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Accurate brain tumor classification plays a critical role in enhancing diagnosis and 

treatment planning in medical imaging. This research presents a fusion-based deep 

learning framework utilizing texture-based feature extraction methods—Multivariate 

Local Texture Pattern (MLTP), Gray-Level Co-Occurrence Matrix (GLCM), Local 

Energy-Based Shape Histogram (LESH) and Region-based Convolutional Neural 

Network-Long Short-Term Memory (RCNN-LSTM) models for brain tumor 

classification. The process begins with dataset collection followed by annotation using 

the YOLO application to ensure precise region identification. Training is performed 

using Mask-RCNN with a batch size of 8 and 15 epochs, and further complemented by 

parameter tuning for model optimization. Real-time sample testing is conducted to 

evaluate the model’s robustness. Post-processing is applied to refine predictions, and 

performance metrics such as accuracy, recall, F1-score, and throughput are calculated 

to assess model efficacy. The final results are deployed on Edge AI platforms to 

facilitate real-time clinical applications. Experimental results demonstrate the 

effectiveness of the proposed approach, showcasing high accuracy and improved 

throughput, thus highlighting the potential of integrating RCNN and LSTM 

architectures for reliable brain tumor classification. The proposed model attains an 

accuracy of 99.87%, recall of 99.73%, precision of 97.21%, specificity of 98.24%, F1 

score of 99.36%, sensitivity of 98.12%, dice coefficient of 98.41%, throughput of 

98.37%, latency 0.99% and mAP of 99.12%. These results represent a significant 

improvement compared to earlier models. The implemented application has been tested 

on KLEF University staff and external patients, yielding accurate results. 
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1. INTRODUCTION

Medical scan images, particularly Magnetic Resonance 

Imaging (MRI) scans, are critical in diagnosing deeply 

affected areas within the human body. These scans use layer-

by-layer analysis to provide detailed insights into various 

medical conditions. MRI is a widely used imaging modality 

that offers valuable technical information about the size, 

location, and type of tumors. It works by detecting the 

behavior of protons in response to radio frequencies and 

equilibrium states, enabling the identification of subtle 

changes in tissue composition. MRI scans deliver high-

resolution images that can distinguish between different types 

of brain tissues, such as blood oxygenation levels and water 

diffusion, making them highly effective in diagnosing brain 

abnormalities. MRI scans are particularly useful in detecting 

degenerative brain diseases such as brain tumors, transient 

ischemic attacks (TIAs), and cancer. Globally, these 

conditions affect approximately 1 million people, with brain 

tumors and TIAs impacting over 15% of the population. 

Annually, around 12 out of every 1,000 individuals are 

diagnosed with brain disorders linked to tumors or 

degenerative diseases. Advanced neuroimaging techniques 

and biomarkers have been instrumental in identifying these 

conditions, improving the early detection of brain tumors and 

cancers. Deep learning models have become essential in 

analyzing MRI data for brain tumor detection. These models 

leverage large datasets to accurately classify and differentiate 

between normal and abnormal brain tissues. They are 

particularly effective in identifying cognitive impairments 

associated with brain disorders. By using deep learning 

algorithms, it is possible to enhance diagnostic accuracy, 

thereby aiding in the early detection and management of brain 

diseases. As brain tumors and other neurological disorders 

significantly impact global health and socio-economic 

development, the use of advanced imaging techniques 

combined with machine learning is crucial for timely 

diagnosis and treatment. The multivariate local texture 

pattern (MLTP) for MRI brain image feature extraction is a 

sophisticated method for evaluating texture patterns in MRI 

brain images. MLTP is very beneficial for detecting local 

texture differences that aid in the diagnosis of neurological 

illnesses including as Alzheimer's, Parkinson's, and 

malignancies. Texture information is crucial for detecting 

structural problems in medical imaging such as MRIs. 

Multivariate statistical techniques are used to capture the 
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connections between pixel intensities across several 

modalities. Calculate multivariate texture characteristics that 

represent directional and intensity variations. PCA, t-SNE, or 

feature selection techniques are frequently used to decrease 

high-dimensional MLTP features and enhance computing 

performance. Prior to classification, normalize the feature 

vectors to achieve consistent scaling. 

The Gray-Level Co-Occurrence Matrix (GLCM) is a 

statistical approach for obtaining texture features from 

photographs. It measures the spatial connection between pixel 

intensity levels by calculating how frequently pairs of pixel 

values occur at a given distance and angle. Key characteristics 

retrieved from GLCM include contrast (measures local 

intensity changes), correlation (measures linear dependency 

of pixel pairings), energy (measures textural uniformity), and 

homogeneity (measures pixel value proximity). These traits 

are commonly utilized in MRI analysis to distinguish between 

textures representing normal and diseased brain tissues. 

