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Massive multiple-input multiple-output (MIMO) antenna arrays pose significant 

challenges in terms of accuracy, efficiency and computational complexity in direction-

of-arrival (DOA) estimation, particularly in fifth-generation (5G) and beyond fifth-

generation (B5G) networks. Current DOA estimation methods, including cluster-based, 

spatial-temporal, and machine-learning approaches, struggle in dynamic and noisy 

environments, incurring inaccuracy in DOA estimation and substantial computational 

demands. To overcome these issues, this research work introduces a Sparse Bayesian 

Least Squares Regression (SBLSR) model designed explicitly for massive MIMO 

systems, which employs an advanced least squares regression technique. Unlike 

existing sparse Bayesian models or regression-based estimators, SBLSR introduces an 

adaptive probabilistic framework that iteratively adjusts regression weights for dynamic 

noise conditions, achieving near-Cramer-Rao lower bounds (CRLB) accuracy with 

significantly lower complexity. By combining Bayesian probabilistic modelling with 

least squares regression, the SBLSR significantly enhances estimation accuracy, 

particularly in environments with high levels of noise. Finally, the simulation results 

indicate that the proposed SBLSR method improves DOA estimation accuracy and 

reduces root mean square error (RMSE) values for various signal-to-noise ratio (SNR) 

limits when compared to existing approaches.  
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1. INTRODUCTION

With the rapid expansion of the Internet of Things (IoT), 

emerging applications such as augmented reality (AR), smart 

cities, smart farming, and autonomous driving assistance 

systems (ADAS) have become increasingly prevalent [1]. 

These applications require low-latency, high-precision service 

delivery, which traditional mobile cloud-based network 

architectures struggle to achieve due to inherent network 

delays [2]. To address these challenges, beyond fifth-

generation (B5G) networks, leverage the capabilities of 

mobile edge computing (MEC) to enhance energy efficiency 

and enable real-time processing, particularly in highly 

dynamic user environments [3]. In mission-critical 

applications, such as forest fire monitoring and flash flood 

disaster management in urban and hilly regions, the integration 

of edge servers and uncrewed aerial vehicles (UAVs) plays an 

important role in improving disaster response efficiency. 

Effective tracking and localization of UAVs are, therefore, 

essential for innovative rural-urban disaster management 

applications [4]. 

In recent years, significant research has been dedicated to 

sensor array-based direction of arrival estimation for target 

localization [5]. Massive multiple-input multiple-output 

(MIMO) radars offer substantial advantages in this domain, as 

they enable direction-of-arrival (DOA) estimation without 

requiring additional range estimation [5, 6]. A multi-kernel 

non-negative sparse Bayesian learning (MK NNSBL) with 

GWO-based antenna reconfiguration on MRA improves DOA 

estimation accuracy and reduces root mean square error 

(RMSE) in sparse MIMO systems [7]. However, despite these 

benefits, existing massive MIMO schemes face considerable 

challenges, including high computational overhead and the 

need for efficient exploitation of channel sparsity in multi-

antenna systems. Accurate DOA estimation is essential for 

obtaining channel state information (CSI) in massive MIMO 

networks [8]. Therefore, there is an urgent need for enhanced 

DOA estimation techniques that not only improve prediction 

accuracy under low signal-to-noise ratio (SNR) conditions [9] 

but also reduce computational complexity [9, 10]. 

Various techniques have been suggested to address the 

direction of the arrival estimation problem, including 

subspace-based techniques, which are widely recognized for 

their high-resolution capabilities [11]. Among these, the 

Multiple Signal Classification (MUSIC) algorithm has been 

extensively utilized due to its effective eigen decomposition 

and super-resolution capability of the spatial covariance 

matrix [12]. MUSIC enables high-precision DOA estimation, 
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dimensionality reduction, and correlation knowledge 

extraction. However, its high computational complexity limits 

its applicability in real-time scenarios [13], particularly for 

multi-dimensional DOA estimation. Traditional DOA 

estimation methods typically assume a uniform white 

Gaussian noise model, where the noise covariance matrix is a 

scaled identity matrix [14]. However, in practical 

implementations, non-uniform noise arises due to mutual 

coupling effects, antenna imperfections, and inconsistencies in 

the receive channel, which significantly degrade target 

localization performance [14, 15]. To mitigate this, various 

methods have been proposed to estimate and compensate for 

non-uniform noise [16], including iterative and non-iterative 

techniques. A clustering-based sub-aperture approach is 

proposed to mitigate near-field effects in large MIMO radar 

arrays, significantly reducing calibration effort while 

maintaining far-field-like accuracy [17]. While iterative 

methods enhance accuracy by estimating noise power and 

refining the signal subspace, non-iterative approaches provide 

an alternative by identifying multiple directions without 

convergence constraints [18]. 

Although subspace-based approaches generally achieve 

acceptable estimation accuracy while maintaining a 

manageable computational load, their effectiveness is 

influenced by SNR levels and the number of snapshots. 

Recently, sparse reconstruction (SR) techniques have been 

introduced in array signal processing to enable high-resolution 

DOA estimation using fewer measurements [19]. Since the 

DOAs of multiple targets exhibit spatial sparsity, solutions are 

typically derived by minimizing measurement errors. 

