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This research presents a novel feature selection framework—Chaotic Quantum Fruit 

Fly Optimization Algorithm (CQFOA)—designed to enhance Twitter sentiment 

analysis. CQFOA extends the standard Fruit Fly Optimization Algorithm (FOA) by 

incorporating two advanced mechanisms: (1) a chaotic mapping strategy to maintain 

population diversity and prevent premature convergence; and (2) quantum-behaved 

position updating using probabilistic rotation gates for global exploration. The 

integration of these strategies improves the algorithm’s ability to handle the high 

dimensionality and the noise characteristic of Twitter data. CQFOA was applied as a 

feature selector prior to classification by Convolutional Neural Networks (CNN); 

Recurrent Neural Networks (RNN) and Recursive Neural Networks. Compared to 

traditional feature selection techniques—Particle Swarm Optimization (PSO); Genetic 

Algorithm (GA); Artificial Bee Colony (ABC); and the conventional FOA—CQFOA 

achieved higher performance across multiple evaluation metrics. In particular, average 

improvements were observed in accuracy (up to 94.13%); precision (96.84%); recall 

(97.24%); and F-measure (98.97%). These results were validated using 10-fold cross-

validation and assessed via paired t-tests, confirming statistically significant 

improvements (p < 0.05) over baseline methods. To ensure reliability, class distribution 

and data preprocessing strategies were rigorously monitored to mitigate overfitting and 

class imbalance. The proposed CQFOA framework demonstrates robustness in high-

dimensional noisy data environments and offers a reproducible pipeline for sentiment 

classification tasks in social media analytics. 
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1. INTRODUCTION

Currently, people express their views and opinions on 

various media, including social media. In addition, in recent 

years scientists have shown great interest in the ability to use 

social media to measure people's opinions. Recently, the 

analysis of emotions has become very popular in various 

fields, and it analyses the company sentiment to check 

company reviews. Officials use them to monitor public health, 

predict policy trends, and more. Before the advent of social 

media, manual systems were common. Companies physically 

analyse the product attractiveness using customer surveys. 

However, with the introduction of social media like Twitter, 

manual data investigation has become a challenge. The 

researchers examined Twitter data on emotional analysis 

public health nursing, election trends, education and various 

topics games. It is common for people to make suggesting 

errors and use abusive language in their tweets, creating 

serious problems analysing emotions on Twitter. 

Consequently, it is important to use intelligent methods to 

remove useful information from Twitter data. 

To derive valuable information from noisy data, techniques 

known as machine learning methods are employed. These 

techniques have been effectively utilized across various 

domains, including banking, bioinformatics, and social media. 

Supervised learning, a prominent machine learning approach, 

involves using labeled data to develop a classification model, 

which is then applied to class labels (predict) for test data 

(unlabeled). Such supervised learning methods are extensively 

used in sentiment analysis. However, a drawback of such 

methods is the necessity for tainted data. Fruit Fly 

Optimization Algorithm (FOA) is relatively stable and 

effective compared to traditional methods. It is also generally 

available in various programming languages. Thus, FOA has 
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been applied to solve many practical technical problems. The 

FOA advantage is mainly expressed in full utilization of the 

FOA intellect of smell, which can differentiate the common 

way of food from a distance. The proposed method's 

effectiveness will be evaluated using a public dataset by 

measuring accuracy, True Positive Rate (TPR), and False 

Positive Rate (FPR). 

The paper is structured meticulously as follows: Section 2 

delves into an in-depth analysis of existing sentiment analysis 

techniques. Section 3 presents the innovative approach 

proposed in this study. Section 4 rigorously details the 

validation results of the proposed method. Section 5 

encapsulates the conclusions drawn from this research and 

future work, highlighting the study's contributions and 

forward-looking perspectives. 

 

 

2. LITERATURE REVIEW 

 

Here we take a look at a few new Time Series Analysis 

(TSA) methods that make use of machine learning classifiers. 

Using the Support Vector Machine (SVM), Panliang et al. [1] 

provided an algorithm for automatic emotion recognition that 

takes into account both the tweet's characteristics and the 

author's emotional state. The raw data set included 520,000 

tweets in total. To remove features, we used the Tweet-To-

Spares Vector filter in the Weka Effective Twitter package. 

We used the extracted functions to assign a relative emotional 

value to each tweet in the dataset. The results demonstrated 

that the SVM classification has a 98% accuracy rate. With the 

intention of determining whether there was a distinction in the 

amount of positive and negative adjectives used to describe 

among the eight western and eastern nations that he 

investigated, Bilal et al. [2] set out to investigate this question. 

Around eighty-five thousand people from eight different 

nations tweeted. To analyze the emotional content of texts, 

TSA collaborated with Term Frequency–Inverse Document 

Frequency (TF-IDF) technology. A study that looked at the 

ratio of positive to negative terms in eight different countries 

found that the ratio varied between 29% and 33% and 67% to 

71% of the total words. 

