Maximum probability 

 

F13 = max p(i, j) (20) 

 

• Variance 

 

F14 = ∑ ∑(i − m)2p(i, j)

ji

 (21) 

 

where, 

m: mean value of p (i, j). 

 

• Averages sum 

 

F15 = ∑i px+y

2Ng

i=2

(i) (22) 

 

where, px+y(k) = ∑ ∑ p(i, j)
Ng

j=1

Ng

i=1
k=2, 3………, 2Ng. 

 

• Entropysum 
 

F16 = −∑(

2Ng

i=2

px+y(i). log{px+y(i)}) (23) 

 

 

 

• Variance sum 

 

F17 = ∑(i − F16)2

2Ng

i=2

px+y(i) (24) 

 

• Variance 

 

F18 = ∑ i2px−y(i)

Ng−1

i=0

 (25) 

 

where, px−y(k) = ∑ ∑ p(i, j)
Ng

j=1

Ng

i=1
, k = 0, 1, .., Ng – 1. 

 

• Entropy difference 

 

F19 = − ∑ px−y

Ng−1

i=0

(i) log(px−y(i)) (26) 

 

• Correlation information measurement1 

 

F20 =
HXY − HXY1

max (HX, HY)
 (27) 

 
where, 

 

HX = − ∑px(i). log (px

i

(i)) 

HY = −∑py(i). log (py

i

(i)) 

HXY = −∑ ∑p(i, j). log (p(i, j))

ji

 

HXY1 = −∑∑ p(i, j). log (px

ji

(i)py(j)) 

 

• Correlation information measurement 2 

 

F21 = (1 − exp {−2(HXY2 − HXY)})1/2 (28) 

 

where, 

 

HXY2 = −∑∑ px(i)py

ji

(j). log {px(i)py(j)} 

 

• Normalized inverse difference 

 

F22 = ∑∑
p(i, j)

1 + |i − j|2

Ng
⁄ji

 
(29) 

 

• Standard inverse moment of difference 

 

F23 = ∑ ∑
p(i, j)

1 + (i − j)2

Ng
⁄ji

 
(30) 
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Each image is defined by its feature 

vector.

 
 
 
 
 
 
 

𝑰𝒎𝒂𝒈𝒆 𝟏
𝑰𝒎𝒂𝒈𝒆 𝟐
𝑰𝒎𝒂𝒈𝒆 𝟑

.

.

.
𝑰𝒎𝒂𝒈𝒆 𝟐𝟎𝟎 

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑭(𝟏,𝟏)𝑭(𝟏,𝟐)𝑭(𝟏,𝟑)𝑭(𝟏,𝟒)          . . .          𝑭(𝟏,𝟐𝟐)   𝑭(𝟏,𝟐𝟑)

𝑭(𝟐,𝟏)𝑭(𝟐,𝟐)𝑭(𝟐,𝟑)𝑭(𝟐,𝟒)          …           𝑭(𝟐,𝟐𝟐)  𝑭(𝟐,𝟐𝟑)

𝑭(𝟑,𝟏)𝑭(𝟑,𝟐)𝑭(𝟑,𝟑) 𝑭(𝟑,𝟒)         . . .           𝑭(𝟑,𝟐𝟐)𝑭(𝟑,𝟐𝟑)

.

.

.
𝑭(𝟐𝟎𝟎,𝟏)𝑭(𝟐𝟎𝟎,𝟐)𝑭(𝟐𝟎𝟎,𝟑) 𝑭(𝟐𝟎𝟎,𝟒)     . . .    𝑭(𝟐𝟎𝟎,𝟐𝟐)𝑭(𝟐𝟎𝟎,𝟐𝟑)]

 
 
 
 
 
 
 

 

 

Subsequently, the texture reference vector (VrefT), which 

represents the ulcer features, is calculated as the median of the 

characteristic vectors of the 200 images, 

 

VrefT = [median(F(i, 1)),median(F(i, 2)), …, 
median(F(i, 23))] 

(31) 

 

2.4 Ulcer color features [18, 19] 

 

The extracted color features are the medians of the R, G and 

B planes of the 200 ulcer images (Figure 6). 

 

 
 

Figure 6. Ulcer images were decomposed into their 

respective red (R), green (G), and blue (B) planes 

 

Each image is defined by its vector of color characteristics, 

which are the medians of the red (mR), green (mG), and blue 

(mB) planes. 