However, due to the NP-hard nature of this optimization 

problem, existing methods rely on convex relaxation 

techniques, which still impose a high computational overhead 

[20]. 

References [14, 15] presented a comprehensive review of 

recent studies on parameter estimation and direction-of-arrival 

estimation techniques, with a focus on signal processing, radar 

systems, and MIMO/mm-wave beyond fifth-generation (B5G) 

wireless communications. Deep learning-enhanced MUSIC 

[21] and robust ℓ₀-norm-based matrix completion [22] 

approaches have been proposed to improve DOA estimation 

and target localization accuracy under extreme SNR and 

impulsive noise conditions, respectively. Sun et al. [23] 

proposed an estimation strategy leveraging a frequency-

ranging and adaptive communication decoupling scheme to 

enhance predictive accuracy while reducing computational 

complexity. However, its adaptability to highly dynamic 

environments and integration with sensor networks require 

further investigation. Similarly, Wang et al. [24] introduced a 

co-array tensor decomposition system for MIMO radar-based 

communications, improving estimation accuracy. While 

effective, the model’s computational complexity may pose 

challenges for real-time applications. Li et al. [25] developed 

a compressed Parallel Factor Analysis (PARAFAC)—based 

approach for parameter estimation in mm-wave massive 

MIMO systems, optimizing spectral efficiency and estimation 

accuracy while minimizing hardware requirements. Pavel and 

Zhang [26] addressed DOA estimation for uncorrelated and 

mixed coherent signals, demonstrating improved accuracy in 

complex environments. Nevertheless, real-world 

implementations require adaptive strategies for practical 

deployment. 

Xu et al. [27] proposed a spatial-aware feature association 

algorithm for DOA estimation and tracking integrated sensing 

and communication (ISAC)-enabled massive MIMO-OFDM 

networks. The algorithm enhances real-time estimation 

accuracy, yet its robustness in highly dynamic or noisy 

environments remains a concern. Similarly, Liu et al. [28] 

introduced a joint-array segmentation and beamforming 

prototype to improve DOA estimation in ISAC systems. While 

reducing interference, the model assumes ideal hardware 

conditions, necessitating adaptive designs for practical 

applications. Dakulagi et al. [29] presented the Coherent and 

Uncorrelated Signal Estimation Tensor Decomposition 

(CUSE-TD) algorithm, which enhances signal detection 

accuracy for both coherent and uncorrelated signals. However, 

its scalability for large datasets and real-time implementations 

requires further optimization. Shu et al. [30] introduced 

Heterogeneous Hybrid Analog-Digital (H2AD) machine 

learning techniques to mitigate phase ambiguity in DOA 

estimation for hybrid massive MIMO systems, achieving 

higher accuracy in complex environments. However, the 

method’s reliance on ideal conditions limits its applicability in 

real-time mobile scenarios. Mylonakis et al. [31] introduced a 

deep convolutional neural network (CNN) for three-

dimensional (3D) DOA estimation, demonstrating superior 

accuracy in vehicular environments. Despite its effectiveness, 

the computational intensity restricts real-time deployment, 

necessitating optimization for practical use. Meng et al. [32] 

developed a tensor decomposition-based DOA estimation 

model utilizing an Electromagnetic Vector Sensor (EMVS) 

MIMO radar, improving robustness against noise and 

interference. However, its performance under highly dynamic 

conditions needs further validation. Chen et al. [33] proposed 

a CNN-based beam space design for mm-wave systems, 

enhancing channel estimation accuracy through convolutional 

signal processing and beamforming. While effective, the 

approach’s high computational complexity limits its feasibility 

for large-scale deployments, highlighting the need for hybrid 

methods to improve efficiency. 

Recent studies have advanced DOA estimation techniques 

across various challenges. Pavel and Zhang [26] developed a 

method that combines conventional techniques with advanced 

signal separation for mixed coherent and uncorrelated signals; 

however, further validation and improvements in robustness 

are needed. Liu et al. [28] enhanced DOA estimation in ISAC 

systems through joint array partitioning and beamforming, but 

its effectiveness across different deployments requires further 

testing. 

Dakulagi et al. [29] introduced the CUSE-TD algorithm for 

detecting coherent and uncorrelated signals with high 

precision; however, its complexity limits its real-time 

application. Shu et al. [30] integrated machine learning into 

MIMO receivers to resolve phase ambiguity; however, the 

computational demands pose a challenge for real-time use. 

Mylonakis et al. [31] employed deep CNNs for 3D DOA 

estimation in vehicular environments, improving localization 

but requiring optimization due to high computational costs. 