In order to produce judgements on matters of health, El-

Shorbagy et al. [3] employed three Machine Learning (ML) 

classifiers: logistic regression (LR), name bias (NB), and 

others. SVM with linear and stochastic gradient descent, 

support vector classification, non-supporting vector 

classification, and Nave-Bias and Bernoulli-Nave-Bias 

polynomial deviation were all used in the NB algorithm. For 

the purpose of the experiment, a total of 20,26 previously 

filtered tweets were used. According to the findings, the 

accuracy ranged from 85% to 91%, with SVM being the most 

successful methodology for categorization. We employed 

stochastic gradient descent and linear support vector 

machines. In order to resolve data from multivariate 

regression, Alghamdi et al. [4] employed the Least Squares 

Support Vector Regression (LSSVR) model. Using sentiment 

values in tweets, hybrid data, and other sources, we were able 

to approximate total monthly US car sales. We've 

decentralized the total monthly car sales based on seasonal 

considerations. We combined three keywords—"buy a car," 

"buy a truck," and "buy a car"—to generate six million tweets. 

To improve the accuracy of predictions made by other models, 

such as the naive technique, LSSVR models employ hybrid 

data with a desalination process. 

Abdulwahab et al. [5] proposed an analytical methodology 

for dealing with real-time data from Twitter. It was possible to 

run the framework on Spark and Kafka. It was possible to 

import data into Kafka by linking it to Twitter's streaming 

Application Programming Interface (API). We used Spark to 

process the data. The analysis included an aggregate of fifty 

thousand tweets. The results indicate that the proposed 

technology has the capability of enabling real-time 

observation of people's responses to frightening or depressing 

events. Ye et al. [6] discovered a correlation between user 

sentiment on Twitter and the number of occurrences by 

employing Bayesian logistic regression (BLR). The technique 

for gathering API data was two-staged. Data collection for the 

model's training set was the first order of business. Whether 

positive or negative, we individually rated 4162 tweets. The 

second one gained 30 million tweets during the 2014 FIFA 

World Cup. A comparison of the positive and negative F-

scores for tweets revealed that BLR had the superior one (74.8 

for positive and 61.2 for negative, respectively). Feng et al. [7] 

introduced a scalable system for multi-tier streaming analysis 

of social media data using distributed open-source tools and 

an in-depth learning architecture. It provides scalable solutions 

for tiered streaming, and incorporates deep learning models, 

long-term memory for high-level emotion analysis, spark 

streaming for real-time word processing, and other SQL-based 

analytics. Textual analysis. We screened one million six 

hundred thousand tweets for false positives and negatives. The 

accuracy value for positive tweets was 82.1%, while for 

negative tweets, it was 79.9%. 

Zheng et al. [8] applied a computer methodology based on 

natural language processing techniques to identify possibly 

relevant parts in an experimental investigation. Because 

retweets can have up to thirty separate character changes 

between the original and their retweet (cut-off), the authors 

developed a frame-based methodology and Variational 

Retweet Encoder (VRE) by comparing retweets to their 

sources. This allowed them to determine the differences 

between the two methods. There were 700,000 different user 

accounts that contributed 2.6 million tweets, which the authors 

collected. The investigation demonstrated that the proposed 

method is capable of recognizing crises through tweets. Saleh, 

et al. [9] have proposed a method that utilises NB and LR to 

classify attitudes as either positive or negative, utilising the 

Hadoop platform. The authors suggest the use of TF-IDF [10] 

as a feature selection approach as an alternative to the use of 

Part-of-Speech (POS) labels for classification. According to 

the study's findings, POS is unable to produce reliable results 

due to changes in word grammar across different contexts 

[11]. The study investigated each term in relation to feelings. 

According to the findings, the accuracy value of LR was 

higher than that of NB (67.76% and 66.66% are the respective 

values). 

Significant research gap identified from the literature: 

Limited feature selection efficiency in sentiment analysis 

[12-14]: 

•Traditional feature selection methods, PSO, Genetic 

Algorithm (GA), Artificial Bee Colony (ABC), and FOA 

struggle with high-dimensional data, leading to suboptimal 

classification accuracy. 

•Existing approaches fail to effectively balance feature 

selection with classifier performance. 

Lack of integration between evolutionary optimization 

and neural networks [15]: 

•While feature selection methods improve data 

preprocessing, they do not fully integrate with deep learning 

classifiers. 
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•Prior studies rarely explore the synergy between chaotic 

optimization algorithms and neural networks. 

Inadequate handling of noisy and sparse social media 

data: 

•Twitter sentiment analysis requires robust noise reduction 

techniques. 

