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Aluminum serves as a cornerstone in promoting environmentally sustainable practices, 

underscoring the strategic importance of the global aluminum industry within the framework 

of the evolving green economy. Primary aluminum production (PAP) has experienced a 

significant upward trend over the past five decades, reflecting the growing demand across 

various industrial sectors worldwide. This study advances production forecasting 

methodologies by integrating time series analysis, incorporating a range of scenarios from a 

central baseline to optimistic and pessimistic perspectives. Through the utilization of the 

AutoRegressive Integrated Moving Average (ARIMA) model, the research offers forecasts 

of PAP trends until 2030, conducting a comprehensive analysis of the industry's trajectory. 

Through empirical examination, the forecast reveals a consistent upward trajectory in global 

PAP. Volumes are anticipated to increase from around 70 million tonnes in 2023 to more 

than 82 million tonnes by 2030, representing an overall growth of approximately 17%. The 

model selection and validation procedures involved stationarity testing, analysis of 

autocorrelation patterns, and evaluation using information criteria to ensure robustness and 

reliability. Forecasts are presented with confidence intervals to account for uncertainty in 

future production estimates. This anticipated expansion highlights the enduring global 

demand and the critical role of aluminum in supporting industrial development and the green 

energy transition. 
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1. INTRODUCTION

The growing demand for aluminum, often called the metal 

of the future, stems from its unique physical properties, 

durability, and eco-friendly attributes. Consequently, global 

aluminum production continues to rise, nearing levels 

historically dominated by iron, the traditional foundation of 

the metallurgical industry. 

Primary aluminum refers to aluminum extracted from 

electrolytic cells or pots during the electrolytic reduction 

process of metallurgical aluminum oxide. The method known 

as the Hall-Héroult process, discovered independently in 1886 

by Charles Martin Hall from the United States and Paul 

Héroult from France, remains the principal industrial process 

for producing primary aluminum [1]. The various chemical, 

electrochemical, and thermal processes involved in aluminum 

production from alumina are thoroughly examined, 

encompassing activities such as refining alumina, conducting 

electrolysis, and implementing recycling techniques [2]. 

From 2000 to 2020, worldwide aluminum production more 

than doubled. China played a pivotal role in this growth, 

accounting for 57 percent of global aluminum production in 

2020 [3]. In 2023, China accounted for 41.5 million tons of 

primary aluminum production (PAP) out of the world's total 

production of 70 million tons [4]. Azerbaijan stands as the sole 

primary aluminum producer in the Caucasus region. The 

Ganja Aluminum Complex, operational for over a decade, 

spearheads this endeavor. With an annual PAP volume ranging 

between 50,000 to 55,000 tons, the complex is poised to 

double its output in the foreseeable future [5]. Investigating 

and forecasting future trends within the aluminum industry, 

which holds significant promise for economic development, is 

crucial both on a global scale and within local contexts. 

Although prior research has predominantly concentrated on 

regional output and aluminum pricing frameworks, there is a 

notable scarcity of studies offering long-term, data-driven 

forecasts of global PAP based on rigorous statistical 

techniques. Furthermore, the incorporation of scenario-based 

modeling to evaluate alternative future pathways remains 

underexplored. This study seeks to bridge this gap by utilizing 

the AutoRegressive Integrated Moving Average (ARIMA) 

time series forecasting approach to project global aluminum 

production trends through 2030 under baseline. 

The primary aluminum industry is associated with 

substantial carbon emissions, presenting a pressing concern 

due to its role as a primary contributor to global climate 
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change, especially in tandem with increased production. The 

focal point of both the global business and scientific spheres is 

the imperative to reduce CO2 emissions while concurrently 

expanding production within this industry, leading to 

numerous scholarly inquiries into this matter [6]. Subsequent 

phases of aluminum production primarily involve chemical 

processing operations, characterized by significantly reduced 

levels of carbon emissions [7].  

Figure 1. PAP in metric tons (1973-2023) 
Source: IAI. 

