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This paper presents the design of a safe formation control approach for homogeneous multi-

robot systems with double-integrator dynamics—a model integrating inertial dynamics, 

which are essential for accurate control during high-speed manoeuvres. To ensure safe 

navigation, a real-time control scheme is proposed, in which formation constraints and 

collision avoidance are formulated as control barrier function (CBF) conditions within a 

quadratic program (QP). Forward invariance of the safe formation set is achieved by 

guaranteeing a minimum safety margin, preserving formation geometry, and forcing the 

system to stay in the safe set. Collision-free transitions between different shapes are 

achieved through CBF. Numerical simulations in cluttered, dynamic environments 

demonstrate that our approach preserves formation integrity and prevents collisions without 

sacrificing agility. These results demonstrate the advantages of combining elastic formation 

flexibility with safety guarantees, which constitutes a promising approach for agile and 

scalable coordination. 
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1. INTRODUCTION

Faced with the inability of a single robot to perform 

complex tasks, due to its limitations, failures and 

environmental difficulties, there is a strong motivation to 

coordinate with other robots to overcome the incapacity in the 

face of complex tasks, inspiring groups of birds or fish. A 

multi-robot system contains two or more robots; this type of 

system is used in many fields, such as surveillance, rescue, and 

exploration of dangerous or congested areas. The difficulty of 

controlling a multi-robot system has prompted researchers to 

develop theoretical and algorithmic avenues for increasing 

system stability and maintaining a high level of safety. 

In contrast to single-integrator models that omit 

acceleration, double-integrator dynamics offer a more 

accurate depiction of robotic platforms, where control inputs 

relate to acceleration instead of velocity. The selection of this 

model is crucial in scenarios requiring rapid or agile 

movements, such as drone swarms, autonomous driving, or 

legged robotics, where inertial effects profoundly impact 

system behavior and must be explicitly incorporated into the 

control architecture. By integrating second-order dynamics, 

control techniques can more efficiently manage the motion 

and response of agents within physical limitations. 

The main objective in general is to guide the robots while 

respecting the constraints linked to their capacities, the 

navigation space, and the task to be carried out. All this 

according to their detection capacities and the topology of 

communication between them. Different problems of 

formation control have been treated in the literature: 

distributed consensus [1-4]; leader-follower [5, 6]; artificial 

potential fields [7, 8]; graph rigidity and distance-based shape 

control [9, 10]; distributed model predictive control [11, 12]; 

safety via control barrier functions (CBF) [13-16]; and 

learning-based methods [17-20]. 

Control Barrier Functions (CBFs) [13, 15] have become a 

cornerstone for enforcing hard safety constraints such as inter-

robot collision avoidance because they translate physical rules 

into real-time inequalities that are satisfied by solving a 

Quadratic Program (QP) at every control step. Although a 

single, centralized CBF-QP guarantees safety, its 

computational cost escalates rapidly with the number of 

robots. Recent work therefore introduces distributed CBF 

formulations in which each robot solves a lightweight local QP 

that depends only on its own state and occasional neighbors 

information, yet still preserves global safety certificates 

through graph-theoretic guarantees [21]. 

The CBF framework has been expanded in recent years to 

accommodate increasingly complex systems and task 

requirements. To enforce safety constraints on systems with 

relative degrees greater than one, as is frequently the case in 

double-integrator or underactuated robotic dynamics, Higher-

Order Control Barrier Functions (HOCBFs) [22-24] have been 

proposed. By creating a series of inequality constraints that 

guarantee higher-order derivatives of safety functions stay 

bounded, HOCBFs make safe set invariance possible. 

Applications like multi-vehicle lane keeping, quadrotor 

navigation, and manipulation tasks where safety involves 
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acceleration-level constraints have demonstrated the potential 

of these techniques. Additionally, recent advances have 

demonstrated that HOBFs expand the class of systems and 

constraints for which explicit, real-time safety enforcement is 

possible, accommodating nonuniform and state-dependent 

relative degrees and relaxing assumptions on system 

completeness and regularity [25]. Moreover, HOBFs admit 

robustness properties: the resulting safe sets can be rendered 

asymptotically stable, ensuring resilience to modelling 

perturbations and external disturbances. In performance-

critical applications, designers can also define regions where 

nominal control policies are implemented, maximizing 

efficiency while preserving safety [25]. 