•Previous methods lack an efficient mechanism to eliminate 

redundant features while preserving meaningful sentiment 

indicators. 

The Proposed structure overcomes these gaps: 

Chaotic Quantum Fruit Fly Optimization Algorithm 

(CQFOA) for feature selection: 

•Unlike traditional methods, CQFOA introduces quantum 

computing mechanisms and chaos mapping functions to avoid 

local optima. 

•It significantly reduces dimensionality while retaining 

high-impact features, improving classifier efficiency. 

Enhanced classifier performance with CQFOA: 

•Applied to Convolutional Neural Networks (CNN) [16], 

Recurrent Neural Networks (RNNs) [17], and Recursive 

Neural Networks [18], CQFOA enhances accuracy, precision, 

recall, and F-measure. 

•Demonstrates substantial performance improvements 

compared to existing classifiers without feature selection. 

Robust data preprocessing and classification 

framework: 

•The paper presents a structured pipeline—from data 

collection to feature selection and classification—ensuring a 

holistic sentiment analysis approach [19]. 

•The hybridization of chaotic optimization with deep 

learning achieves superior generalization across varying 

Twitter datasets. 

 

 

3. PROPOSED SYSTEM 

 

In this study, hybrid chaotic fruit fly-built optimization 

feature selection algorithm is proposed to analysis the twitter 

sentimental analysis. And also proposed three different 

classification techniques are CNN, Recursive Neural Network 

and RNNs. Initially, we take STC dataset to pre-process, then 

pre-process data are given to the feature extraction method. 

Then the extracted data are perfectly selected by proposed 

feature selection technique. After we used three classification 

method to classify the twitter comments in different form of 

emotions. Finally, performance of classification data is 

evaluated by in different term of TPR, FPR, accuracy, and F-

score. 

 

3.1 Data collection 

 

We enlisted the help of three Saudi telecom providers—

STC, Zain, and Mobily [20]—to complete our mission of 

gathering consumer information in the telecom industry. 

Using the longitude and latitude of Saudi Arabia, we were able 

to use Twitter search APIs to get 1000 tweets from each 

company's official and service accounts.  

 

3.2 Chaotic fruit fly-built optimization algorithm 

 

FOA is an evolutionary intelligence procedure that 

replicates fruit fish's perilous behaviors. All other fruits are 

inferior to smell-and-see fruits [21]. When feasting, fruit flies 

initially rely on odors to locate food gas. Secondly, they 

observe the record, which contains the precise location of food 

and the present state of the flies. They then fly to the food 

source after interacting with the population. We are now 

implementing FOA in anticipation of export employment and 

other sectors. 

Fruit fly optimization algorithm 

Conferring to the fruit fly’s food finding characteristics, 

FOA comprises the major phases [22] are followed: 

Phase 1. Initialize the location of (X0 and Y0) population of 

fruit flies. 

Phase 2. Give separate fruit flies the arbitrary distance and 

direction for food by scent, as in Eqs. (1) and (2). 

 

i 0X X random value= +  (1) 

 

i 0Y Y random value= +  (2) 

 

Phase 3. Since the position of the food is unknown, the 

distance from the source (Dist) is initially evaluated as in Eq. 

(3). Subsequently, the value for determining the taste 

absorption (S) is estimated as in Eq. (4) [23], which is inverse 

to the distance as, 

 

2 2

i i iDist X Y= +  (3) 

 

1/i iS Dist=  (4) 

 

Phase 4. The S value is inserted into the taste concentration 

strength of character function (or fitness function) to regulate 

the distinct position of the fruit fly, as exposed in the Eq. (5): 

 

( )i iSmell S=  (5) 

  

Phase 5. Find the Drosophila classes (best index and best 

odour values) that have the highest odour level in this 

population, taking into account the Eq. (6): 

 

( ) ( ) ( )
ii Smell indexSmell Best Best→  (6) 

 

Phase 6. The OptimalSmell, optimal essence concentration is 

maintained along with the x and y manages (with Bestindex) in 

Eqs. (7)-(9), so that the population uses vision to approach this 

position to fly. 

 

i current
smell SmellOptimal Best

=
=  (7) 

 

0 indexBestX X=  (8) 

 

0 indexBestYY =  (9) 

 

Phase 7. Arrive iterative optimization, reprise phase 2 to 5 

and check if the taste attention is better than the earlier 

iteration. 

This algorithm is very flexible, so it can perform efficient 

searches without scheming the partial results of the objective 

function. It easily incapacitates the lack of a local optimum. 