Figure 1 illustrates the global PAP spanning the last five 

decades, indicating a predominant trend towards growth. 

Notably, even during the periods of the 2007-2008 financial 

crisis and the 2020-2021 COVID-19 pandemic, which 

significantly impacted numerous industries, the primary 

aluminum sector remained resilient, experiencing swift 

recoveries following each crisis. 

A time series refers to an organized collection of data points 

systematically recorded at uniform intervals over time. These 

data points encapsulate a wide array of variables, including 

sales, temperature variations, stock prices, and production 

quantities. The primary objective of time series forecasting is 

to anticipate upcoming values by drawing upon insights 

gleaned from past observations and patterns. Such forecasting 

efforts aim to provide predictive insights into future trends and 

behaviors within the examined field. Before embarking on the 

forecasting process, it is essential to undertake a thorough 

examination of statistical data and diagnostic assessments 

covering multiple decades. This preliminary step provides a 

foundational understanding of historical trends and patterns, 

facilitating informed decision-making during the forecasting 

endeavor. 

Forecasting PAP using mathematical models is essential for 

efficient resource management, cost reduction, and meeting 

market demand. Advanced forecasting enables producers to 

optimize capacity planning, raw material procurement, and 

inventory management, thereby improving operational 

efficiency and competitiveness. The novelty of this research 

lies in its global approach to forecasting, the use of long-term 

historical data (1973–2023), and the application of the 

ARIMA model within a scenario-based framework. The study 

contributes to the academic literature by offering a robust and 

interpretable statistical model for long-term production 

forecasting. Practically, the findings provide policymakers, 

manufacturers, and supply chain planners with vital 

projections to support informed decision-making in the 

context of resource management, market planning, and the 

broader green transition. 

2. THEORETICAL BACKGROUND

Various mathematical methods and models are employed to 

forecast future trends based on historical patterns. The 

ARIMA model, first introduced by Box and Jenkins [8], serves 

as a cornerstone in time series forecasting. The ARIMA model 

adeptly captures temporal trends and patterns by examining 

the impact of previous observations through autoregressive 

examination, rectifying data stationarity via integration, and 

accommodating stochastic fluctuations via a moving average 

technique. This adaptable framework has firmly entrenched 

ARIMA as a favored methodology for forecasting across a 

diverse array of fields encompassing finance, business, and 

engineering disciplines. Additionally, it has been employed in 

analyses involving consumption, imports, and exports. 

In their study, Kriechbaumer et al. [9] presented a new 

technique that integrate wavelet analysis with ARIMA models 

to enhance the predictive accuracy of cyclical metal prices, 

including those of aluminum, copper, lead, and zinc. Kalantzis 

[10] examined the feasibility of leveraging past data on

aluminum producers' stocks, economic indices, currency

values, and other commodity prices to statistically forecast

future aluminum prices. The aim is to construct a reliable price

forecasting model for this essential metal. Several research

studies have also investigated the forecasting of aluminum

production. Khalil and Hamad [11] examined the effectiveness

of ARIMA and ANN models in forecasting monthly

aluminum exports from Turkey to Iraq. Their analysis reveals

that ANN outperforms ARIMA, as evidenced by lower error

metrics, indicating its superior accuracy for this forecasting

task. ARIMA is a widely used, interpretable method suitable

for long-term forecasting with stable historical patterns,

though its linear nature may limit performance with complex

data. In contrast, ANN and hybrid models handle

nonlinearities better but require larger datasets, more

computation, and offer less transparency. The choice between

ARIMA and ANN depends on data availability, forecasting

goals, and the trade-off between accuracy and interpretability.

In his study, Sas [12] investigated the potential effects of 
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variables such as GDP, population size, and the expansion of 

key industries on the future trajectory of aluminum production 

in India for the next twenty years. Furthermore, a variety of 

other econometric forecasting and diagnostic articles have 

been developed [13-15]. The provided scientific samples offer 

both theoretical insights and practical information concerning 

existing research. Although ARIMA offers transparency and 

simplicity, it may fall short in capturing volatility and 

nonlinear trends. Recent models like LSTM [16] and Prophet 

[17] better handle such complexities, while integrated

approaches combining econometric and technical factors are

gaining prominence in production forecasting. This study uses

ARIMA as a baseline, with recognition of these advanced

alternatives.