The local objective often focusses two priorities: (i) 

preserving closeness to a nominal control input, frequently 

produced by a formation-tracking proportional-derivative 

(PD) controller, and (ii) enforcing desired relative offsets that 

define or adjust the formation. The integration of consensus-

based distributed optimization algorithms, particularly the 

consensus alternating direction method of multipliers 

(ADMM), enhances scalability and fault tolerance inside the 

CBF-QP framework. These algorithms partition the global 

coordination job into low-dimensional subproblems, 

necessitating only local variable exchanges with immediate 

neighbors. Convergence is assured under mild convexity 

conditions. The distributed CBF-QP and consensus 

optimization layers offer a systematic and computationally 

efficient approach to ensuring provably safe, real-time 

coordination in extensive multi-robot systems, independent of 

centralized control. 

The paper is organized as follows: Section 2, presents the 

proposed methodology for distributed formation control in 

multi-robot systems with double-integrator dynamics. It 

covers the system modeling, the formulation of desired and 

deformable formations, and the application of CBFs and 

HOCBF, including their higher-order extensions, to ensure 

safety and stability. Section 3 provides simulation results and 

discusses the performance of the proposed approach in various 

scenarios. 

We conclude in Section 4, by discussing the implications 

and limitations of our results, and summarizing the main 

findings and outlining potential directions for future research. 

 

 

2. METHODOLOGY 

 

2.1 Multi-robot system with double integrator dynamics 

 

Single-integrator models, with their simplicity and 

tractability, insufficiently represent the inertial characteristics 

of physical systems, rendering them unsatisfactory for 

applications requiring rapid or forceful manoeuvres. The 

double-integrator model provides a more accurate and 

physically consistent framework for the control of robotic 

systems, particularly in situations where control inputs 

influence acceleration directly rather than velocity.  

Consider a team of 𝑁  robots, each robot i1, …, N is 

modeled by a double integrator dynamic:  

 

,

,

i i

i i

p v

v u

=


=
 (1) 

 

where, 𝑝𝑖 ∈ ℝ𝑛 , 𝑣𝑖 ∈ ℝ𝑛  and 𝑢𝑖 ∈ ℝ𝑛  are the position, 

velocity and control input (acceleration) respectively of robot 

i. The state vector is 𝑥𝑖 = [𝑝𝑖
𝑇 , 𝑣𝑖

𝑇]𝑇 ∈ ℝ2𝑛, with dynamics: 
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The global state of the team of 𝑁 robots is given by: 
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The global dynamics of the robot team are then: 
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2.2 Desired formation 

 

Let 𝒢 = (𝒱,ℰ) be an undirected graph with vertex set 𝒱 =
{1,… , 𝑁} (robots) and edge set ℰ ⊆ 𝒱 × 𝒱 is the set of edges 

(connections links), the neighbors set of agent i is defined as: 

 

{ | ( , ) , }.i j j i i j=    (4) 

 

A desired formation is defined by desired relative positions 

𝛿𝑖𝑗
𝑑 ∈ ℝ𝑛 between robots i and j by: 

 

( ) ( ) , ( , ) .d

i j ijp t p t i j− =    (5) 

 

Remark 1. In practical terms, achieving a strictly rigid 

formation is challenging. The formation should be nearly 

rigid: the robots must maintain a desired or target formation 

while allowing for adjustments, when necessary, such as 

avoiding collisions or modifying their trajectories to reach the 

goal. 

The formation constraint can be reformulated as follows: 

 

( ) ( ) ( , ) ,d

i j ijp t p t i j − −   ‖ ‖  (6) 

 

where, ε represents a tolerance that provides flexibility in 

maintaining the distance between the robots. This constraint 
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allows the robots to have a small deviation from the desired 

distance, ensuring the formation remains cohesive while 

accommodating practical adjustments. 

 

2.3 Deformation and reformation process 

 

When navigating through constrained environments, the 

formation scales and rotates the offsets to avoid collisions with 

obstacles and between robots: 

 

( ) ( ) ,adapt d

ij ijt t =  (7) 

 

where, 𝛤(𝑡) ∈ ℝ𝑛×𝑛 is the deformation matrix. After avoiding 

obstacles, the multi-robot system should temporarily adjust its 

formation shape and then autonomously return to its original 

configuration with stable and guaranteed recovery. In practice, 

a rigid formation cannot navigate safely, for example, to pass 

through a narrow corridor, bypass a large obstacle, or navigate 

over uneven terrain. To overcome these difficulties, a 

deformation process (changing the geometric shape) is 

essential in the above situations to maintain the safety of the 

system. 

