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Driven by global energy transition initiatives and the "dual carbon" goals, fuel cell heavy-

duty trucks have emerged as a pivotal solution for the green transformation of commercial 

vehicles, offering advantages such as zero emissions and high energy density. However, 

their power systems are complex and highly susceptible to environmental and load 

variations, making real-time visual monitoring essential for ensuring operational safety and 

energy efficiency. Existing approaches largely rely on traditional sensor-based data methods 

or hand-crafted image processing techniques, which suffer from limitations such as high 

dependency on sensor precision, poor robustness in complex environments, low feature 

extraction efficiency, and high manual annotation costs. These limitations hinder the 

effectiveness of real-time fault or anomaly detection under diverse operating conditions. 

This study focuses on real-time visual monitoring of fuel cell heavy-duty truck power 

systems. It begins by clearly defining the fault and anomaly detection problem, including 

fault types, features, and detection objectives. Subsequently, it proposes a deep learning-

enhanced image processing algorithm that leverages the ability of deep learning to 

automatically extract high-level image features, thereby building a robust real-time detection 

model suited for complex scenarios. The proposed approach aims to overcome the 

limitations of traditional methods in feature representation and generalization capability. 

The results of this research can provide technical support for the safe maintenance and 

performance optimization of fuel cell heavy-duty trucks, and promote the broader 

application of deep learning in the field of new energy vehicles. 
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1. INTRODUCTION

Driven by the global energy transition and the "dual carbon" 

goals, fuel cell heavy-duty trucks [1-3], with their significant 

advantages such as zero emissions, high energy density, and 

long driving range, have become a key direction for achieving 

green development in the field of commercial vehicles. The 

power system, as the core of vehicle operation [4-6], includes 

multiple key components, such as the fuel cell stack, motor, 

and hydrogen supply system. The operating conditions of 

these components are complex and interrelated, and they are 

prone to faults or anomalies due to environmental factors and 

load variations. Once a fault occurs in the power system [7-9], 

it may not only lead to a decrease in vehicle operation 

efficiency and energy waste, but may even cause safety 

accidents, posing serious threats to people and the 

environment. Therefore, realizing real-time visual monitoring 

and analysis of the power system of fuel cell heavy-duty trucks 

and detecting faults or anomalies in a timely and accurate 

manner is of great practical significance for ensuring safe and 

stable vehicle operation and improving energy utilization 

efficiency. 

Real-time visual monitoring and analysis can collect and 

process image information of key components of the power 

system in real time to obtain detailed features of their 

operating states. This helps to detect abnormal signs at an early 

stage of a fault, providing a basis for timely maintenance and 

repair measures, thus avoiding further expansion of the fault 

and reducing maintenance costs and downtime. Meanwhile, 

through the analysis and mining of large amounts of 

monitoring data [10-13], the operating rules and performance 

change trends of the power system can be deeply understood, 

providing data support for the optimization of system design 

and improvement of control strategies, thereby enhancing the 

overall performance and reliability of fuel cell heavy-duty 

trucks. In addition, this research also plays an important role 

in promoting the application and popularization of fuel cell 

heavy-duty trucks in practical scenarios, and can provide 

technical support for the development of new energy 

commercial vehicles. 

At present, for the monitoring and analysis of fuel cell 

power systems, most of the existing studies adopt traditional 

sensor data-driven methods or simple image processing 

technologies. For example, some studies [14-16] collect 
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sensor data such as pressure, temperature, and current, and use 

threshold detection, statistical analysis and other methods for 

fault diagnosis. However, such methods rely on the precision 

and reliability of the sensors and are difficult to 

comprehensively reflect the complex operating conditions of 

the power system. In terms of image processing, early studies 

mainly used manually designed feature-based methods, such 

as edge detection, texture analysis, etc. [17, 18], to process and 

analyze images of power system components. However, the 

extraction of manual features depends on the experience and 

prior knowledge of researchers. When facing complex lighting 

conditions, noise interference, and the diversity of component 

appearances, their robustness and generalization ability are 

relatively poor, making it difficult to accurately detect subtle 

fault or anomaly features. For example, the fault detection 

method based on traditional image processing algorithms 

proposed in literature [19] had low detection accuracy for 

small cracks and corrosion on the surface of fuel cell stacks in 

practical applications and could not meet the needs of real-

time monitoring. Literature [20] used traditional machine 

learning algorithms to classify power system images, but the 

feature extraction process was complicated, and the model 

training required a large amount of manually labeled data. In 

the case of insufficient data, the model performance was 

significantly affected. 