 

 
 
 
 
 
 
 

𝑰𝒎𝒂𝒈𝒆 𝟏
𝑰𝒎𝒂𝒈𝒆𝟐
𝑰𝒎𝒂𝒈𝒆 𝟑

.

.

.
𝑰𝒎𝒂𝒈𝒆 𝟐𝟎𝟎 

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝒎𝑹𝟏                 𝒎𝑮𝟏               𝒎𝑩𝟏
𝒎𝑹𝟐                𝒎𝑮 𝟐              𝒎𝑩𝟐
𝒎𝑹𝟑                 𝒎𝑮𝟑               𝒎𝑩𝟑

.

.

.
𝒎𝑹𝟐𝟎𝟎         𝒎𝑮𝟐𝟎𝟎        𝒎𝑩𝟐𝟎𝟎]

 
 
 
 
 
 

 

 

The color reference vector VrefC is the median of the 

feature vectors of the 200 images. 

 

VrefC = [
median(mR(k)) median(mG(k)) 

median(mB(k))
] (32) 

 

2.5 Relative colors 

 

Relative color features use the colors of healthy skin and the 

color of the ulcer [20, 21]. Are calculated as: 

(1) The mask is dilated using the morphological operator 

dilation with a disk structuring element of radius r=20. (Figure 

7) 

(2) The mask of the healthy skin surrounding the lesion is 

obtained from the subtraction between the dilated mask and 

the original image mask (Figure 8). 

Using the mask of the skin (Figure 8), the measures 

𝑀𝑝𝑒𝑎𝑢𝑅 , 𝑀𝑝𝑒𝑎𝑢𝐺  and 𝑀𝑝𝑒𝑎𝑢𝐵 ,which represent, 

respectively, the median of the red, green and blue planes of 

the skin are calculated. 

 

 
(a) Original image     (b) Lesion manual mask 

 

Figure 7. Dilated mask 

 

 
 

Figure 8. A mask of healthy skin surrounds the lesion 

 

Relative colors are defined as: 

 

𝑟𝑒𝑙𝑅 = 𝑀𝑝𝑒𝑎𝑢𝑅 − 𝑀𝑢𝑙𝑐𝑅 (33) 

 

The MulcR, MulcG and MMulcB measurements represent, 

respectively, the median of the red, green and blue ulcer plane. 

where, relR is the relative color of the ulcer area of the red 

plane. Similarly, relG and relB for the green and blue planes, 

respectively. Then, the vector of the relative ratios of color, 

which one notes VrefCr, is calculated like: 

 

𝑉𝑟𝑒𝑓𝐶𝑟 = [
𝑟𝑒𝑙𝑅

𝑟𝑒𝑙𝐺
,
𝑟𝑒𝑙𝐵

𝑟𝑒𝑙𝑅
,
𝑟𝑒𝑙𝐺

𝑟𝑒𝑙𝑅
] (34) 

 

 

3. DETECTION PHASE 

 

The idea is to scan the lesion by a dimension analysis 

window (10×15), the size of the window is chosen so that you 

can select the parts of the ulcer. 

In order to reduce the sweeping time, the frame delimited 

by the ends of the contour of the lesion (manual contour) is 

scanned. Figure 9 shows how much space you can not sweep. 
 

 
a) Without frame                      b) With frame 

 

Figure 9. Gain of sweeping space 
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Figure 10. Principle of ulcer detection 

 

From each analysis window, the three feature vectors 

(texture, color, and relative color) are measured. Then, we 

measure the difference of these three vectors with the 

reference feature vectors (texture: VrefT, color: VrefC, and 

relative color: VrefCr). By setting three empirical thresholds, 

a window is said to be ulcerated (selects an ulcer portion) if 

the difference is small enough. The following flowchart shows 

the principle of ulcer detection (Figure 10). 
 

 

4. EXPERIMENTAL AND DISCUSSIONS 
 

This section is devoted to the experimental part which 

consists of two steps. The first step is to set the different 

empirical thresholds used in the algorithm. The second step is 

to perform the proposed method on dermoscopic images of 

ulcerated CBC lesions to evaluate the performance of the 

proposed algorithm. 
 

4.1 Datasets 
 

A dataset of 50 dromoscopic images is used, early basal cell 

carcinoma (BCC) cancer, size 1024×768. All lesions have a 

non-traumatic ulcer. Some pictures are covered with hair. 20 

images were used for learning, which consists in selecting the 

most discriminating characteristics (texture, color, and relative 

color) among the 29 extracts. 