The formation must safely navigate from an initial state to 

a target state by satisfying the following requirements: 

maintaining the desired formation along the trajectory, 

controlling the deformation of the geometric shape, ensuring 

that the robots avoid colliding during the deformation process, 

and ensuring system stability. Achieving these goals involves 

precise coordination and communication among the robots, as 

well as robust algorithms that can adapt to changing situations. 

 

2.4 CBF 

 

In a multirobot system, ensuring the safety of the robots, 

particularly avoiding collisions, is of paramount importance. 

CBF provides a robust framework for guaranteeing safety in 

dynamic systems by enforcing state constraints that must be 

satisfied at all times [13-15]. In this section, we apply CBF to 

a system of N robots, each robot is modelled by a double 

integrator dynamic, to ensure that the robots maintain a 

minimum distance from each other and avoid collisions during 

their motion. To ensure that the robots do not collide during 

their movement, we define a control barrier function that 

enforces a minimum distance between each pair of robots. 

For each pair of robots i and j, defining a function 

ℎ𝑖𝑗:ℝ
2𝑛 → ℝ by: 
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where, 𝑑𝑚𝑖𝑛 is the desired minimum distance between robots. 

To ensure collision avoidance, the barrier function must 

remain be non-negative: 
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Therefore, the control input ui(t) must be adjusted to 

guarantee that this condition is maintained over time, taking 

the time derivative of ℎ̇𝑖𝑗, we obtain: 
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To guarantee the forward invariant of the safe set 𝒞 defined 

by: 
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We enforce the condition [13]: 
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where, 𝛼(·):ℝ → ℝ  is a strictly increasing function [25], 

typically chosen as a class 𝒦  function such that 𝛼(0) = 0, 

which ensures that when the robots get too close, the rate of 

change of ℎ𝑖𝑗 is limited, forcing the robots to move away from 

each other. 

Remark 2. Standard first-order CBFs are insufficient for 

this system since they are designed for systems where the 

control input directly influences the first derivative of the state. 

In this case, the control input doesn't show up directly in the 

time derivative of the barrier function. This is why HOCBFs 

are used to enforce safety constraints at the acceleration level. 

 

2.5 HOCBFs 

 

HOCBFs are necessary for systems with a relative degree 

greater than one, such as double integrator dynamics, to ensure 

safety by explicitly incorporating higher-order state 

derivatives (e.g. acceleration inputs) into constraints, thus 

guaranteeing collision avoidance even when the control input 

does not directly affect the first derivative of the safety 

condition. 
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The safety constraint thus becomes: 

 

1 2( ) ( ) 0,ij ij ijh h h + +   (14) 

 

where, 𝛼1(·)  and 𝛼2(·)  are functions that are strictly 

increasing, typically chosen as class 𝒦  functions with 

𝛼1(0) = 0 and 𝛼2(0) = 0. 

This guarantees the forward invariance of the safe set, 

meaning that the robots will maintain the required minimum 

distance from each other over time.  

 

 

3. RESULTS AND DISCUSSION 

 

This section provides numerical simulations using 

MATLAB R2024b to demonstrate the effectiveness of the 

proposed approach through three representative examples. 

 

3.1 Navigation without deformation 

 

Consider a team of N robots moving from an initial state 

𝑥𝑖𝑛𝑖𝑡 to a final state 𝑥𝑓 while maintaining a desired formation 

along the trajectory, the initial and final states of each robot i 

are given by: 
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To ensure that the robots maintain the desired formation, 
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avoid collisions, and minimize the control effort, we formulate 

the problem as a quadratic programming (QP) problem: 
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Subject to the following constraints: 
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where udes is the desired control input and umax is the maximum 

control input, λ is a weighting factor. 

Remark 3. As the number of robots increases, the global 

quadratic optimization problem becomes computationally 

expensive. To reduce the computational cost, each robot 

solves its own QP problem in a distributed manner, 

considering only local interactions with its neighbors. 