3. DATA AND METHODOLOGY

The initial step in our analysis involves describing the 

dataset for PAP. This dataset, covering the period from 1973 

to 2023, was obtained from the International Aluminum 

Institution [18] and comprises annual production figures, 

forming the foundation for our forecasting model. Before 

delving into time series modeling, it is essential to ascertain 

the stationarity of the PAP data. This entails conducting a unit 

root test, such as the Augmented Dickey-Fuller test, to discern 

any underlying trends or seasonality within the dataset. In 

cases where the data exhibits non-stationarity, differencing 

techniques may be applied to render it stationary. 

Subsequently, we analyze the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) of the PAP data. 

These analyses aid in identifying potential autoregressive 

(AR) and moving average (MA) terms suitable for inclusion 

in our ARIMA model. The ACF plot illustrates the correlation 

between the current observation and its lagged values, while 

the PACF plot reveals the direct relationship between the 

current observation and its lagged values after accounting for 

intermediate lag effects. Based on diagnostic results, we select 

the most appropriate ARIMA model for forecasting global 

PAP, which entails specifying values for the autoregressive 

(p), differencing (d), and moving average (q) terms. 

The ARIMA model, a commonly utilized tool in time series 

analysis, can be succinctly expressed as follows [19]: 

Yₜ = c + φ₁Yₜ₋₁ + φ₂Yₜ₋₂ + ... + φₚYₜ₋ₚ + θ₁eₜ₋₁ + θ₂eₜ₋₂ 

+ ... + θₑ₋₁ + θₑ₋₂ + ... + θ_qeₜ₋_q + eₜ
(1) 

In this equation, Yₜ represents the PAP at time t, while c 

denotes a constant term. The parameters ϕ₁, ϕ₂, ..., ϕₚ denote 

the autoregressive elements, signifying the influence of 

previous PAP values on the current value. Similarly, θ₁, θ₂, ..., 

θq symbolize the moving average parameters, depicting the 

impact of prior forecast errors on the present value. The term 

eₜ indicates the error term at time t, crucial for capturing 

unexplained variability in the data. The variables p and q 

signify the order of the autoregressive and moving average 

components, respectively, offering valuable insights into 

temporal dependencies within the dataset.  

Applying first differencing (d=1) successfully eliminated 

non-stationarity in the series, while analysis of the 

autocorrelation and partial autocorrelation functions identified 

one significant autoregressive term (p=1) and one moving 

average term (q=1). This specification also yielded the lowest 

values of information criteria (Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC)) relative to 

alternative models, suggesting an optimal balance between 

model fit and parsimony. 

Table 1 presents data on PAP, indicating the quantity of 

aluminum produced directly from electrolytic cells during the 

reduction of aluminum oxide. Notably, this metric excludes 

any alloying additives or recycled aluminum, focusing solely 

on the primary production process. 

The dataset spanning from 1973 to 2023 demonstrates an 

average production of roughly 31,360 thousand metric tonnes 

and a median production level of approximately 22,721 

thousand metric tonnes. A positive skewness value of 0.843 

indicates years characterized by notably high production 

levels, while a kurtosis value of 2.229 suggests a distribution 

with a relatively flat peak. 

Table 1. Data description of APA in level 

Mean Median Max Min Std. Dev. Skewness Kurtosis 

31.360 22.721 70.581 12.017 18.926 0.843 2.229 

4. RESULTS, INTERPRETATION AND DISCUSSION

Evaluating stationarity stands as a pivotal element within 

econometric inquiry, as it forms the cornerstone for the 

fundamental assumptions and methodologies utilized in 

empirical investigations within the field of economics. The 

Augmented Dickey-Fuller (ADF) test is an indispensable 

statistical tool for analyzing the stationarity of time series data. 