Meng et al. [32] applied tensor decomposition to EMVS-

MIMO radar data, thereby improving robustness against noise 

and interference; however, hardware integration remains a 

challenge. Chen and Vaidyanathan [33] proposed a 

convolutional beam space approach for mm-wave channel 

estimation, which is crucial for 5G; however, this approach 

may be hindered by complexity, potentially limiting its real-

time deployment. Recent research in DOA and channel 

estimation has incorporated cutting-edge methodologies, 

including machine learning, deep learning, tensor 
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decomposition, and beamforming techniques. These 

approaches have demonstrated notable improvements in 

estimation accuracy, robustness, and computational efficiency, 

addressing key challenges in modern communication and 

radar systems. However, challenges remain concerning real-

time applicability, computational overhead, and robustness 

under dynamic conditions. Future research is expected to focus 

on optimizing these techniques for practical deployment, 

particularly in vehicles, defense, and mm-wave 

communication applications. Additionally, efforts will be 

directed toward enhancing the adaptability of these algorithms 

to real-world conditions, improving computational efficiency, 

and integrating advanced machine-learning strategies to 

enhance performance in dynamic and complex environments 

further. 

Despite significant advancements in DOA estimation, 

existing methods face critical limitations in real-world massive 

MIMO applications. Traditional algorithms like MUSIC and 

ESPRIT suffer from sensitivity to noise, high errors and 

degraded performance under correlated sources or limited 

snapshots. Sparse recovery techniques such as OMP, while 

more efficient, often fail to maintain accuracy under high-

dimensional noise or lack robustness in dynamic environments. 

Even state-of-the-art SBL approaches primarily focus on 

enforcing sparsity but overlook residual error minimization 

and adaptive modeling of noise. These limitations hinder their 

applicability in practical 5G/B5G scenarios where real-time 

performance, noise resilience, and estimation accuracy are 

paramount. In contrast, our proposed Sparse Bayesian Least 

Squares Regression (SBLSR) addresses these challenges by 

combining the advantages of Bayesian inference with a robust 

regression framework. It adaptively minimizes estimation 

error while enforcing sparsity through probabilistic relevance 

weighting, achieving near-optimal accuracy with reduced 

complexity. This makes SBLSR a highly effective solution for 

next-generation wireless systems requiring scalable, noise-

tolerant DOA estimation. The SBLSR is robust in complex 

noise environments and supports simulations in massive 

MIMO radar systems, including both uncorrelated and 

coherent signals, thereby delivering improved DOA 

measurement precision for practical deployment. 

The primary contributions outlined in this paper can be 

summarized as follows: Firstly, a hybrid model that integrates 

a sparse Bayesian model with a least-squares regression model 

for efficient DOA estimation in massive MIMO systems. Later, 

the SBLSR minimizes DOA estimation error by considering 

varied network density and dynamic noise. Lastly, minimizes 

the node DOA estimation error with minimal computational 

complexity. Thus, the model can be adapted to support MIMO 

applications that require improved performance while DOA 

estimation. Section 2 introduces about the SBLSR method for 

DOA estimation of MIMO signals. 

 

 

2. SBLSR MODEL FOR DOA ESTIMATE OF MIMO 

SIGNALS 
 

This section introduces the SBLSR for accurate DOA 

estimation in massive MIMO systems, specifically addressing 

the challenges posed by significantly more users B5G 

networks. The proposed model incorporates a system 

framework tailored for DOA estimation in massive MIMO 

environments. A mathematical formulation is presented, 

integrating a hybrid machine learning approach that combines 

the Sparse Bayesian probability model with the Least Squares 

Regression (LSR) model, effectively capturing complex and 

noisy conditions to represent realistic massive MIMO systems 

more accurately. Furthermore, an algorithm is introduced to 

illustrate the operational framework of the SBLSR in 

estimating DOA within massive MIMO networks. 

 

2.1 System model 

 

This section presents an optimization approach for 

identifying the signal direction of arrival in massive MIMO 

5G environments. For prediction and optimization, consider a 

MIMO network that consists of S Sensors/radars, where the 

location of source sensors is previously known and can be used 

to evaluate the location of a specific targeted node in massive 

MIMO networks, considering the DOA measurement 

provided by the sensors. In massive MIMO gateway servers, 

the base stations gather data related to DOA measurement and 

evaluate the positions of a specific targeted node. The 

evaluation of DOA measurement is done using Eq. (1): 

 

𝑠𝑗 = ‖𝑦 − 𝑏𝑗‖
2

+ 𝑤𝑗 , 𝑗 = 1, … , 𝑆,  (1) 

 

In Eq. (1), 𝑦 ∈ 𝕊𝑜 denotes coordinates of target node in 

massive MIMO networks, 𝑏𝑗 ∈ 𝕊𝑜 denotes 𝑗𝑡ℎ sensors 

positions obtained through DOA measurement, 𝑤𝑗  denotes 

parameter for evaluating errors during measurement which are 

independently randomly distributed and identical and ‖∙‖2 

denotes Euclidean-Distance. To model the measurements 

without noise, this work applies a sparse Bayesian-aware 

probabilistic function to measurement error, as evaluated 

using Eq. (2): 

 

𝑃(𝓌) = (1 − 𝛼)𝒪(𝓌; 0, 𝜎2) + 𝛼ℐ(𝓌). (2) 

 

In Eq. (2), the DOA measurement error 𝓌 is modeled as a 

mixture of two distributions: 𝒪(𝓌; 0, 𝜎2) , a zero-mean 

Gaussian distribution with variance 𝜎2 , and ℐ(𝓌) , which 

denotes an idealized noise-free measurement modeled as a 

Dirac delta function centered at zero, indicating no deviation 

from the true measurement. The parameter in 𝛼 ∈ [0,1] 
represents the proportion of measurements that are assumed to 

be noise-free. This allows the model to handle both noisy and 

noise-free measurements. It must be noted that the localization 

process is not directly dependent on the exact value of ℐ(𝓌), 

but it helps emphasize sparsity in noise distribution. 