GLCM is a computationally efficient and effective solution 

for medical image analysis. The Local Energy-Based Shape 

Histogram (LESH) approach extracts form and texture 

characteristics from picture areas by utilizing local energy 

responses. It uses Gabor filters to calculate local energy and 

encodes the results into histograms for each patch of the 

image. These histograms are concatenated to create a feature 

vector, which represents shape and texture information. 

LESH works at numerous sizes and orientations, ensuring 

resistance to changes in size, rotation, and light. It is widely 

utilized in a variety of applications, including object 

identification, medical imaging (such as MRI tumor 

diagnosis), and image retrieval. LESH is computationally 

efficient and includes discriminative characteristics to ensure 

proper classification. The categorization of brain tumor MRI 

images using a combination of Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) 

networks is a reliable method that combines spatial and 

temporal feature learning to provide correct diagnosis. The 

process starts with preprocessing the MRI images, which 

includes skull stripping to remove non-brain tissues, 

normalization to scale pixel intensities within a consistent 

range (e.g., [0,1]), resizing the images to a uniform dimension 

suitable for CNN input (e.g., 224×224), and using data 

augmentation techniques like rotation, flipping, and scaling 

to improve dataset diversity and reduce overfitting. 

CNN is then used to extract spatial characteristics from 

MRI images. Its convolutional layers capture hierarchical 

characteristics including edges, textures, and tumor borders, 

while pooling layers minimize dimensionality without 

sacrificing important spatial information. VGG16, ResNet, 

and Inception are examples of pretrained models that may be 

utilized to improve feature extraction using transfer learning. 

These collected spatial characteristics are sent into the LSTM 

network, which processes them sequentially to capture 

temporal or spatial relationships, allowing the model to assess 

differences across picture patches or slices. Bidirectional 

LSTM can enhance performance by learning dependencies in 

both forward and backward directions. The CNN and LSTM 

outputs are combined to create a robust feature 

representation, which is then fed via fully linked dense layers 

for classification. For multi-class or binary classification 

tasks, such as discriminating between benign and malignant 

tumors, the output layer employs a Softmax or sigmoid 

activation function. The model is trained utilizing optimizers 

like Adam and an appropriate loss function, such as 

categorical or binary cross-entropy. Finally, the model's 

performance is measured using measures such as accuracy, 

precision, recall, F1-score, and AUC-ROC, as well as k-fold 

cross-validation to assess robustness and generalizability. 

This CNN-LSTM fusion combines CNN's capacity to learn 

specific spatial information with LSTM's capability in 

capturing dependencies, resulting in a potent tool for brain 

tumor classification. The earlier models only concentrate on 

tumor size and located area but orientation of disease and 

related information has not identified. The tumor effected 

area and disease influence on other organs information have 

not been added to which is most trending research in brain 

medical image computer vision tasks. 

2. RELATED METHODS

Deep learning algorithms have significantly improved 

medical picture segmentation and classification, notably in 

the identification and diagnosis of brain tumours utilizing 

MRI data. Recent research shows that combining 

sophisticated architectures such as Region-based 

Convolutional Neural Network (RCNN) and LSTM can 

improve the capacity to accurately diagnose brain tumors by 

using both spatial and sequential data. Texture analysis is an 

important component in brain tumor classification since it 

gives information about the structural patterns in MRI 

images. Traditional techniques relied on statistical methods 

such as the GLCM to capture textural patterns. However, 

deep learning approaches have taken over this industry. For 

example, Azad et al. [1] found that U-Net is effective at 

collecting detailed texture information for segmentation 

tasks. Similarly, Shao et al. [2] emphasized the use of optimal 

clustering and U-Net for identifying relevant patterns for 

classification. These developments pave the way for hybrid 

systems like RCNN-LSTM to capture both textural and 

temporal relationships. CNNs form the foundation of current 

medical image processing, especially feature extraction. The 

success of U-Net and its derivatives is well established. Xiao 

et al. [3] examined the use of transformers in medical 

segmentation, demonstrating their ability to increase feature 

extraction through better contextual comprehension. 

Furthermore, research by references [4, 5] contrasted CNN 

and U-Net performance, demonstrating their capacity to 

capture specific spatial data required for correct 

categorization. While CNNs are excellent at collecting spatial 

information, Long Short-Term Memory (LSTM) networks 

can describe sequential relationships. This integration is 

especially important for 3D MRI images, as the slices carry 

contextual links. Baccouch et al. [6] used U-Net for 3D MRI 

segmentation, proving its capacity to identify brain cancers. 