Mushtaq [20] explores the significance of examining data for 

stationarity, particularly emphasizing the temporal aspects of 

underlying variables. Although not explicitly mentioning the 

Augmented Dickey-Fuller (ADF) test, the abstract highlights 

the crucial role of conducting stationarity tests in academic 

research.  

Table 2 demonstrates that the initial assessment indicates a 

lack of stationarity in the time series, with p-values exceeding 

0.05 in both instances. Nevertheless, after employing first 

differencing, the time series achieves stationarity, evidenced 

by significantly reduced p-values. This suggests that 

differencing effectively eliminates the inherent trend, enabling 

the time series to undergo stationary analysis. 

Table 2. ADF unit root test 

Deterministic 

Components 

Test 

Statistics 
Level 1st Difference 

Intercept 
p-value 1.0000 0.0002 

t-statistic 3.225916 -4.949230

Trend and 

Intercept 

p-value 0.9595 0.0000

t-statistic 0.791352 -6.356726

Figure 2 displays the correlogram output, a diagnostic tool 

used to evaluate autocorrelation within the residuals of an 

ARIMA model, reflecting the serial dependence of errors in a 

time series model. The correlogram showcases the ACF and 
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PACF of the residuals, quantifying the correlation between 

residuals at different lags. Interpretation entails examining 

autocorrelation (AC) and partial autocorrelation (PAC) 

coefficients, as well as the Ljung-Box Q statistic and its 

corresponding p-values, with significant deviations suggesting 

notable autocorrelation, potentially indicating model 

inadequacies necessitating adjustments like the inclusion of 

additional AR or MA terms. 

Figure 2. Correlogram of PAP. The analysis was conducted utilizing the EViews software platform 

The main criteria from the diagnostics selects that the most 

appropriate model for analyzing time series data is ARMA 

(1,1,1). We perform estimation for the following equation to 

identify a potential candidate model for forecasting, ultimately 

leading to the forecast: 

∆PAPₜ = c + φ₁PAPₜ₋₁ + θ₁εₜ₋₁ + εₜ (2) 

When evaluating the stability of a univariate process, it is 

essential to verify that the model residuals exhibit 

characteristics consistent with White Noise, a fundamental 

requirement for model integrity. This assessment typically 

involves employing statistical tests like the Ljung-Box Q 

statistic to examine the null hypothesis concerning the absence 

of autocorrelation in the residuals. Within this framework, the 

stability of the estimated Autoregressive Moving Average 

(ARMA) model critically depends on the positioning of its 

roots within the unit circle: AR roots residing within this circle 

denote covariance and stationarity, while MA roots within the 

circle ensure the invertibility of the ARMA process. In the 

realm of time series analysis, AR and MA models are 

frequently utilized for data modeling, wherein the properties 

of the model are dictated by the reciprocal roots of these 

polynomials, highlighting their crucial role in elucidating the 

temporal dynamics of the dataset. ARMA is a common 

method for time series forecasting. In Figure 3, the horizontal 

axis of the plot is annotated as "AR roots" and "MA roots". 

This plot constructs a model by incorporating historical data 

points from a time series while also accounting for the 

stochastic nature of the error terms. 

Figure 3. D(PAP): Inverse roots of AR (1) MA (1) 

Polynomial (s) 

The AR and MA parts of the ARMA model refer to two 

types of polynomials used in the model. AR stands for 

autoregressive, and it refers to how past values of the time 

series affect future values. MA stands for moving average, and 

it refers to how the randomness of the error terms affects future 

values. The positioning of the roots of the ARMA polynomials 

can impact both the stability and forecasting capabilities of the 

model. 