As defined above the Eq. (2) introduces a sparse Bayesian-

aware probabilistic model to capture the error distribution in 

DOA measurements. This model is conceptually related to the 

spike-and-slab prior, commonly used in Bayesian sparse 

learning. However, it differs in its formulation and intent. In 

the standard spike-and-slab model, a Bernoulli-Gaussian 

mixture prior explicitly governs the inclusion of each 

coefficient, where the "spike" represents a delta function at 

zero and the "slab" is a broad Gaussian capturing signal 

presence. In contrast, our model uses a mixture of a zero-mean 

Gaussian 𝒪(𝓌; 0, 𝜎2) and a noise-free indicator distribution 

ℐ(𝓌) , controlled by the mixing parameter 𝛼 . Here, ℐ(𝓌) 

implicitly represents error-free measurements, enabling the 

model to distinguish between noisy and clean observations 

probabilistically. 

Sparsity is enforced via the parameter 𝛼, which denotes the 

proportion of noise-free measurements. A higher value of 𝛼 
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corresponds to stronger belief in sparse noise contamination 

i.e., that most measurements are clean with only a few 

corrupted by noise. Unlike the spike-and-slab prior that 

enforces sparsity in model coefficients, our method applies 

sparsity in the measurement noise, aiming to enhance 

robustness in scenarios where only a few sensor readings are 

significantly corrupted. 

In this work, the objective is the quantization of 𝑦 

considering measurements 𝑠𝑗 , where 𝑗 = 1, … , 𝑆 and neglect 

measurements are gathered through noise sensors. Moreover, 

the sensors whose DOA status is being evaluated have no prior 

data related to noisy sensors and the measurement distribution 

in MIMO environments. Furthermore, the measurements in 

this work are considered positive despite being loud and of 

poor quality. In the next section, this paper presents the 

SBLSR for approximating DOA in MIMO environments. 

 

2.2 SBLSR model 

 

As sensor location status in MIMO networks is evaluated 

considering least-squares bounding [21, 22]. Nevertheless, the 

current least-squares bounding model has failed to identify the 

optimal approach for assessing the error caused by noise in 

measurement data. Hence, this work presents the SBLSR 

approach, which enhances the least-squares bounding 

approach for reducing noise in measurement data, as shown in 

Eq. (3): 
 

min
𝑦

∑ (‖𝑦 − 𝑏𝑗‖
2

2
− 𝑠𝑗

2)
2

.𝑆
𝑗=1   (3) 

 

In Eq. (3), the min function has been optimized to obtain a 

minimization bound with the following constraints, as 

presented in Eq. (4).  

 

min
𝑦,

∑ (𝛽 − 2𝑏𝑗
𝑈𝑦 + ‖𝑏𝑗‖

2
− 𝑠𝑗

2)
2

,𝑆
𝑗=1   

𝑠. 𝑡 ‖𝑏𝑗‖
2

= 𝛽.  
(4) 

 

In this work, 𝛽  achievement is accomplished through 

optimization in Eq. (4). Moreover, the existing approaches [27, 

28] have been established using a noisy distribution, 

specifically a Gaussian distribution. Furthermore, in Eq. (2), 𝛼 

denotes the deviation of the noise measurement from the 

accurate noise measurement. Nevertheless, the objective of 

noise measurement of SBLSR is modelling unidentified noisy 

distribution, i.e., ℐ(𝓌) to achieve an adaptive measurement 

approach. Hence, to determine the optimal localization 

approach, the Eq. (4) of SBLSR is iteratively evaluated 

through a regression process, as presented in Eq. (5): 
 

𝒥(𝑧, 𝑥) = ∑ 𝑥𝑗(𝑏̃𝑗
𝑈𝑧 − 𝑐𝑗)

2
+ ∑ 𝛾2𝑥𝑗 − ln 𝑥𝑗

𝑆
𝑗=1

𝑆
𝑗=1   (5) 

 

In Eq. (5), 𝑥 ∈ 𝕊𝑆 which denotes weight-vector having 𝑥𝑗 >

0, ∀𝑗  and 𝑏̃𝑗
𝑈 , 𝑧  and 𝑐𝑗  is achieved using Eqs. (6)-(8), 

respectively: 
 

𝑏̃𝑗
𝑈 = [−2𝑏𝑗

𝑈  1], (6) 

 

𝑧 = [𝑦   𝛽]𝑈 , (7) 

 

𝑐𝑗 = 𝑠𝑗
2 − ‖𝑏𝑗‖

2
, (8) 

 

Further, the objective of this SBLSR-based DOA 

measurement approximation approach is minimizing Eq. (5), 

based on 𝑥 and 𝑧 using the following constraints presented in 

Eq. (9): 

 

min
𝑧,𝑥

𝒥(𝑧, 𝑥), 

𝑠. 𝑡. 𝑧𝑈𝐸𝑧 + 2𝑔𝑡𝑧 = 0, 𝑥𝑗 > 0, ∀𝑗, 
(9) 

 

In Eq. (9), 𝐸 and 𝑔 is evaluated using Eqs. (10) and (11), 

respectively. 