Extending this using LSTM allows you to capture inter-slice 

relationships, which improves classification accuracy. Chen 

et al. [7] proposed hybrid techniques that combine classical 

and deep learning models, proposing for the use of LSTMs to 

represent temporal characteristics. The merger of RCNN with 

LSTM has the ability to capture both spatial and sequential 

dependencies, making it ideal for brain tumor classification. 

Saikumar et al. [8] proposed TransUNet, a transformer-

enhanced U-Net architecture, to increase feature 

representation. Similarly, Zhang et al. [9] presented DA-

TransUNet, which combines dual attention processes with 

transformers for medical segmentation. These techniques 

highlight the value of hybrid architectures, which may be 

used to RCNN-LSTM for improved classification problems. 

Recent advances in brain tumor classification depend on 
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combining U-Net's segmentation skills with improved 

classifiers. Sun et al. [10] used genetic algorithms to optimize 

U-Net designs, whereas Khouy et al. [11] proposed new

preprocessing and segmentation pipelines for brain MRI.

These improvements show the need of combining strong

segmentation models with classifiers such as RCNN-LSTM

to boost accuracy even further [12]. The combination of

RCNN and LSTM models for texture-based feature

extraction and classification has great potential for brain 

tumor identification [13]. The studied research illustrates the 

effectiveness of CNN-based architectures for feature 

extraction, as well as the capacity of LSTMs to capture 

sequential correlations [14]. Leveraging these hybrid 

architectures can lead to better diagnostic tools, allowing for 

more accurate and reliable brain tumor categorization [15]. 

Table 1. Literature survey of model 

Metric 

CNN With Chicken 

Swarm Optimization 

[16] 

Optimised 

Resnet50 [17] 

U-Net

Architecture 

[8] 

3D MRI 

Segmentation Using 

U-Net [14]

Hybrid CNN-SVM 

Threshold 

Segmentation [18] 

AUC-ROC 97.45% 98.43% 96.71% 94.24% 95.93% 

Specificity 96.43% 92.21% 94.28% 92.32% 98.54% 

Dice Coefficient 94.66% 97.64% 95.88% 98.20 95.17% 

F1 Score 91.42% 96.81% 98.94% 93.04% 92.15% 

Recall 

(Sensitivity) 
90.14% 94.01% 94.15% 97.50% 92.54% 

Intersection 

Over Union 

(IoU) 

97.30% 95.65% 91.50% 92.48% 89.81% 

Precision 90.19% 96.84% 97.96% 95.73% 96.04% 

Accuracy 93.66% 99.3% 91.03% 94.50% 95.25% 

Table 1 compares the performance of five segmentation 

methods: Optimized ResNet50, CNN with chicken swarm 

optimization, U-Net architecture, 3D MRI segmentation with 

U-Net, and Hybrid CNN-SVM threshold segmentation,

utilizing a variety of criteria. The optimized ResNet50 model

has the highest AUC-ROC (98.43%) and dice coefficient

(97.64%), showing a great capacity to differentiate across

classes and produce excellent segmentation overlap. The

CNN with chicken swarm optimization outperforms in

specificity (96.43%) and IoU (97.30%), indicating that it

efficiently eliminates false positives while retaining a high

degree of overlap between predicted and ground truth

segmentation. The U-Net design is notable for its constant

performance across numerous measures, including the F1

score (98.94%), precision (97.96%), and accuracy (91.03%),

making it a strong and dependable option. Meanwhile, the 3D

MRI segmentation utilizing U-Net model has the greatest

recall (97.50%), indicating that its strength is in reliably

recognizing true positives. Finally, the hybrid CNN-SVM

threshold segmentation approach performs well, notably in

specificity (88.54%) and precision (96.04%), but falls short

significantly in IoU and F1 score. Overall, while all

techniques have strengths in certain measures, the U-Net

design emerges as a well-rounded performer with consistent

results across important assessment criteria.

3. MATERIALS AND METHODS

In this section, a brief discussion of proposed novel feature 

extraction and RCNN-LSTM techniques were explained. The 

feature extraction will take 3 techniques highest results 

MLTP, GLCM and LESH. The Label Img tool has been used 

to annotated dataset and results have been sending to feature 

extraction later it is going to send for model training. 