While the ARIMA model is primarily utilized in forecasting 

analyses within the financial domain, there exist notable 

scholarly investigations concerning production forecasting as 
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well [21-24]. Figure 4 illustrates the historical and projected 

trend lines for global PAP spanning from 2023 to 2030. The 

vertical axis denotes production quantity, while the horizontal 

axis signifies the years. The central forecast line (PAPF) acts 

as the baseline forecasting, drawing upon historical data and 

an ARIMA model, while the upper bound (UB) and lower 

bound (LB) delineate optimistic and pessimistic scenarios, 

respectively. 

Figure 4. Forecasting global PAP trends: 2023-2030 

Notably, historical data indicates a consistent upward trend 

in PAP over time. Moving forward, the forecast suggests a 

continuation of this growth trajectory. Optimistically, 

favorable conditions such as technological advancements and 

increased demand could propel production levels beyond the 

central forecast, while challenges like sup-ply chain 

disruptions or economic downturns may result in production 

falling below expectations. 

The ARIMA model integrates a resilient algorithm for time 

series forecasting, incorporating AR, differencing (I), and MA 

elements. Fundamentally, the model utilizes historical data 

points from the time series to project forthcoming values, 

based on the premise that knowledge derived from prior 

observations can aptly guide forecasts of future trends. The 

aluminum industry exhibits dynamic characteristics and 

operates within an evolving business environment within the 

global economy. According to the FBI [25], the global 

aluminum market reached a valuation of $262.75 billion in 

2022. Projections suggest further growth, with the market 

expected to reach $229.85 billion in 2023 and a significant 

increase to approximately $393.70 billion by 2032. 

Mathematical modeling facilitates forecast analysis based on 

historical data, yet it does not guarantee complete accuracy in 

forecasting future outcomes. Numerous factors influencing 

economic forecasts can significantly diminish the precision of 

mathematical observations. For instance, global economic 

downturns can drastically reduce demand and production 

levels. Conversely, upward trends in the global economy may 

necessitate higher production volumes. Moreover, the 

increasing recognition of aluminum as an environmentally 

friendly metal could lead to a substantial surge in demand in 

the future. Forecasts suggest that by 2030, demand for 

aluminum, driven by sectors like transportation and 

construction, could surge by as much as 40%, surpassing the 

forecasts generated by mathematical models [26]. Indeed, 

there exist distinctions between econometric mathematical 

forecasting and demand forecasts. Nonetheless, the narrative 

outcomes of both avenues indicate a consensus: aluminum 

production is poised to escalate in the future, underscoring the 

growing significance of this strategic industry. 

The optimistic and pessimistic scenarios function as 

simplified, qualitative frameworks intended to encompass a 

spectrum of potential future developments. The optimistic 

scenario envisions favorable factors such as sustained 

economic expansion and enabling policy environments that 

promote higher aluminum production. Conversely, the 

pessimistic scenario accounts for limiting factors including 

reduced economic growth, tighter regulatory measures, or 

disruptions in supply chains. While these scenarios are not 

elaborated with quantitative detail in the present analysis, they 
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offer important contextual insights into possible production 

pathways and lay the groundwork for more detailed, 

quantitative modeling in subsequent research. 

5. CONCLUSION

The rising trend in global PAP is influenced by factors 

including technological progress, market demand, energy 

supply, and geopolitical dynamics. This study utilized time 

series analysis to assess production patterns from 1973 to 

2023, identifying a positively skewed distribution and non-

stationary behavior, which were effectively captured through 

an ARIMA (1,1,1) model. The projections suggest a sustained 

increase in primary aluminum output across different 

scenarios, highlighting the sector’s expanding strategic 

significance. 

Key findings emphasize the appropriateness of ARIMA for 

production forecasting and acknowledge the inherent volatility 

in historical production data. Nonetheless, the study is limited 

by the omission of explicit external determinants such as 

environmental regulations, economic policy changes, and 

potential disruptive technological innovations that could 

influence future production trajectories. Subsequent research 

should aim to incorporate these quantitative drivers to enable 

more robust scenario-based forecasting. Moreover, factoring 

in emission reduction targets and sustainability objectives will 

be crucial to ensure alignment of production forecasts with 

global climate commitments. 
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