 

𝐸 = [
𝐽𝑜 0𝑜∗1

01∗0 0
]  (10) 

 

𝑔 = [
0𝑜∗1

−𝑊
].  (11) 

 

In Eq. (5), the weights and 𝑧 are updated using 𝑥𝑗
(0)

= 1, ∀𝑗. 

Also, for every 𝑙𝑡ℎ  loop for updating 𝑧 . The following 

optimization approach is used in this work, as presented in Eq. 

(12): 

 

𝑧(𝑙+1) = arg min 𝒥(𝑧, 𝑥(𝑙)), 

𝑠. 𝑡 𝑥𝑗 > 𝑧𝑈𝐸𝑧 + 2𝑔𝑈𝑧 = 0. 
(12) 

 

Similar to Eq. (12), the weights are updated for every 𝑙𝑡ℎ 

loop using Eq. (13): 

 

𝑧(𝑙+1) = arg min 𝒥(𝑧(𝑙+1), 𝑥), 

𝑠. 𝑡 𝑥𝑗 > 0, ∀𝑗. 
(13) 

 

As the optimization model is converted to a convex model, 

the weights are determined using Eq. (14): 

 

𝑥𝑗
(𝑙)

=
1

(𝑔𝑗
(𝑙)

)
2

+𝛾2
,  (14) 

 

In Eq. (14), 𝑥𝑗
(𝑙)

 is used to denote 𝑗𝑡ℎ  diagonal parameter 

having diagonal weight-matrix 𝑋(𝑙) for every 𝑗𝑡ℎ loop, where 

𝑗 = 1, … , 𝑆. The 𝑔𝑗
(𝑙)

 in Eq. (14), it is evaluated using Eq. (15):  

 

𝑔𝑗
(𝑙)

= 𝑏̃𝑗
𝑈𝑧(𝑙) − 𝑐𝑗 .  (15) 

 

Furthermore, the Eq. (9) optimization problem can be 

reformulated in covariance matrix form, as presented in Eq. 

(16):  

 

min
𝑧

(𝐵𝑧 − 𝑐)𝑈𝑋(𝑙−1)(𝐵𝑧 − 𝑐), 

𝑠. 𝑡 𝑧𝑈𝐸𝑧 + 2𝑔𝑈𝑧 = 0, 
(16) 

 

In Eq. (16), the 𝐵 and 𝑐 are evaluated using Eqs. (17) and 

(18): 

 

𝐵 = [
−2𝑏1

𝑈 1
⋮ ⋮

−2𝑏𝑆
𝑈 1

],  (17) 

 

𝑐 = [
𝑠1

2 − ‖𝑏1‖2

⋮
𝑠𝑆

2 − ‖𝑏𝑆‖2
],  (18) 
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In Eq. (16), considering 𝑗𝑡ℎ iteration with 𝑋(𝑙), 𝑗 = 1, … , 𝑆, 

the parameter 𝑥𝑗
(𝑙)

 defines 𝑗𝑡ℎ  diagonal constraint of sparse 

Bayesian diagonal weighted covariance matrix 𝑋(𝑙) . In the 

next section, the optimization of the parameters and the 

equation presented are explained through a step-by-step 

process in the algorithm that follows. 

 

2.3 Algorithm for DOA approximation using SBSLR 

method 

 

In this section, the complete process of the SBLSR based 

DOA measurement model in massive MIMO networks is 

presented in Algorithm 1.  

 

Algorithm 1. SBSLR model 

Input  Sensor positions 𝑏𝑗 , measurements 𝑠𝑗  for 𝑗 =

1, … , 𝑆  convergence threshold 𝛿 ; maximum 

iterations ℳ↑  
Output Estimated position 𝑥(𝑙) 

Step 1 Start 

Step 2 Evaluate auxilary variables 𝐸, 𝑔, 𝐵 and 𝑐, from 

Eqs. (10), (11), (17), and (18).  

Step 3 Initialize iteration counter 𝑙 = 1 and set initial 

estimates 𝑥𝑗
(𝑙)

= 1, ∀𝑗 

Step 4 For loop (Repeat until convergence) 

Step 5  Evaluated 𝜔∗ = max {−(𝐵𝑈𝑋(𝑙−1)𝐵)
𝑗
, 𝑗 =

1, … , 𝑜} , where (𝐵𝑈𝑋(𝑙−1)𝐵)
𝑗

is the 𝑗 -th 

diagonal element of the matrix product. 

Step 6  Attain 𝜔∗as the current optimal perturbation 

parameter 

Step 7  Update auxiliary vector 𝑧: 𝑧(𝑙) = 𝑧( 𝜔∗) 

Step 8  Update estimated position 𝑥(𝑙)  using Eq. 

(14).  

Step 9 Converge if ‖𝑥(𝑙) − 𝑥(𝑙)−1‖ < 𝛿  or 𝑙 ≥ ℳ↑ , 

then terminate. 