Each robot minimizes its own local cost function subject to 

constraints while exchanging information with its neighbors 

(e.g., relative positions pj, velocities vj and desired formation 

offsets 𝛿𝑖𝑗
𝑑  ). For each robot i, the distributed optimization 

problem is formulated as: 
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subject to: 
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Example 1. Consider 5 robots positioned on a circle with 

center (1,1) and radius r=2. They navigate from an initial state 

at (1,1) to a final state at (10,10) while maintaining the desired 

formation. The initial and final positions are illustrated in 

Figure 1 and Figure 2, respectively. 

 

 
 

Figure 1. Initial formation 

 
 

Figure 2. Final formation 

 

 
 

Figure 3. Robot trajectories 

 

The five-robot pentagon moves rigidly toward the goal 

while preserving its geometry shape, non-intersecting paths 

verify collision-free motion and near-zero formation error, as 

shown in Figure 3, where the trajectories of the robots are 

illustrated. 

 

3.2 Navigation with deformation (scale and rotation) 

 

In practice, it is not feasible to achieve a strictly rigid 

deformation. Therefore, we introduce a deformation tolerance 

𝜀𝑎𝑑𝑎𝑝𝑡 > 0 as follows: 

 

) .( ( )adapt d adapt

ij ijt t  − ‖ ‖  (19) 

 

Remark 4. The deformation matrix 𝛤(𝑡) remains invertible 

for all 𝑡 . This invertibility ensures that the formation can 

always be recovered to its original shape whenever external 

constraints or collision-avoidance manoeuvres no longer 
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apply. 

For simplicity, we focus on the two-dimensional setting. 

However, the same approach can be extended analogously to 

higher dimensions n≥2 without fundamental change in the 

methodology. 

The deformation matrix is given as: 

 

( )( ) ( ) ( ) ,t s t R t =  (20) 

 

where, s(t) is a scalar function (the scale factor) that allows the 

formation to expand or contract in the plane, R(θ(t)) is the 

rotation matrix given by: 

 

( )
( ) ( )
( ) ( )
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t t
R t

t t
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 (21) 

 

There are numerous ways to specify the time-dependent 

scale s(t) and rotation θ(t). Two illustrative cases are: 

1. Linear Variations: 

𝑠(𝑡) = 1 + 𝛽1𝑡 , 𝛽1 is a small constant rate of 

expansion or contraction, 𝜃(𝑡) = 𝛽2𝑡 , 𝛽2  is a 

constant rotational speed. 

2. Sigmoidal Variations: 

𝑠(𝑡) =
1

1+𝑒−𝛽(𝑡−𝑡0)
, 𝛽 > 0, 𝑡0 represents the midpoint 

of the switch, 𝜃(𝑡) = 𝜃0 + 𝛾𝑠(𝑡) , 𝜃0  is the initial 

angle of the formation, 𝛾  is a rotation factor (or 

rotation gain). 

Example 2. Consider 5 robots in an initial state arranged in 

a circle of radius r=2 with the formation center at (1,1). In this 

example, a simple deformation (comprising both scaling and 

rotation) is applied to adjust the formation as the robots 

navigate toward a final state with the center at (10,10) while 

maintaining the desired formation, as illustrated in Figure 4 for 

the initial position and Figure 5 for the final position. 

The multi-robot team translates from its initial coordinates 

to the target location while simultaneously scaling and rotating 

the formation, maintaining strict inter-agent separation and 

achieving collision-free trajectories throughout the maneuver, 

as shown in Figure 6. 

 

 
 

Figure 4. Initial formation 

 
 

Figure 5. Final formation 

 

 
 

Figure 6. Robot trajectories 

 

3.3 Navigation with deformation (shape change) 

 

Let 𝛿𝑖𝑗
𝑆ℎ1  and 𝛿𝑖𝑗

𝑆ℎ2  denote the desired relative positions 

between robots i and j corresponding to the shapes Sh1 and Sh2, 

respectively. We introduce a continuous transition function 

𝛽(𝑡) ∈ [0,1] such that: 

• 𝛽(0) = 0: Initially, the formation is Sh1. 

• 𝛽(𝑡) = 1, for all 𝑡 ≥ 𝑇𝑡𝑟𝑎𝑛𝑠: After a certain transition 

time, the formation becomes Sh2. 