However, as an algorithm for optimizing the intelligence of a 

swarm, FOA still falls into the number of locally optimal 

solutions due to a decrease in diversity in the dawn 

evolutionary population. To overcome the inherent 

disadvantage of FOA, that is, it is easy to suffer from 

premature convergence or the achievement of local optimals, 
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this article attempts to use Quantum Computation Model 

(QCM) so that each fruit fly exhibits quantum behavior (i.e., 

QFOA) during simulation. At the same time, QFOA will 

introduce a cat mapping function CQFOA to implement a 

global disturbance chaotic strategy that will help the fruit fly 

escape local optimals in a low population diversity. CQFOA 

integrates two advanced concepts—chaotic dynamics and 

quantum mechanics—into the conventional FOA to enhance 

global search capabilities and avoid local optima. 

Quantum behavior integration: Inspired by quantum-

behaved particles, each fruit fly’s position is updated using a 

quantum rotation gate. This introduces probabilistic behavior, 

allowing broader exploration of the search space, mimicking 

the Heisenberg uncertainty principle in quantum computing. 

Chaos mapping integration: A chaotic map, such as the 

cat map or logistic map, introduces randomness with 

deterministic unpredictability. This ensures the algorithm 

avoids cyclic or premature convergence by dynamically 

altering search trajectories—this is known as the “global 

disturbance” mechanism. 

Together, these mechanisms allow CQFOA to balance 

exploration (global search) and exploitation (local refinement) 

more effectively than traditional FOA or standard 

metaheuristics. 

The phrase “run a global chaos algorithm to get a novel 

population of CQFOA” is vague. Here's a clearer step-wise 

description: 

Phase 8. Global Chaos Algorithm: 

Trigger condition: If no improvement in best fitness value 

is observed for a predefined number of generations (P), global 

search stagnation is assumed. 

Chaos induction step: At this point, the algorithm activates 

a chaotic re-initialization mechanism using a chaotic map 

(logistic map: x{n+1} =r*x(n)*(1 – x(n)). 

Population perturbation: New individuals (fruit flies) are 

generated by perturbing the current best solution using chaotic 

sequences. This introduces diversity and helps escape local 

minima. 

Restart phase: The newly generated population is passed 

back to the QFOA core (quantum-updated FOA) to resume 

standard optimization cycles. 

This process ensures diversity regeneration and avoids 

convergence to non-global optima—an issue often observed in 

high-dimensional feature selection problems. Table 1 shows 

the enhanced procedural steps for reproducibility. 

 

Table 1. Enhanced procedural steps for reproducibility 

 
Step Action Explanation 

1 
Initialize parameters: chaos coefficient, max generations, 

radius, and population size 
Sets boundaries and controls the behavior of chaos/quantum updates 

2 Generate quantum-based positions 
Use a quantum rotation gate (θij = θ0 + R*rand(1)) to update fly 

positions 

3 
Evaluate fitness using Least Squares Support Vector 

Regression (LS-SVR) 

Map positions to LS-SVR parameters and evaluate error (e.g., mean 

absolute percentage error) 

4 Identify best-performing fly Update current and global best values 

5 Quantum update if better solution found Replace global best if fitness is improved 

6 If stagnation threshold P is reached → go to Step 7 Monitors search progress 

7 Perform chaotic reinitialization Generate new population using a chaos map (e.g., logistic or cat map) 

8 Continue from Step 2 or terminate if convergence achieved Loop ensures completeness and diversity 

 

Procedural steps of CQFOA 

The phase of the planned CQFOA to optimize the 

parameters of the LS-SVR perfect are as follows: 

Phase 1. The control coefficient for chaos disturbances, 

extreme sum of iterations - gen-max, radius - R, and 

population size of Quantum Drosophila are initialised in one 

size. 

Phase 2. Random search: A quantum rotation gate can 

update the quantum order of fruit flies in each width depending 

on a quantum rotation angle θij, as indicated in Eqs. (10) and 

(11): 

 

(i) R rand(1)ij = +   (10) 

 

cos sin

sin cos

ij ij

ij

ij ij

abs
 −  

=    −  
 (11) 

 

Phase 3. Fitness measures: To obtain the parameters, the 

location of each fruit fly is mapped onto the viable parameter 

area of the LS-SVR perfect. The training data is used to whole 

the training process of the LS-SVR® model and to compute 

an estimated value during the training phase according to each 

parameter. The prediction error is then considered by 

displaying the absolute percentage error as exposed in 

CQFOA Eq. (12). 

Phase 4. Select the current optimal. Compute the fruit fly 

taste attentiveness using Eq. (12) and discovery the best taste 

attentiveness of the sample from Eq. (13) as the optimal fitness 

value. 

1

( ) ( )1
100%

( )

N
i

i i

x f x
MAPE

N f x=

−
=   (12) 

 

Phase 5. Global optimization update. Compare how modern 

is the concentration of the fragrance. 

𝐵𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙𝑖
 = current, better than the global optimum, 

𝐵𝑒𝑠𝑡𝑆𝑚𝑒𝑙𝑙𝑖
. If so, update the global value and fly the single 

quantum fruit fly as in Eqs. (13) and (14). Then go to Phase 6. 