Step 10 Increment l = l + 1 

Step 11 Stop 

 

The parameter 𝛿  is a user-defined small positive scalar 

which is set to 10−4 indicating the convergence tolerance for 

changes in the estimate, ℳ↑  is the maximum number of 

allowed iterations set to 100 to prevent infinite looping, and 

𝜔∗is chosen to maximize the negative diagonal elements of the 

matrix term for sparsity-aware regularization. The weighted 

sparse Bayesian covariance matrix enables the model to 

converge more quickly with optimal DOA measurement 

minimization through least squares regression analysis, even 

in an unknown and complex noisy environment with minimal 

DOA measurement error, as presented in the simulation study 

in the next section. 

 

 

3. SIMULATION ANALYSIS AND RESULTS 

 

To ensure reproducibility of the proposed SBLSR 

framework, all simulations were implemented using 

MATLAB R2018a, with compatibility tested for newer 

versions up to MATLAB R2023a. This section examines the 

effectiveness of various methodologies, including the 

suggested approach, namely SBLSR, and two existing 

methods, namely CUSE-TD [29] and H2AD [30], in DOA 

estimation for massive MIMO networks. All methods are 

compared with baseline Cramer-Rao lower bounds (CRLB) to 

evaluate the effectiveness of various models. The DOA 

estimation model that achieves an RMSE value closer to the 

CRLB is an ideal model for massive MIMO networks. In the 

simulation setup, the study examines a scenario where a 

MIMO radar array, consisting of M = 8 to 16 elements, detects 

three narrowband, uncorrelated signals arriving from 

randomly distributed directions, following a deployment 

pattern similar to that in reference [28]. Additionally, five 

coherent sources are considered, divided into two distinct 

groups with arrival directions also modelled in alignment with 

[28]. Among these, one uncorrelated signal and one coherent 

signal from the first group share the same DOA. This 

configuration results in the total number of source signals 

exceeding the array's capacity, leading to variations in signal 

amplitudes due to fading effects. The ratio SNR ranges from -

10 dB to 10 dB. The DOA estimation is performed using the 

approach outlined in references [28-30], which incorporates 

the impact of shadowing effects that follow a Gaussian 

distribution. The DOA error was estimated using RMSE 

performance metrics defined in Eq. (19) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀𝑆
∑ ‖𝐴̂𝑖 − 𝐴𝑖‖

2
,

𝑀𝑆
𝑖=1   (19) 

 

In Eq. (19), the parameter 𝑀𝑆 Montecarlo simulation size, 

in this work, the 𝑀𝑆 is set between 1000 and 5000, 𝐴𝑖 and 𝐴̂𝑖 

represent the actual and estimated outcomes of DOA 

measurement models, respectively. The parameters for the 

simulation utilized in this study are presented in Table 1. 

 

Table 1. Simulation parameters 

 
Parameter Specification 

Software Used MATLAB 2018 and above 

Benchmark Models CUSE-TD, H2AD 

Antenna Array Size 8 to 16 elements 

SNR Range -10 dB to 10 dB 

Monte Carlo Iterations 1000 – 5000 

Performance Metric RMSE 

Baseline Reference CRLB 

Signal Types Coherent and uncorrelated signals 

 

 
 

Figure 1. RMSE versus the number of sensors for various 

techniques for 𝑀𝐶  size of 1000 
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3.1 Scenario 1: Varied Montecarlo iteration 
 

This section examines the performance of various DOA 

measurement models, including SBLSR, H2AD, and CUSE-

TD, under different Monte Carlo simulation sizes. Figure 1 

illustrates the comparison of the effectiveness of SBLSR, 

H2AD, and CUSE-TD in terms of RMSE across different 

numbers of sensors, considering a Montecarlo M_S 

Simulation size of 1000. Additionally, a CRLB reference line 

has been included to indicate an optimal lower bound for 

RMSE. Similarly, Figure 2 presents a comparison of the 

performance of SBLSR, H2AD, and CUSE-TD in terms of 

RMSE across various sensor numbers, considering the Monte 

Carlo method. M_S Simulation size of 5000. The results 

suggest that SBLSR consistently achieves lower RMSE values 

compared to H2AD and CUSE-TD, indicating better accuracy, 

particularly considering the varying number of sensors, which 

range from 8 to 16. A decreasing RMSE trend for SBLSR 

would confirm its superior performance in sensor-based 

optimization. The SBLSR is closer to the CRLB compared to 

other methods, considering the size of the Monte Carlo 

simulation. This suggests that SBLSR achieves near-optimal 

performance, significantly reducing DOA measurement 

prediction errors. 

 

 
 

Figure 2. RMSE versus the number of sensors for various 

techniques for 𝑀𝐶  size of 5000 

 

 
 

Figure 3. RMSE versus the number of sensors for various 

techniques at SNR = 10 dB 

3.2 Scenario 2: Varied SNR values 

 

This section examines the effectiveness of various DOA 

measurement models, including SBLSR, H2AD, and CUSE-

TD, under varying noise levels. In this work, the noise level 

varies between -10 and +10 SNR for massive MIMO systems. 