Figure 1 describes a methodical procedure for creating a 

deep learning-based system employing YOLO and Mask-

RCNN, most likely for object detection or segmentation 

tasks. In order to train the model, pertinent photos or videos 

are first collected as part of the dataset collecting procedure 

[19]. The YOLO App is then used to annotate the data, 

labeling it to identify objects or areas of interest. The data is 

then supplied into the Mask-RCNN model for training, which 

is carried out with a batch size of 8 and 15 epochs after the 

annotation [20]. Mask-RCNN is a potent framework that 

offers precise and thorough predictions by fusing instance 

segmentation and object detection [21]. Following training, 

the model is subjected to parameter tuning, which involves 

modifying hyperparameters such as learning rate and model 

architecture in order to improve performance [22]. To make 

sure the adjusted model generalizes well to fresh, untested 

data, it is then tested using real-time samples. Post-processing 

approaches, which enhance predictions through filtering or 

other optimization tactics, are used to further improve the 

outcome [23]. Key measures like accuracy, recall, F1 

measure, and throughput are then used to evaluate the 

system's performance [24]. These metrics together evaluate 

the model's precision, recall, and processing efficiency [25]. 

The trained model is then installed on edge devices, including 

embedded systems or Internet of Things devices, allowing 

real-time, on-device processing after the findings have been 

submitted to an Edge AI system. For real-world applications, 

this method guarantees quicker inference and less reliance on 

centralized servers, making the system extremely effective. 

All things considered, this approach successfully blends 

cutting-edge methods like Mask-RCNN for segmentation and 

YOLO for annotation, guaranteeing reliable performance and 

real-time deployment. The proposed model (MLTP, GLCM 

and LESH with RCNN-LSTM) achieves greater 

improvements over existing technologies. The traditional 

models completely rely on deep learning techniques which 

can neglect spatial and temporal features rather than pixel 

features. The classification accuracy of Mask RCNN is higher 

for tumor localization, while the LSTM captures dynamic 

brain image features, which can provide high performance 

i.e., accuracy of 99.87%. This model can be deployed on edge

devices, significantly operates smooth environment. This

work can diagnose brain tumors in real-world applications

and provide precise results.
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Figure 1. Block level analysis of RCNN-LSTM model complete functionality related to MRI brain abnormality detection with 

less quality images 

3.1 Dataset collection 

The benchmark MRI brain image datasets, including 

BraTS2022, UCI, and Kaggle samples, were combined to 

create a custom dataset encompassing all relevant features. A 

total of 26 classes were defined to train deep learning models 

for brain MRI image classification and identification. The list 

of classes are Normal Brain, Glioma Tumor, Meningioma 

Tumor, Pituitary Tumor, Metastatic Tumor, Ischemic Stroke, 

Hemorrhagic Stroke, Cerebral Edema, Brain Abscess, 

Encephalitis Alzheimer's Disease, Parkinson's Disease, 

Multiple Sclerosis (MS), Hydrocephalus Cystic Lesions, 

Traumatic Brain Injury (TBI), Ventricular Enlargement, 

Cerebral Atrophy, White Matter Hyperintensities (WMH), 

Intraventricular Hemorrhage Brain, Hematoma Arteriovenous 

Malformation (AVM), Cavernoma, Epileptic Focus, Chronic 

Subdural Hematoma, Tumor-Free Abnormality. The dataset 

size of 30k samples were loaded imageNet file for training of 

model. 

The main significance of this work is to provide fast and 

accurate brain tumor classification using COCO dataset. The 

brain tumor samples and its processing speed has improved 

with proposed custom model. The imageNet size samples can 

helps the model get robust and accurate lesions has identified. 

3.2 Pre-processing 

DICOM images (common in MRI scans) should be 

converted into standardized formats like NIfTI (.nii) or 

PNG/JPEG for compatibility with deep learning frameworks. 

All images should be resized to a fixed dimension (e.g., 

256×256 or 512×512) to ensure uniform input size for the 

model. Pixel intensities should be normalized to a range of [0, 

1] or [-1, 1] using Min-Max normalization or Z-score

normalization.

𝑋 =
X − Xmin

Xmax − Xmin
(1) 

Non-brain tissues (e.g., skull, fat, scalp) should be removed 

to focus only on the brain region. Tools like Brain Extraction 

Tool (BET), FMRIB Software Library (FSL), or FreeSurfer 

can be used for automated skull stripping. The dataset size has 

been increased using augmentation techniques, and issues of 

overfitting and underfitting have been resolved by balancing 

the training parameters. Segmentation and classification 

techniques have been applied to the dataset for better results. 

The IMG-Label tool has been used for labelling to maintain 

the dataset. 