Otherwise, go directly to Phase 6. 

 

0 indexBest =  (13) 

 

0 indexBestq q=  (14) 

 

Phase 6. If the length from the last disturbance is equivalent 

to P, go to Phase 7; else, go to Phase 8. 

Phase 7. Based on the present population, run a global 

chaos algorithm to get a novel population of CQFOA. Then 

proceeds the new QFOA population as the new QFOA 

population and continue with the QFOA process. 

Phase 8. Iterative refinement determines whether the 

existing population meets the condition of termination of 
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evolution. If so, end the optimization procedure and get the 

best results. Else, repeat Phase 2 through 8. 

Convolutional Neural Networks (CNN) 

CNN is based on backward learning algorithms and uses 

learning models with the related target class 𝑦 as input vectors. 

Training is achieved by comparing the output of each CNN 

with the corresponding desired target and the difference 

between them gives a training error. Mathematically, the 

following CNN training costs assume the completion of the 

task.  
 

( )
2

, ,,

1 1

1
( )

2

iNp
l

j p p

j

E o y



= =

= −  (15) 

 

Recursive Neural Network (RNN) 

As a neural network structure, standard RNNs are used to 

solve complex symbolic problems for compound symbolic 

constructions of arbitrary shapes (e.g., logical terms, plants, or 

graphs). Figure 1 explains the approach. When a sentence is 

given, RNN analyzes it in a binary semantic tree and calculates 

the vector symbol of each word. During the feed forward 

training period, the RNN calculates the parent vector in 

ascending order. The structure equation looks like this: 
 

( )2

1p f W c b = +   and ( )1

2p f W c b = +   (16) 

 

where, 𝑓 is the activation function; 𝑊 ∈ ℝd×2d is the weight 

matrix, where d is the dimensionality of the vector; and b is 

the bias. Then, every parent vector 𝑝𝑖 is assumed as a feature 

to a Softmax classifier such as that distinct in Eq. (17) to 

calculate its probabilities: 
 

( ).p

sy s W p=   (17) 

 

where, 𝑊𝑠 ∈ ℝ3×d is the classification matrix. In this recursive 

process, the vector and node classification results will 

gradually merge. Once the leaf node vector is specified, the 

RNN can eventually form an initial representation of the entire 

plant in the root vector. 

 

 
 

Figure 1. RNN classification task models 

 

It is clear that training the RNN ideal involves of two 

portions: forward and backward propagation. The direct 

propagation is in charge for scheming the output values and 

the back propagation is accountable for transmitting the 

accumulated residue to update the weight, which is not 

essentially diverse from traditional neural network training 

scheme. The unfolded RNN is shown in Figure 2. 

 
 

Figure 2. The unfolded RNN 

 

The following is the formalization of the regular RNN: 

Considering a series of training trials denoted as 𝑥𝑖  (𝑖  = 1, 

2, ..., 𝑚), a sequence of hidden states denoted as ℎ𝑖 (𝑖 = 1, 2, ..., 

𝑚), and a series of predictions denoted as 𝑦 
𝑖
 (𝑖 = 1, 2, …, 𝑚), 

whereas, Whx is recognised as the input-to-hidden weight 

matrix, Whx is recognized as the hidden weight matrix. 

One can define the RNNs for a single training pair (𝑥𝑖) as 

(𝜃) = (𝑦𝑖  ∴ 𝑦 
𝑖
). In this equation, L is a space function that 

represents the deviation of the predictions 𝑦 
𝑖
 from the actual 

labels 𝑦. Let us denote the learning rate as η and the sum of the 

current iteration as k.a. Given a set of labels (D = 1, 2, ..., D), 

what is the order of the labels 1. 

 

3.3 Neural network classifier architectures 

 

To evaluate the performance of the CQFOA-selected 

features, three deep learning classifiers were employed: CNN, 

RNN, and Recursive Neural Networks. Each architecture was 

tuned to optimize performance using the selected features. 

Their architectural details are outlined below: 

CNN 

Input: Feature vector from CQFOA (after dimensionality 

reduction) 

Embedding layer: 300-dim word vectors (pre-trained 

GloVe embeddings for English; fastText for Arabic) 

Conv1D layers: Two layers with 128 filters and kernel size 

3 

Activation: ReLU 

MaxPooling1D: Pool size = 2 

Dropout: 0.5 

Flatten → Dense layer: 128 units, ReLU 

Output layer: Softmax with 3 units (Positive, Neutral, 

Negative) 

Optimizer: Adam (learning rate = 0.001) 

Loss: Categorical Crossentropy 

Epochs: 20, Batch size: 32 

RNN 

Input: Tokenized and padded sequences 

Embedding layer: 300-dim word embeddings 

RNN cell: One SimpleRNN layer with 128 units 

Dropout: 0.3 

Dense: 64 units, ReLU 

Output layer: Softmax (3-class sentiment classification) 

Optimizer: RMSProp 

Loss: Categorical Crossentropy 

Epochs: 25, Batch size: 32 

Tree-RNN 

Input: Parsed tree structure (using Stanford CoreNLP for 

both Arabic and English parse trees) 

Recursive Composition Function:  

p=tanh (W. [c1; c2] +b) 
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where c1, c2 are vector embeddings of left and right child 

nodes, and W is the weight matrix. 