Figure 3 compares the performance of SBLSR, H2AD, and 

CUSE-TD in terms of RMSE across different sensor numbers, 

considering an SNR of 10 dB. Additionally, a CRLB reference 

line has been included to indicate an optimal lower bound for 

RMSE. Similarly, Figures 4-7 show the comparison of the 

effectiveness of SBLSR, H2AD, and CUSE-TD in terms of 

RMSE across different numbers of sensors considering SNR 5 

dB, 0 dB, -5 dB, and -10 dB, respectively. The results suggest 

that SBLSR consistently achieves lower RMSE values 

compared to H2AD and CUSE-TD, indicating better accuracy, 

particularly considering the varying number of sensors, which 

range from 8 to 16. A decreasing RMSE trend for SBLSR 

confirms its superior performance in sensor-based 

optimization, particularly in the presence of sound and 

abysmally low SNR levels. The SBLSR is closer to the CRLB 

compared to other methods, particularly when considering 

varying noise levels. This suggests that SBLSR achieves near-

optimal performance, significantly reducing DOA 

measurement prediction errors. 

 

 
 

Figure 4. RMSE versus the number of sensors for various 

techniques at SNR = 5 dB 

 

 
 

Figure 5. RMSE versus the number of sensors for various 

techniques at SNR = 0 dB 
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Figure 6. RMSE versus the number of sensors for various 

techniques at SNR = -5 dB 

 

 
 

Figure 7. RMSE versus the number of sensors for various 

techniques at SNR = -10 dB 

 

3.3 Discussion 

 

The performance of the suggested SBLSR method was 

evaluated against three benchmark methods CUSE-TD, 

H2AD and MK NNSBL under identical simulation settings. 

The evaluation was conducted based on the RMSE across 

varying numbers of sensors and varying Monte Carlo 

iterations, with the CRLB serving as a theoretical performance 

limit, as shown in Table 2. To ensure a meaningful evaluation 

of the proposed SBLSR framework, three benchmark methods 

CUSE-TD, H2AD and MK NNSBL were chosen based on 

their relevance to contemporary DOA estimation challenges in 

massive MIMO environments. The CUSE-TD algorithm is 

specifically designed to handle both coherent and incoherent 

sources in high-dimensional scenarios. Its tensor 

decomposition approach offers improved accuracy in complex 

signal environments, which aligns with the multi-source, high-

noise conditions often encountered in 5G/B5G systems. 

However, it introduces computational complexity that limits 

real-time applicability. The H2AD method, on the other hand, 

is representative of recent hybrid analog-digital DOA 

estimation strategies. It integrates analog beamforming with 

digital signal refinement, offering reduced hardware cost and 

energy consumption. Despite this, it is sensitive to dynamic 

noise conditions and lacks adaptability under low SNR and 

coherent interference, making it a relevant but challenging 

comparator. Additionally, the existing MK NNSBL method is 

chosen where multiple DOAs are estimated for variable SNR 

values. 

While traditional methods such as MUSIC and sparse 

approaches like OMP are widely used, they exhibit key 

limitations: MUSIC suffers from degraded performance under 

high noise, coherent sources, and snapshot constraints due to 

its reliance on eigenvalue decomposition and uniform noise 

assumptions. OMP and related sparse algorithms often 

disregard probabilistic uncertainty and fail to incorporate noise 

adaptation mechanisms, making them less robust in real-world 

wireless environments. 

Therefore, CUSE-TD, H2AD and MK NNSBL methods 

were selected as modern, state-of-the-art references that 

address some limitations of classical methods while still 

falling short in terms of adaptive noise modeling and low-

complexity computation. This comparison highlights the 

practical improvements achieved by SBLSR in terms of 

accuracy, robustness, and computational efficiency under 

realistic MIMO scenarios. 

 

Table 2. RMSE comparison with existing methodologies 

 

SNR 

(in dB) 

RMSE in 

CUSE-TD 

[29] (in deg) 

Existing 

RMSE in 

H2AD [30] 

(in deg) 

Existing 

RMSE in 

MK NNSBL 

[7] (in deg) 

Existing 

RMSE in 

SBLSR (in deg) 

Proposed 

-10 2.01 1.77  1.51 1.47 

-5 1.86 1.72 1.32 1.22 

0 1.52 1.34 0.92 0.82 

5 1.33 1.21 0.81 0.65 

10  0.76 0.86 0.78 0.57 

 

 
 

Figure 8. RMSE versus SNR performance comparison 

 

The tabulated values in Table 2 are represented in the Figure 

8 which shows the comparison of RMSE versus SNR 

performance of various existing methods and the proposed 

method. On comparing with the existing methods, the 

proposed method SBLSR achieves good results with RMSE 

reducing from 1.47 to 0.57 degree for various SNR values. 

The SBLSR method consistently exhibited lower RMSE 

values compared to H2AD, CUSE-TD and MK NNSBL across 

all sensor and Monte Carlo configurations. As the number of 

sensors increased (ranging from 8 to 16), SBLSR 

demonstrated a steady decline in RMSE, highlighting its 

superior adaptability to more extensive sensor networks. 