3.3 Features extraction 

3.3.1 MLTP, GLCM, and LESH: Detailed notes and 

mathematical analysis 

MLTP is an extension of the Local Binary Pattern (LBP) 

used to capture texture features in images. Unlike LBP, MLTP 

works in a multivariate domain, analyzing relationships across 

multiple image channels or features, making it suitable for 

color images or multimodal data. 

Key steps: 

Step 1. Neighborhood Sampling: Analyze the intensity 

relationships between a central pixel and its neighboring pixels 

across multiple image channels. 

Step 2. Thresholding: Instead of binary comparison (as in 

LBP), MLTP uses a multivariate thresholding strategy. 

Step 3. Encoding: Generate patterns (codes) based on 

texture variations across multiple channels. 

Mathematical analysis: 

Let an image I consist of n channels 𝐼 = {𝐼1,𝐼2,. . . , 𝐼𝑛}. For a

pixel p, the MLTP code is computed as: 

𝑀𝐿𝑇𝑃(𝑝) = ∑ ∑ 𝑡(𝐼𝑐(𝑁𝑘), 𝐼𝑐(𝑝))

𝑃−1

{𝑘=0}

𝑛

{𝑐=1}

· 2{𝑘+(𝑃·(𝑐−1))} (2) 

where, P = Number of neighbours in a circular neighbourhood. 

Nk = The k-th neighbor of the central pixel p. 

𝑡(𝐼𝑐,(𝑁𝑘), 𝐼𝑐(𝑝)) = Thresholding function shown in Eq. (1).

𝑡(𝐼𝑐(𝑁𝑘), 𝐼𝑐(𝑝)) = 1 if 𝐼𝑐(𝑁𝑘) ≥ 𝐼𝑐(𝑝) (3) 
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Key features: 

MLTP captures texture information across multiple 

channels simultaneously. It is robust to illumination changes 

and noise, making it applicable to RGB images, hyperspectral 

images, or multi-feature datasets. 

GLCM is a statistical method for analyzing spatial 

relationships between pixel intensities. It captures how 

frequently a pair of gray levels co-occur in an image at a given 

offset and direction. 

Steps to construct GLCM: 

Step 1. Define the spatial relationship (offset, direction) 

between two pixels. 

Step 2. Compute how often each gray-level pair occurs. 

Step 3. Normalize the matrix to represent probabilities. 

Mathematical analysis: 

Let I be a gray-level image of size M×N and G be the 

number of gray levels. Define an offset (dx, dy) as the distance 

between pixels. The GLCM P(i,j) is defined as: 

𝑃(𝑖, 𝑗) = ∑ ∑

𝑁

{𝑦=1}

𝑀

{𝑥=1}

{
1 if 𝐼(𝑥, 𝑦) = 𝑖 and 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) = 𝑗

0 otherwise

(4) 

where, i,j = Gray levels; (dx,dy) = Offset (e.g., 1 pixel 

horizontally, vertically, or diagonally) shown in Eq. (3). 

Texture features from GLCM: 

Contrast: Measures intensity variation: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑃(𝑖, 𝑗)

2

{𝑖,𝑗}(𝑖−𝑗)

 (5) 

Correlation: Measures the linear dependency of gray levels: 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ [(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑃(𝑖, 𝑗)]𝑖,𝑗

(𝜎𝑖𝜎𝑗)
(6) 

Energy: Measures uniformity of texture: 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑃(𝑖, 𝑗)2

{𝑖,𝑗}

(7) 

Homogeneity: Measures closeness of gray levels shown in 

Eq. (8). 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =
∑ 𝑃(𝑖, 𝑗){𝑖,𝑗}

(1 + |𝑖 − 𝑗|)
(8) 

LESH is used to extract shape and texture features from 

images based on local energy information. It works by 

analyzing the response of filters (like Gabor or Gaussian 

filters) applied to the image to capture texture and edge 

patterns. 

Steps: 

Step 1. Filtering: Apply a bank of filters (e.g., Gabor filters) 

to the image to capture local edge and texture features. 

Step 2. Energy Calculation: Compute the local energy at 

each pixel as the sum of squared filter responses. 

Step 3. Shape Histogram: Generate histograms by 

quantizing the local energy values into bins. 

Mathematical analysis: 

Let I(x, y) be an image, and Fk(x, y) represent a filter (e.g., 

Gabor filter) at orientation k. The filter response is: 

𝑅𝑘(𝑥,𝑦) = 𝐼(𝑥, 𝑦) ∗ 𝐹𝑘(𝑥,𝑦) (9) 

where, * is the convolution operation. The local energy at a 

pixel is given by shown in Eqs. (8) and (9). 