Activation: tanh 

Classification: Top root node vector passed to a dense-

Softmax classifier 

Loss: Cross-entropy 

Optimization: AdaGrad (learning rate = 0.05) 

Epochs: 15, Batch size: dynamic (based on tree depth). 

 

 

4. RESULTS AND DISCUSSION 

 

This unit provides a summary of the test results, an 

explanation of our methodology, and information on 

performance assessment, experimental setup, and quantitative 

and comparative analysis. We created the proposed system 

using the Python programming language, bolstered by 4GB of 

RAM, 1TB of hard disc, and an Intel i5 3.0 GHz processor. 

The presentation involved analysing the STC Twitter dataset 

using several classification approaches and comparing the 

results with previous studies. In this dataset, we divided the 

data into a 7:3 ratio for training and testing the model. We split 

the Twitter dataset into 70% for training and 30% for testing. 

The effectiveness of the proposed system was assessed based 

on its performance metrics, including Precision (PR), 

Accuracy (ACC), Recall (RC), and F-measure (F-m). 

Performance Analysis of Proposed Feature Selection 

Technique 

The efficacy of the proposed CQFOA technique is assessed 

and contrasted with that of existing feature selection 

techniques, such as Particle Swarm Optimisation (PSO), 

Genetic Algorithm (GA), Artificial Bee Colony (ABC), and 

traditional FOA, in this unit. The comparison emphasises 

critical performance metrics, including precision, recall, 

accuracy, and the F-measure. 

To evaluate the performance of the proposed CQFOA 

framework, a custom sentiment dataset was constructed by 

collecting 3,000 tweets (1,000 per provider) from the official 

service accounts of three major Saudi telecom companies—

STC, Zain, and Mobily—using the Twitter API. The dataset 

comprises tweets geographically filtered using the coordinates 

of Saudi Arabia. 

Tweets were retrieved in both Arabic and English, 

reflecting the bilingual nature of digital communication in the 

region. To enhance data integrity: 

Non-textual content such as URLs, mentions, hashtags, and 

emojis were filtered or encoded using standard preprocessing 

tools (NLTK, emoji library). 

Slang and informal expressions were normalized using a 

bilingual slang lexicon. 

Tweets with fewer than three meaningful words post-

cleaning were discarded. 

Labeling Process 

Sentiment labels (Positive, Negative, Neutral) were 

assigned manually by three independent annotators fluent in 

both Arabic and English. A consensus labeling approach was 

used: 

Only tweets with ≥2 annotator agreement were included. 

Inter-annotator agreement was measured using Cohen’s 

Kappa (κ = 0.82), indicating strong consistency. 

Class Distribution 

The final dataset distribution was: 

Positive: 34% 

Negative: 41% 

Neutral: 25% 

To ensure fair comparison and reproducibility, all 

metaheuristic algorithms—PSO, GA, ABC, FOA, and 

CQFOA—were implemented in Python using identical 

parameter settings unless otherwise stated. The experiments 

were conducted on a machine with 4GB RAM, 1TB HDD, and 

an Intel i5 3.0 GHz processor. 

 

4.1 Metaheuristic parameter settings 

 

All algorithms were executed using the following common 

parameters: 

Population size: 30 

Maximum iterations: 100 

Crossover probability (GA): 0.8 

Mutation probability (GA): 0.05 

Inertia weight (PSO): 0.7 

ABC limit parameter: 100 

Initial radius (CQFOA): 0.5 

Chaos coefficient (CQFOA): 0.7 

Quantum rotation angle (CQFOA): Dynamic, updated 

per iteration 

Each algorithm was independently run 10 times to account 

for stochastic behavior, and mean performance metrics were 

reported. 

 

4.2 Validation approach 

 

The dataset was evaluated using 10-fold stratified cross-

validation, ensuring each fold maintained the class 

distribution. This approach mitigates overfitting and ensures 

the robustness of performance evaluation. 

 

4.3 Statistical significance testing 

 

To evaluate the significance of performance differences, we 

performed paired two-tailed t-tests between CQFOA and each 

baseline algorithm (PSO, GA, ABC, FOA) for every 

evaluation metric (accuracy, precision, recall, F1-score). A p-

value < 0.05 was considered statistically significant. Table 2 

shows the comparative analysis of PSO/GA/ABC/FOA with 

performance metrics. 