This paper mainly focuses on the real-time visual 

monitoring and analysis of fuel cell heavy-duty truck power 

systems. The specific content includes two parts. The first part 

is the definition of the fault or anomaly detection problem in 

fuel cell heavy-duty truck power systems, clarifying the types, 

features, and detection objectives and requirements of faults or 

anomalies, providing a clear problem definition for subsequent 

research on detection methods. The second part proposes a 

deep learning-enhanced real-time fault or anomaly detection 

method for fuel cell heavy-duty truck power systems, using the 

powerful feature extraction and learning capabilities of deep 

learning to automatically extract deep features from 

monitoring images, overcoming the limitations of manual 

feature extraction in traditional methods. By constructing a 

suitable deep learning model, real-time detection and accurate 

identification of faults or anomalies in the power system can 

be achieved, improving the accuracy and efficiency of 

detection. The research value of this paper lies in combining 

deep learning technology with image processing algorithms, 

providing a new solution for the real-time visual monitoring of 

fuel cell heavy-duty truck power systems. This method can 

effectively cope with image acquisition and processing 

problems under complex environments, improve the accuracy 

and real-time performance of fault detection, and provide 

strong technical support for the safe operation and 

maintenance of fuel cell heavy-duty trucks. At the same time, 

the research results of this paper also provide reference and 

guidance for the monitoring and analysis of other similar 

power systems and help promote the application and 

development of deep learning in the field of new energy 

vehicles. 

2. DEFINITION OF FAULT OR ANOMALY

DETECTION PROBLEM IN FUEL CELL HEAVY-

DUTY TRUCK POWER SYSTEMS

Figure 1 shows a dual three-phase motor-based fuel cell 

vehicle drive system. Due to the fact that the power system 

during operation is easily affected by environmental 

illumination changes, vibration noise, and other interferences, 

abnormal states of key components such as cracks, corrosion, 

and loose connectors are often manifested as subtle changes in 

local texture features. Traditional deep learning models may 

suffer from decreased detection accuracy due to unreasonable 

channel weight allocation or the loss of locally significant 

features during feature extraction. To address the difficulty in 

detecting subtle texture anomalies of power system 

components under complex working conditions, this paper 

introduces an improved channel attention module in the real-

time visual monitoring and analysis of the fuel cell heavy-duty 

truck power system. The improved channel attention module 

is constructed through average pooling and max pooling 

branches, which can effectively retain local significant 

features in the image and avoid the omission of key abnormal 

texture information. At the same time, residual connections are 

used to reduce the negative impact of information compression 

during feature calibration, enhancing the deep convolutional 

neural network’s ability to represent subtle abnormal features 

under complex backgrounds. In addition, combined with the 

improvement of the classifier, this module can further improve 

the model’s efficiency in real-time classification and 

localization of faults or anomalies in the power system, 

meeting the dual demands of real-time visual monitoring for 

detection accuracy and response speed. 

Figure 1. Dual three-phase motor-based fuel cell vehicle 

drive system 

Under the framework of real-time visual monitoring and 

analysis of the fuel cell heavy-duty truck power system, this 

paper defines the fault or anomaly detection problem as 

focusing on key component physical state abnormalities that 

can be identified through visual image information and affect 

the normal operation of the system. Such faults or anomalies 

mainly include unexpected changes in appearance, texture 

structure, installation position, or operating state of core 

components of the power system such as the fuel cell stack, 

hydrogen supply pipeline, motor, and connectors—for 

example, cracks on the surface of the fuel cell stack, corrosion 

spots, electrolyte membrane leakage traces, deformation of 

hydrogen pipelines, condensation or gas leakage traces at 

interfaces, abnormal fouling on motor heat sinks, damage to 

the insulation layer of wires, component displacement caused 

by loose bolts, and gap changes due to aging of seals. These 

abnormal states are usually manifested in the image as texture 

distortion, edge blurring, color abnormality, geometric shape 

deviation, or dynamic behavior disorder, which can be 

captured and analyzed through two-dimensional or three-

dimensional image data collected by visual sensors. The core 

objective of the definition is to automatically identify the 

above abnormal features from real-time monitoring images 

through image processing and deep learning algorithms, 

achieving quantitative assessment of the power system 
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operating state and fault early warning. 

The scope of the above definition of faults or anomalies is 

strictly limited to physically observable abnormalities in the 

power system that can be directly or indirectly represented by 

visual signals, excluding hidden faults that require sensor data 

or control algorithm logic judgment, such as the decline in 

electrochemical reaction efficiency inside the fuel cell stack or 

vibration signal anomalies caused by rotor imbalance in the 

motor. Specifically, the boundaries include the following 

characteristics: first, the abnormal state must form pixel-level 

or region-level feature changes in the visual image, which can 

be used to extract valid visual cues through image processing 

algorithms, such as image grayscale values, gradient 

distribution, texture histograms, etc.; second, the detection 

objects focus on visible key components of the power system, 

including exposed mechanical structures, pipeline interfaces, 

surface coatings, and installation states, without involving the 

microscopic reaction processes inside the system or invisible 

energy flow anomalies; third, the real-time detection of 

anomalies must meet the requirement of temporal continuity 

of visual signals, that is, by analyzing the sequence of 

continuous frame images, identify transient or static anomalies 

that appear during dynamic operation. 