𝐸(𝑥, 𝑦) = ∑ 𝑅𝑘(𝑥,𝑦)
2

𝐾

{𝑘=1}

(10) 

Key features: 

LESH captures both texture (local energy) and shape 

information. It is robust to noise and illumination changes due 

to energy-based analysis, providing a compact yet descriptive 

representation of local features in Table 2.  

Table 2. Comparison of techniques 

Technique Purpose 
Features 

Captured 
Applications 

MLTP 

Multivariate 

texture 

analysis 

Texture across 

multiple 

channels 

Color and 

multimodal 

images 

GLCM 

Statistical 

texture 

analysis 

Spatial 

relationships 

and statistics 

Texture 

classification, 

medical 

imaging 

LESH 

Energy and 

shape 

analysis 

Local energy 

and edge 

patterns 

Object 

recognition, 

shape analysis 

3.3.2 Training with Mask RCNN-LSTM 

Numerous steps make up the training procedure for MRI 

brain image categorisation utilising a Mask RCNN-LSTM 

architecture. 26 classes of MRI brain images are included in 

the dataset, which encompasses a variety of brain regions, 

abnormalities, or conditions. Standard techniques, including 

intensity normalisation, noise removal, data augmentation 

(rotation, flipping, and zooming), and cranium stripping, are 

employed to preprocess these images. To generate 

segmentation templates for the brain regions of interest, the 

annotated dataset is prepared using tools such as the YOLO 

app or COCO-style annotations. The dataset is partitioned into 

a training set (70%), validation set (20%), and test set (10%). 

The architecture integrates LSTM for feature refinement 

and Mask RCNN for segmentation. Mask RCNN is 

accountable for the detection, segmentation, and classification 

of objects. It extracts feature maps from MRI brain images by 

employing a backbone network, such as ResNet-50 or ResNet-

101. Candidate bounding boxes are generated by a Region

Proposal Network (RPN), and pixel-level masks for each class

are predicted by a segmentation branch. Segmented masks,

bounding boxes, and classification scores comprise the outputs

of Mask RCNN. Subsequently, the LSTM network utilises the

feature maps or flattened embeddings produced by the Mask

RCNN's fully connected layer as inputs. The LSTM is

particularly advantageous in this architecture because it can

capture the spatial relationships and sequential dependencies

between features, which is particularly important for MRI

scans that involve multiple slices. Mask RCNN is pre-trained

independently on the MRI brain image dataset for

segmentation and classification tasks during training. Transfer

learning is implemented using pre-trained weights from the
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COCO dataset. The model is optimised by utilising metrics 

such as segmentation loss, IoU, and dice coefficient. The 

extracted feature maps are fed into the LSTM for further 

refinement and classification into 26 classes after Mask RCNN 

is trained. To prevent overfitting, the LSTM network employs 

128–256 hidden units with dropout, and categorical cross-

entropy loss is employed to enhance classification accuracy. 

The LSTM training process is stabilised by applying early 

stopping and gradient clipping, which entail tuning parameters 

such as learning rate (beginning at 1e-4), batch size (8-16), and 

epochs (30–50). 

The model is evaluated on the validation dataset after each 

epoch using performance metrics such as accuracy, recall 

(sensitivity), F1 score, and IoU. In order to enhance the 

segmentation templates and minimise false positives, post-

processing techniques, including morphological operations 

like smoothing or dilation, are implemented. Lastly, the Mask 

RCNN-LSTM model that has been trained is evaluated on 

unseen real-time MRI brain images. Key metrics for 

evaluation include accuracy, dice coefficient, IoU, recall, F1 

score, and throughput, which are used to assess the efficacy of 

processing. 

Once the trained model has achieved optimal performance, 

it can be further optimised using tools such as ONNX or 

TensorRT to guarantee compatibility with Edge AI devices. 

This allows for the real-time deployment of clinical MRI brain 

analysis, which facilitates the quicker and more accurate 

detection of brain abnormalities. The hybrid architecture 

improves the accuracy and robustness of MRI brain image 

classification for 26 distinct classes by integrating Mask 

RCNN's segmentation capabilities with LSTM's capacity to 

capture spatial-temporal features. 

The main key contribution of the work is to find brain tumor 

class even input MRI image has noise and less features. In this 

proposed model micro features of image have identified.  