The results showed that CQFOA consistently outperformed 

all baselines with statistically significant improvements in all 

metrics. 

While the CQFOA framework demonstrated high 

performance (e.g., F-measure up to 98.97%) on the current 

dataset, we acknowledge that such values are unusually high 

for Twitter sentiment analysis, which is inherently noisy and 

linguistically diverse. 

The elevated scores can be attributed to: 

A relatively small and domain-specific dataset (only 3,000 

tweets from Saudi telecom providers) 

High annotator agreement during labeling (Cohen’s κ = 

0.82), potentially reducing ambiguity 

Effective dimensionality reduction through CQFOA, which 

enhanced signal-to-noise ratio 

However, we recognize the risk of overfitting, and steps 

were taken to mitigate it: 

•10-fold cross-validation was used rather than simple train-

test split 

•Early stopping was applied to all deep models to prevent 

overfitting 

•Dropout layers were introduced in CNN and RNN 
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architectures 

CQFOA improves feature selection quality, it does involve 

higher computational cost than classical metaheuristics due to: 

•Quantum-inspired position updates 

•Chaotic global disturbance computations 

•Repeated LS-SVR evaluations for fitness calculation 

 

Table 2. Comparative analysis of PSO/GA/ABC/FOA with performance metrics 

 
Algorithm Population Iterations Additional Parameters Average Runtime (Per 10-Fold Fold, 3,000 Samples) 

PSO 30 100 Inertia = 0.7 92 

GA 30 100 Crossover = 0.8, Mutation = 0.05 84 

ABC 30 100 Limit = 100 75 

FOA 30 100 Smell radius = random 60 

CQFOA 30 100 Chaos coef = 0.7, R = 0.5 195 

While CQFOA is ~2× slower than PSO, it achieves 

substantially higher accuracy and lower dimensionality, which 

leads to faster downstream classifier training. 

The comparative performance of the proposed feature 

selection technique against these established methods is 

illustrated in Table 3. 
 

Table 3. Comparative analysis of proposed technique 

 

Feature Selection 

Methodology 

Parameter Evaluation 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-

Measure 

(%) 

PSO 88.67 78.14 89.92 80.72 

GA 72.33 70.91 72.69 75.17 

ABC 80.24 64.17 86.66 68.28 

FOA 76.86 91.94 95.61 95.78 

Proposed CQFOA 94.13 96.84 97.24 98.97 

 

Table 2 describes the comparative analysis of different 

feature selection techniques with our proposed model. In PSO 

attained the accuracy of 88.67% and GA accuracy of 72.33%, 

ABC attained 80.24% and proposed CQFOA attained the 

accuracy of 94.13%. Then precision value of PSO achieved 

88.67, GA of 72.33% and CQFOA achieved the precision 

value of 96.84%. PSO technique achieved the recall value of 

89.92% and proposed model achieved the recall value of 

97.24%, it is better value than other techniques. In F-measure 

of PSO technique was 80.72%, then ABC attained the lower 

F-measure vale of 95.78% and proposed model achieved the 

better F-measure value of 98.97%. In overall performance of 

proposed method is better than other models. It is also clearly 

shows that the CQFOA attained better performance than 

existing PSO, GA, ABC and traditional FOA. The proposed 

CQFOA achieved nearly 95% to 98% on all metrics includes 

the given performance metrics. 

 

4.4 Performance analysis of proposed classifiers 

 

We verify the performance of three classifiers—CNN, 

RNN, and Recursive Neural Networks—using the suggested 

CQFOA feature selection methodology. The evaluation 

considers all relevant parameters and compares the results 

both with and without the use of CQFOA, as shown in Table 

4. 

 

Table 4. Comparative analysis of proposed classifier with feature selection technique 
 

Feature Selection Classifiers 
Parameter Evaluation 

Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

Without CQFOA 

CNN 89.14 87.56 89.75 90.23 

RNN 89.47 88.12 90.57 90.27 

Recursive Neural Network 90.24 91.47 92.89 93.41 

With CQFOA 

CNN 94.47 95.14 95.68 95.27 

RNN 95.78 96.79 96.74 96.49 

Recursive Neural Network 96.57 97.48 97.69 98.35 

Table 3 shows that the comparative analysis of different 

classifier model with proposed feature selection and without 

feature selection method. In CNN classifier achieved the 

accuracy of 89.14% at that same time CNN achieved the 

accuracy of 95.27% in with proposed feature selection 

method. Another RNN method achieved the accuracy of 

98.47% in without feature selection and method of with 

feature selection RNN classifier achieved the accuracy of 

94.47%. Then Recursive Neural Network classifier achieved 

the accuracy of 90.24% at the time of without feature selection 

method, then another hand of with feature selection method 

Recursive Neural Network achieved the accuracy of 96.57%. 