The desired relative offset is defined as: 

 

( ) 1 21 ( ( ) .) Sh Shd

ij ij ijt t    = − +  (22) 

 

Remark 5. The following functions can be used like a 

transition functions:  

• 
1
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t
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0( )

0 ,

1
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t t

t t t t
e

t t


− −





=  
+

 

 

where, 𝑘 > 0 is a parameter, t0 is the midpoint (which means 

that the transition is halfway complete at 𝑡 = 𝑡0, 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 

are the start and end transitions, respectively. 

The distributed QP problem is solved locally by each robot 

based on the information from its neighbors: 

 

2 2 .
1

min
2i

i

d

i des i j ij
u

j

u u p p 
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This formulation allows each robot to use local information 

(via distributed consensus) to adjust its control input and drive 

the formation from shape Sh1 to shape Sh2 over time. 

Example 3. Consider 5 robots in an initial state arranged in 

a circle of radius r=2 with the formation center at (1,1). In this 

example, the formation transitions from a circle to a triangle 

while simultaneously navigating toward the target. 

 

 
 

Figure 7. Initial formation 

 

 
 

Figure 8. Final formation 

 
 

Figure 9. Robot trajectories 

 

As shown in Figures 7-9, the five-robot team successfully 

executes a dual objective translation toward the goal and 

continuous morphing from an initial circular lattice (radius 2 

m, center at (1,1)) to a terminal triangular pattern without a 

single inter-robot collision. The smooth, non-intersecting 

trajectories confirm that the CBF-QP supervisor enforces the 

prescribed minimum separations at every instant, even while 

accommodating the coupled inertial dynamics and the non-

convex deformation path. These results underscore the 

controller’s ability to orchestrate complex, real-time formation 

reshaping while rigorously maintaining safety guarantees. 

 

 

4. CONCLUSIONS 

 

This work proposes an integrated, real-time control 

architecture for formation maintenance in multi-robot systems 

governed by double-integrator dynamics. The method 

accounts for inertial forces, enables elastic shape morphing, 

and enforces inter-robot collision avoidance. Both rigid and 

deformable spacing requirements are encoded via a control 

barrier function-based quadratic program, which guarantees 

forward invariance of a formally defined safe formation set. 

Theoretical analysis establishes a strictly positive lower bound 

on inter-robot distances, ensuring that robots remain within the 

prescribed (possibly time-varying) formation geometry. 

Extensive simulations confirm that the controller preserves 

formation coherence and achieves collision-free motion 

without compromising agility. 

Scalability is achieved by decentralising the QP via 

consensus-based optimization, allowing each robot to solve a 

low-dimensional problem with limited communication while 

maintaining global safety guarantees. This combination of 

flexible shape control, certified safety, and distributed 

computation provides a principled and computationally 

tractable pathway for large scale robot deployments. 

While the proposed method showed promising performance 

for collision-free formation control under double-integrator 

dynamics, it has significant drawbacks needing further 

exploration. First, our present method assumes a well-

structured environment with no static or dynamic obstacles. In 

scenarios including fixed or moving obstacles, creating a 

single CBF that incorporates both inter-robot and robot-to-
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obstacle constraints may result in non-differentiability at the 

intersection of several safety sets. This constraint restricts the 

implementation of gradient-based optimization approaches 

and could impact real-time performance and practicality. 

Second, neighbor-based distributed optimization is based on a 

fixed and established communication topology. When robots 

start from random placements, the cardinality and structure of 

each robot's neighborhood might change dynamically, 

complicating real-time updates to formation restrictions and 

local CBFs. Handling these topological changes while 

maintaining stability and safety requirements is a remaining 

challenge. Finally, our method does not explicitly account 

model uncertainties or external disturbances. Incorporating 

robust control or adaptive techniques would make the 

approach more applicable to real-world settings. 

Future work will focus on (i) hardware validation with on-

board perception and latency-aware communication, (ii) 

robustness extensions that accommodate model uncertainty 

and actuation limits, (iii) hierarchical planners that couple the 

proposed low-level controller with high-level task allocation 

for heterogeneous teams, and (iv) extending the controller to 

handle unknown environments with static and moving 

obstacles while guaranteeing safe and stable transitions. These 

directions aim to bridge the gap from simulation to real-world, 

mission-critical applications. 
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