The skin ulcer exhibits greater chromatic variability 

(pigmentary heterogeneity), according to the clinical 

interpretation and experimentation which provides an 

objective threshold based on the actual data distribution, 

statistically validated, and clinically relevant for the detection 

of skin ulcer with High sensitivity (early detection) and High 

specificity (reduction of false positives) 

Finally, the thresholds used for the three feature vectors, 

texture, color and relative color are fixed respectively as: 
 

{
Threshold 1 = 25

Threshold 2 = 0.455
Threshold 3 = 0.45

 

 

The following flowchart summarizes the process of ulcer 

detection in the analysis window (Figure 11). 

The use of the texture (23), color (3), and relative color (3) 

features, in addition to the ulcer, detects false positives, which 

are either veins or part of the reddish skin. Figure 12 shows the 

detection of circled false positives. 

Since the principle of detection is to label an analysis 

window as an ulcer if its characteristics are similar or very 

close to the reference characteristics ( VrefT , VrefC,  and 

VrefCr ). The comparison between the latter and the 

characteristics of the false positives allowed us to keep only 

10 texture features, 3 color, and 1 relative color. Table 1 shows 

the selected features. 

 

 
 

Figure 11. Ulcer detection 
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Table 1. Selected features 

 

Features Equation Description 

Texture 

F5 = ∑ ∑ P(i, j)ji
2 Energy 

F8 = −∑∑p(i, j). log (p(i, j))

ji

 Entropy 

F9 = ∑∑(i. j)p(i, j)

ji

 Auto-correlation 

F10 = ∑∑(i + j

ji

− μx − μy)
4p(i, j) Cluster prominence 

F11 = ∑∑(i + j −

j i

μx − μy)
3p(i, j) Cluster shadow 

F12 = ∑∑|i − j| p(i, j)

ji

 Dissimilarity 

F14 = ∑∑(i − m)2p(i, j)

ji

 Variance 

F15 = ∑i. px+y

2Ng

i=2

(i) 
Mean sum 

 

F16 = −∑(

2Ng

i=2

𝑝𝑥+𝑦(i). log{𝑝𝑥+𝑦(i)}) Entropy sum 

F17 = ∑(i − F16)2

2Ng

i=2

px+y(i) Variance sum 

Color 

𝑚𝑅 
𝑚𝐺 
𝑚𝐵 

Median of red plane 

Median of green plane 

Median of blue plane 

Relative Color 
𝑟𝑒𝑙𝑅

𝑟𝑒𝑙𝐺
 Relative color of the ulcer area of the plane (R, G) 

 

(a) Original image 
(b) detection of false 

positives 
 

Figure 12. Detection of false positives 

 

  
a) with 29 features b) with 14 features 

 

Figure 13. Detection result 

 

With : 

 

𝑉𝑟𝑒𝑓𝑇 = [3.300 1.104 0.169 0.043  0.753 0.491 3.261 

 3.429 10.314 0.463] 
𝑉𝑟𝑒𝑓𝐶 = [0.69298 0.00030101    7.3407e − 005] 

𝑉𝑟𝑒𝑓𝐶𝑟 = 0.45 

 

Figure 13 shows the refinement of ulcer detection after 

removal of features that do not represent an ulcer (reduction 

from 29 to 14 characteristics). 

To evaluate our algorithm, 60 images were used (30 healthy, 

30 ulcers). The algorithm was evaluated in two ways: 

subjective evaluation by a dermatologist, and objective 

evaluation for each part of the classes. 

 

4.2. Performance for metrics classifiers 
 

In medical expression, instances are considered as positive, 

indicating the existence of the disease, and negative, indicating 

the absence of the disease; thus, four possibilities arise when 

medical images are submitted to the classifiers: 

- TP-True Positive: classified positive cases 

correctly. 

- TN-True Negative: classified negative cases 

correctly. 

- FP-False Positive: classified negative cases 

incorrectly 

- FN-False Negative: classified positive cases 

incorrectly. 

 

The metrics that were considered to evaluate the classifiers 

for these were: 

• Accuracy: 
 

𝑎𝑐𝑐𝑢𝑎𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

• Precision: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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With the help of dermatologist Dr ARROUDJ Aissa, quoted 

SOMACOB, Bejaia, we were able to evaluate our results by 

dividing them into three categories: "Good", "Pretty good ", 

and "Evil". 

Ulcer tissue: 

• "Good": means that the ulcer is well 

detected. (True positive) 

• "Pretty good": means that the algorithm 

could not detect part of the ulcer. (false 

positive) 

• "Evil": means that the algorithm could 

not detect the ulcer or in addition to the 

ulcer, the algorithm detects an un-

ulcerated part (false positive). 