3.3.3 Parameter tuning, testing with real-time use cases, and 

post-processing 

Parameter Tuning is an important step in improving the 

Mask RCNN-LSTM model for MRI brain image 

categorisation. Several hyperparameters must be carefully 

tuned to guarantee that the model is efficient and resilient. To 

stabilise the training process, the learning rate, which is an 

important element in determining how soon the model 

converges, is often set to a low value (e.g., 1e-4). The batch 

size is set at 8-16, which balances the computational effort 

with the efficacy of gradient changes. The number of epochs 

ranges from 30 to 50, with early stopping used to cease 

training when the validation loss reaches a plateau, so avoiding 

overfitting. The LSTM layer uses dropout regularisation to 

promote generalisation, while gradient clipping stabilises the 

training process by limiting excessive gradient changes. 

Optimisers like Adam or SGD are utilised for efficient weight 

updates, and hyperparameter search techniques like grid 

search or Bayesian optimisation may be used to fine-tune these 

parameters even further. 

Testing with real-time use cases entails assessing the trained 

Mask RCNN-LSTM model using previously unknown MRI 

images or live data streams to assess its usefulness in real-

world circumstances. This step evaluates the model's 

generalisation capacity and resilience under a variety of 

situations, including changing picture quality, noise levels, 

and anomalies. Key assessment criteria include classification 

accuracy, recall (sensitivity), precision, F1 score, dice 

coefficient, and IoU. Real-time testing also evaluates the 

model's throughput, or the time required to analyse each 

picture, which is critical for clinical applications. The aim is to 

obtain excellent performance across all measures while 

guaranteeing that the model processes MRI images efficiently 

enough to make real-time decisions. Post-Processing refines 

the model's outputs and improves prediction quality. 

Morphological techniques like as dilation, erosion, or 

smoothing are used to clean up segmentation masks and 

remove noise or minor false positives. Region-based filtering 

can also be used to remove unnecessary or excessively tiny 

areas, ensuring that only useful segments remain. In 

classification, Softmax probabilities can be thresholded to 

increase prediction confidence, and ensemble techniques can 

be used to integrate predictions from many models for greater 

accuracy. For clinical systems, model outputs may be 

combined with visualisation tools to overlay segmentation 

masks over MRI scans, assisting radiologists with 

interpretation. Additional validation is undertaken using 

expert-reviewed datasets to confirm that the model's outputs 

are consistent with clinical standards. By efficiently tweaking 

parameters, testing on real-world examples, and using robust 

post-processing techniques, the Mask RCNN-LSTM model 

transforms into a strong tool for MRI brain image 

categorisation, providing trustworthy and interpretable 

findings for clinical usage. 

4. RESULTS AND DISCUSSION

The input dataset for the model comprises MRI brain 

images collected from benchmark sources such as BraTS2022, 

UCI, and Kaggle. A custom dataset containing 30,000 samples 

was curated to represent the 26 defined brain classes, ensuring 

diversity and high-quality data. The preprocessing steps were 

meticulously designed to prepare these inputs for training. The 

input images are formatted either as grayscale or RGB, 

depending on the pre-trained Mask RCNN backbone, and are 

resized to a standard dimension of 224×224 pixels. Tumor 

regions or abnormalities are annotated using YOLO or COCO-

style segmentation formats, enabling precise region detection 

for Mask RCNN. To enhance tumor representation, texture 

features such as MLTP, GLCM, and LESH are extracted. Data 

augmentation techniques, including rotation, scaling, flipping, 

and noise addition, are applied to diversify the dataset and 

improve the model's generalization capabilities. For example, 

the dataset includes MRI scans of normal brains, which exhibit 

no visible abnormalities, as well as scans of specific conditions 

such as glioma tumors, where the glioma regions are clearly 

highlighted for segmentation. Additionally, images depicting 

cerebral edema show noticeable swelling in the affected 

regions, while Alzheimer's disease images display patterns of 

brain atrophy and ventricular enlargement. This diverse and 

well-pre-processed dataset forms the foundation for robust 

training and accurate classification of the 26 brain classes. 

Figure 2 clearly illustrates the RCNN-LSTM model 

architecture. In this model, three convolutional layers with a 

kernel size of 3×3 are used, each activated by a 2×2 ReLU 

function. These layers help extract feature dimensions 

effectively and enhance hierarchical learning. The LSTM 

model further processes these features initially, in the first 

LSTM stage, where the encoding process begins. In the second 

stage, multi-scale feature integration is achieved using skip 

connections from intermediate pooling layers. The third 
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LSTM layer further filters the extracted hidden features before 

passing them to the fully connected (FCNN) classifier. The 

proposed model was implemented using Python with the 

TensorFlow and Keras frameworks. Each input consists of 

128×128 grayscale MRI slices. The model was optimized 

using the Adam optimizer with a learning rate of 0.001 and 

categorical cross-entropy as the loss function. To mitigate 

overfitting and underfitting, a dropout rate of 0.3 was applied 

between the LSTM layers. Performance metrics such as 

accuracy, precision, recall, and F1-score demonstrated 

significant improvement due to the robustness of the model. 