SBLSR achieved RMSE values closer to the CRLB than the 
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other methods, indicating near-optimal performance and 

enhanced estimation accuracy. In contrast, H2AD, CUSE-TD 

and MK NNSBL exhibited a more significant deviation from 

the CRLB, indicating suboptimal error minimisation. The 

simulation results confirm that SBLSR significantly improves 

RMSE performance over H2AD, CUSE-TD and MK NNSBL. 

By achieving RMSE values closer to CRLB, SBLSR proves to 

be an efficient and reliable approach for radar/sensor-based 

estimations, making it a preferred choice for applications 

requiring high-precision performance. Further 

experimentation with additional datasets and real-world 

deployments may provide deeper insights into its scalability 

and generalizability.  

 

3.4 Computational complexity analysis 

 

The proposed Sparse Bayesian Least Squares Regression 

(SBLSR) method achieves minimal computational complexity 

through its iterative optimization structure. Unlike eigen-

decomposition-based methods such as MUSIC, which have 

complexity on the order of 𝑂(𝑀3) due to matrix factorizations, 

the SBLSR algorithm avoids such operations. H2AD and 

CUSE-TD involve iterative and hybrid processes combining 

subspace techniques with heuristic and statistical updates. The 

dominant computation in SBLSR involves matrix-vector 

multiplications and updates of the variable 𝑥(𝑙), which result 

in a per-iteration complexity of approximately 𝑂(𝑀2), where 

𝑀  is the number of sensors. Moreover, the algorithm 

converges within a small number of iterations (typically ≤ 50 

in practice), controlled by the convergence tolerance 𝛿  and 

maximum iteration bound ℳ↑ . To further support this, 

runtime comparisons were conducted in MATLAB 2018a for 

SBLSR, MK NNSBL, MUSIC, CUSE-TD, and H2AD. As 

shown in Table 3, SBLSR consistently required less 

computation time for the samples size 𝑁 , same number of 

sensors 𝑀, T number of iterations and Monte Carlo runs 𝑘, 

validating its computational efficiency. 

 

Table 3. Computational complexity analysis 

 

Method 
Computational 

Complexity  

Dominant 

Operation 

Runtime 

(s) 

SBLSR 𝑂(𝑘 ∙ 𝑀2) 

Matrix-vector 

products (no 

decomposition) 

0.48 s 

MK 

NNSBL 
O(KTM2+KMN) 

Multiple 

kernel-based 

posterior 

updates (no 

decomposition) 

0.63 s 

MUSIC 𝑂(𝑀3 + 𝑀2𝑁) 
Eigen-

decomposition 
1.95 s 

H2AD 𝑂(𝑀2 + N log 𝑁) 
Iterative 

adaptive update 
1.32 s 

CUSE-TD 
𝑂(𝑀2𝑁 +
M log 𝑁)  

Subspace 

estimation and 

covariance 

analysis 

1.62 s 

 

 

4. CONCLUSION 

 

This research proposes the SBLSR approach for high-

resolution and noise-resilient DOA estimation in massive 

MIMO systems. The hybrid framework successfully integrates 

the strengths of sparse Bayesian learning and least squares 

optimization, achieving near-CRLB accuracy while 

outperforming benchmark methods such as CUSE-TD, H2AD, 

and MK NNSBL methods across various SNR and sensor 

configurations. However, the method assumes that the noise is 

independently and identically distributed and relies on prior 

knowledge of sensor positions, which may limit its 

applicability in more unpredictable or adversarial 

environments. Although SBLSR achieves lower 

computational complexity by avoiding matrix decompositions, 

the iterative updates can still incur moderate processing 

overhead in large-scale, real-time applications. Despite these 

constraints, SBLSR represents a significant step forward in 

robust DOA estimation, especially in low SNR conditions and 

scenarios with partially corrupted measurements. Its ability to 

converge rapidly and adapt to measurement uncertainty 

demonstrates its practical utility. Future work will focus on 

extending the model to incorporate dynamic environmental 

uncertainty, enhancing scalability, and integrating adaptive 

antenna reconfiguration to support real-time deployment in 

next-generation wireless communication systems. 
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NOMENCLATURE 

 

S Number of sensors/radars in the MIMO network 

M Number of elements in the MIMO radar array 

𝑀𝑠 Monte Carlo simulation size 

𝐴𝑖 Actual DOA measurement outcome 

𝐴𝑖̂ Estimated DOA measurement outcome 

x,y,z Coordinates of the target node in MIMO networks 

d Euclidean distance between sensors and target 

nodes 

𝓌 Weight vector in the Bayesian regression model 

P Probability function for Bayesian modelling 

C The covariance matrix for sparse Bayesian 

estimation 

T Transformation matrix for signal processing 

 

Greek symbols 

 

Θ Direction of Arrival (DOA) angle 

𝜎2 Variance of noise 

𝜆 Wavelength of the signal 

µ The mean value of a distribution 

Φ Phase shift in MIMO systems 

α Scaling factor in Bayesian estimation 

β Regularization parameter in least squares 

regression 

Ρ The ratio of measurement without noise to total 

measurements 

η Noise measurement deviation 

 

Operations 

 

min Minimization operation for optimization 

arg 

min 

Argument of the minimum value in optimization 

log Logarithmic function 

exp Exponential function 
‖∙‖2 Norm or absolute value 

diag (.) Diagonal matrix representation 
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