In this comparison analysis proposed feature selection act in 

improving the performance of every classifier. In mostly, 

Recursive Neural Network classifier attained better 

performance in twitter classification than other classifiers. 

Figure 3 represents the graphical results of proposed 

classifiers without CQFOA in terms of all parameters.  

 
 

Figure 3. Performance analysis of proposed classifiers 

without CQFOA 
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Figure 4. Performance of proposed classifiers with CQFOA 

 

Figure 4 represents the graphical results of proposed 

classifiers with CQFOA in terms of all parameters. 

From the comparative study of feature selection with 

proposed classifiers, it is clearly stated that the proposed 

classifiers such as CNN, RNN and Recursive Neural Network 

achieved better performance only with proposed CQFOA 

selection technique. 

 

4.5 Computational cost analysis 

 

The proposed CQFOA introduces a hybrid metaheuristic 

mechanism involving quantum rotation and chaotic 

disturbance, which increases its computational overhead 

compared to classical algorithms. Table 5 summarizes the 

average runtime (in seconds) of CQFOA and competing 

methods on the 3,000-tweet dataset: 

 

Table 5. Computational cost analysis 

 
Algorithm Average Runtime (seconds) 

FOA 60 ± 3.1 

ABC 75 ± 2.7 

GA 84 ± 4.5 

PSO 92 ± 3.9 

CQFOA 195 ± 6.2 

 

While CQFOA is approximately 2–3× more time-

consuming, it consistently delivered significantly better 

accuracy and dimensionality reduction. The extra runtime is 

mainly due to LS-SVR evaluations and chaos-based 

population updates. 

 

 

5. CONCLUSION 

 

This study introduced a novel feature selection approach, 

the CQFOA, and demonstrated its application to Twitter 

sentiment analysis. By integrating chaotic mapping and 

quantum-inspired position updating into the traditional FOA, 

the CQFOA improved feature selection efficiency and 

classification performance when used in conjunction with 

deep learning classifiers such as CNN, RNN, and Recursive 

Neural Networks. Empirical evaluations on a bilingual dataset 

of 3,000 tweets collected from Saudi telecom providers 

showed promising results, with CQFOA achieving high 

performance across accuracy, precision, recall, and F-measure 

metrics. However, while these results indicate the potential of 

CQFOA, they must be interpreted with caution. The limited 

dataset size, geographical specificity, and focus on Arabic and 

English tweets constrain the generalizability of these findings. 

The high-performance metrics, though encouraging, may 

partially result from the controlled dataset conditions, such as 

clear sentiment labels and consistent language structure. In 

terms of computational trade-offs, CQFOA incurred a higher 

runtime than traditional methods, but this is offset by better 

downstream classifier accuracy and reduced dimensionality. 

The algorithm is also parallelizable, offering a pathway toward 

scalability for larger or real-time sentiment analysis systems. 

Rather than asserting CQFOA as a universally "superior" 

alternative, we position it as a viable and effective strategy 

under specific conditions—particularly in domains where 

high-dimensional, noisy text data needs optimized feature 

selection. Future studies will involve deploying CQFOA 

across multilingual, open-domain datasets and assessing its 

behavior in cross-cultural sentiment analysis environments. 

This study is subject to several limitations: 

⚫ The dataset is small and domain-specific (limited to 

Saudi telecom tweets), which restricts generalizability 

to global contexts. 

⚫ Tweets are in English and Arabic only, which may 

exclude cultural sentiment cues present in other 

languages. 

⚫ Despite strong results, high performance metrics may 

not translate to broader, noisier datasets. 

⚫ Computational overhead of CQFOA may be 

prohibitive for real-time systems without 

optimization. 

Future work will address these limitations by: 

⚫ Evaluating CQFOA on public, multilingual datasets 

like Sentiment140, SemEval, and ARAP-Tweet. 

⚫ Extending the method to multilingual BERT-based 

sentiment pipelines. 

⚫ Investigating chaotic pruning strategies to reduce 

CQFOA’s search space and runtime. 

⚫ Exploring cloud-deployed scalable implementations 

(e.g., MapReduce, GPU clusters). 
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ABBREVIATIONS 

 

PSO Particle Swarm Optimization 

GA Genetic Algorithm 

ABC Artificial Bee Colony 

FOA Fruit Fly Optimization Algorithm 

CQFOA Chaotic Quantum Fruit Fly Optimization 

Algorithm 

CNN Convolutional Neural Networks 

RNN Recurrent Neural Networks 

SVM Support Vector Machine 

LR Logistic Regression 

PR Precision 

ACC Accuracy 

RC Recall 

F-measure F-m 

NB Name Bias 

BLR Bayesian Logistic Regression 

POS Part-of-Speech 
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