Healthy tissue: 

• "Good": means that the ulcer is absent. 

(True negative) 

• "Evil": means that the algorithm an un-

accurate part (false positive). 

 

4.3 Analyzing the result 

 

This evaluation method is subjective, which is not optimal 

because of the lack of numerical measurements. Several works 

of segmentation of the dermoscopic lesions evaluated their 

results subjectively (well, rather well, badly ...), on the one 

hand because the manual segmentation differs from one 

dermatologist to another and on the other hand by lack of 

reference data. 

The following Table 2 illustrates the subjective results 

obtained: 

 

Table 2. Classification results 

 

Detection 
Well  and Pretty 

Detected 

Badly 

Detected 

Time Execution 

(mn) 

30 images 

(ulcer) 

28 2 24.825 

29 1 20.317 

 

The confusion matrix of the method that describes the 

complete performance of the model is shown in Figure 14, this 

generates a accuracy of à.95 and precision of 0.96. 

Figure 15 shows lesions with ulcer detection classified as 

"good and pretty good". 

 

 
 

Figure 14. Confusion matrix 

  

  

  

  

  
 

Figure 15. Ulcer good and pretty well detected 

 

  
 

Figure 16. Ulcer badly detected 

 

 
 

Figure 17. Ulcer not detected 

 

 
 

Figure 18. Ulcer badly detected in the presence of bubbles 

due to immersion fluid 
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Figure 16 shows lesions with healthy skin classified as ulcer 

tissue. 

Objectively the result of the algorithm is a binary 

classification, ulcer detected or not detected. In this case, 28 

out of 30 lesions are classified as ulcerated during 

24.825minut. 

However, the healthy images are classified as healthy with 

a percentage of 96.6% during 20.317 minut. 

Chino et al. [22] used the manually segmented ulcer 

characteristics in order to classify benign lesions and 

cancerous lesions of basal cell carcinoma type. This work has 

shown the feasibility of the goal. Extracted features are based 

on texture and color. 

In this work, the features extracted by Serkan and al. Have 

been enhanced for the purpose of automating ulcer detection. 

Subjective evaluation, in first part on the total of 30 ulcerated 

lesions, the algorithm detected the ulcer in 28 images, and not 

detected in 2 images. In the last part, the 30 healthy images are 

classified as 29 healthy image as true negative and detect a 

false ulcer in the last image. 

The objective evaluation showed a very good ability to 

identify the ulcer by the algorithm, 28 lesions well classified 

as ulcerated, or 93.33%. Figure 17, and Figure 18 illustrate the 

not detected ulcer. 

 

 
(a) Original image 

 

 
(b) Hairs as false positives 

 

 
(c) After hair filtering 

 

Figure 19. Results before and after hair removal 

DullRazor has shown its effectiveness in hair removal and 

thus minimizes detection of false positives by our algorithm, 

see the Figure 19. Knowing that DullRazor filters black hair, 

it has been found that it can filter small areas of ulcer that 

appear black at the gray level. 

 

 

5. CONCLUSION 

 

In this paper, we have presented a new algorithm for skin 

cancerous ulcer detection. The first step is a pretreatment, 

which consists of removing the hairs covering the lesion and 

the ulcerated parts using the DullRazor algorithm. A set of 200 

ulcer images are extracted manually, in order to study its 

characteristics. Three reference feature vectors based on 

texture, color and relative color, are selected. 

The proposed algorithm is evaluated in two ways. 

Subjectively (qualitatively), by a dermatologist depending on 

whether the detection is "Good", "Fairly good" and "not 

detected". Objectively, according to the presence or absence 

of the ulcer. The two results showed that the algorithm is 

satisfactory. The results obtained are quite interesting, in a 

subjective way. In the first part the 30 ulcerated images, 28 

were detected well and pretty well, and 2 were not detected, 

and objectively, 28 were detected and 2 not detected. In the 

second part; the 30 healthy images, 29 were classified as 

healthy images, and in the last images, an ulcer was detected, 

achieving at the end an accuracy of 95%. 

Several improvements can be made to this algorithm by 

acting at the level of the filtering, in particular the filtering of 

bubbles due to the immersion liquid and the removal of hairs 

in an efficient manner without being able to touch the ulcer. A 

large image database will refine the choice of empirical 

thresholds, which is one of the important parameters that 

improve detection quality. 
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