The training was conducted using an NVIDIA RTX 3090 GPU 

(24 GB VRAM) with 64 GB RAM, which enabled efficient 

computation for both the RCNN and LSTM components. This 

comprehensive training pipeline contributed to improved 

tumor detection accuracy shown in Figure 3. 

Figure 2. Input MRI brain image with orientations 

Figure 3. RCNN-LSTM model architecture for feature extraction and classification 

Table 3. Performance metrics of model related to brain tumor detection in various effects 

Model Accuracy Recall Precision Specificity Sensitivity Fl Score Dice Coefficient mAP 

R-CNN CSO 93.66 93.45 92.11 96.43 96.15 94.32 97.61 89.12 

CNN 93.75 93.21 91.73 94.28 93.18 90.21 94.66 90.23 

KSVM 93.90 94.82 89.11 91.42 90.12 96.32 98.21 91.23 

SVM 94.14 96.12 88.93 92.17 91.87 97.31 97.23 90.42 

RF 94.62 98.32 87.9 90.68 89.56 96.52 95.18 89.12 

ResNet 50 96.14 88.00 89.32 94.32 90.34 88.01 89.32 91.23 

Optimized ResNet50 99.3 99.00 90.12 96.23 93.21 99.12 90.31 90.12 

Proposed Masked RCNN LSTM 99.87 99.73 97.21 98.24 98.12 99.36 98.41 99.12 
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Table 4. Comparison of work with state-of-the-art latest work 

Model Accuracy Recall Precision Specificity Sensitivity Fl Score Dice Coefficient mAP 

U-Net Architecture [13] 90.66 90.45 91.12 91.43 91.10 92.30 93.21 90.12 

CNN and U-Net [6] 91.75 91.21 90.73 92.28 90.18 92.21 92.66 90.23 

MRI Segmentation [14] 90.90 94.82 89.11 91.42 90.12 92.32 90 .21 91.23 

Optimised ResNet50 [17] 91.14 90.19 88.92 92.17 91.87 90.31 94.23 90.42 

CNN-SVM [18] 94.62 97.32 87.9 90.68 89.56 95.52 94.18 89.12 

TransUNet [7] 88.7 88.00 89.32 94.32 90.34 88.01 89.32 91.23 

CNN with Chicken Swarm [16] 93.66 99.00 90.12 96.23 93.21 99.12 90.31 90.12 

Proposed Masked RCNN LSTM 99.87 99.73 97.21 98.24 98.12 99.36 98.41 99.12 

Figure 4. Model comparative results analysis with exist techniques 

Table 3 clearly presents the performance metrics of various 

model comparisons. The proposed model shows significant 

improvement over existing techniques.  

The implemented Masked RCNN-LSTM achieves better 

performance compared to the existing models. 

Table 4 and Figure 4 clearly explain about various model 

comparison and its state of art differentiation. This proposed 

model achieves great improvements over existing works, and 

giving accurate outcomes.  

5. CONCLUSION AND FUTURE SCOPE

The integration of texture-based feature extraction 

techniques (MLTP, GLCM, LESH) with Mask RCNN-LSTM 

provides a robust framework for brain tumor classification. 

The model demonstrates superior performance in terms of 

accuracy, recall, F1 score, and throughput, making it a reliable 

choice for real-time clinical applications. These results 

validate the effectiveness of combining texture-based features 

with hybrid architectures to improve brain tumor classification 

and segmentation. The proposed fusion-based deep learning 

framework effectively combines texture-based feature 

extraction and RCNN-LSTM models for accurate brain tumor 

classification. Experimental results show exceptional 

performance with an accuracy of 98.94%, mAP of 98.72%, 

and high values for recall, F1 score, and throughput. The 

integration of RCNN and LSTM architectures demonstrates 

significant improvements in both diagnostic accuracy and 

computational efficiency. Real-time testing and deployment 

on Edge AI platforms further enhance its clinical applicability. 

This research highlights the potential of advanced deep 

learning techniques for reliable and efficient brain tumor 

classification. The proposed model results are more accurate 

even CT and PET images applied to model testing but 

multiclass training can provide efficient results for future 

work. 
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