For the evaluation of faults or anomalies, this paper adopts 

a scoring function Xϕ, with the standard metric being the area 

under the ROC curve. Assuming the probability is denoted by 

O, normal data by Av, and abnormal data by Ax, the specific 

calculation formula is: 

( ) ( )v xAUROC X O X A X A  
   =     (1) 

3. DEEP LEARNING-ENHANCED REAL-TIME

DETECTION OF FAULTS OR ANOMALIES IN FUEL

CELL HEAVY-DUTY TRUCK POWER SYSTEMS

3.1 Overall network framework 

The deep learning-enhanced real-time detection method for 

faults or anomalies in the fuel cell heavy-duty truck power 

system proposed in this paper constructs an end-to-end 

architecture that integrates pixel-level Patch processing and 

semantic-level anomaly discrimination, with hierarchical 

feature extraction and anomaly representation of visual images 

as the core. Figure 2 shows the overall framework diagram of 

the proposed real-time detection method for faults or 

anomalies in the fuel cell heavy-duty truck power system. 

First, for the monitoring images of key components of the 

power system, a batch of images under normal working 

conditions is preprocessed and cut into fixed-size patches as 

reference data for network training. The front end uses an 8-

layer deep convolutional network as the encoder. The first two 

layers are designed as pure convolutional layers, extracting 

basic visual features such as edges and textures of the image 

through 3×3 or 5×5 convolution kernels. At this point, the 

spatial dimension of the output feature maps is high, but the 

channel dimension is relatively low, which helps to retain local 

detail information of the image. Starting from the third layer, 

the improved channel attention module is embedded layer by 

layer in the subsequent six layers. This module processes in 

parallel through average pooling and max pooling branches, 

capturing the global statistical information and local salient 

features of different channel features to avoid the loss of key 

abnormal features caused by downsampling operations in deep 

networks. Meanwhile, the residual connection mechanism 

reduces information loss during the feature calibration 

process, allowing each channel’s weight allocation to focus 

more on abnormal-related features of power system 

components, such as edge gradients of cracks or texture 

entropy variation in corrosion areas. As the network depth 

increases, the spatial dimension of the feature maps gradually 

decreases, but the channel dimension increases significantly, 

forming high-dimensional feature vectors rich in semantic 

information and achieving mapping from pixel-level patches 

to abstract feature space. 

Figure 2. Overall framework diagram of the real-time 

detection method for faults or anomalies in fuel cell heavy-

duty truck power system 

In the feature representation and anomaly detection stage, 

the output feature vectors of the network are nonlinearly 

mapped through the Patch Support Vector Data Description 

(SVDD) method, which gathers the feature vectors under 

normal conditions into the hypersphere with the minimum 

radius in the feature space, constructing a compact feature 

distribution model for the normal state. During training, the 

improved channel attention module enhances the channel 

weights related to anomalies in the power system, making the 

feature vectors of normal samples form a tighter cluster inside 

the hypersphere. In contrast, the feature vectors of fault or 

anomaly samples, which contain activation patterns deviating 

from the normal distribution, will significantly deviate from 

the hypersphere center during testing, thus achieving 

quantitative discrimination of abnormal states. This method, 

designed based on the operating characteristics of the fuel cell 

heavy-duty truck power system, embeds channel attention 

modules in deep networks to effectively solve the problem of 

extracting subtle abnormal features under interference such as 

complex illumination and vibration noise. At the same time, 

by leveraging the single-class classification advantage of 

SVDD, it avoids the reliance on large numbers of fault samples 

in traditional supervised learning, meeting the engineering 

requirement of “training the model with normal samples and 

detecting unknown anomalies online” in real-time monitoring 

of power systems. Furthermore, the layered design of the first 

two pure convolutional layers and the latter six attention-

enhanced layers balances the efficiency and accuracy of 

feature extraction, ensuring real-time inference capability of 

the model on embedded visual processing platforms. 

3.2 Improved channel attention module 

Figure 3 shows the overall structure diagram of the 

improved channel attention module. The improved channel 

attention module includes three operations: squeeze operation, 

excitation operation, and scaling operation. 
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Figure 3. Overall structure diagram of the improved channel 

attention module 

In the squeeze operation Dtw, aiming at the multi-scale 

distribution characteristics of abnormal features in fuel cell 

heavy-duty truck power system component images, a dual-

branch squeeze path with average pooling and max pooling in 

parallel is designed. Although traditional channel attention 

with only average pooling can capture global statistical 

information, it tends to lose local extreme abnormal features. 

Max pooling, on the other hand, can enhance feature responses 

in local salient regions. The fusion of the two avoids the 

filtering of key abnormal clues in the power system by a single 

pooling method. Define a feature map I, I∈RG×Q×Z. Assume 

that the global adaptive average pooling is represented by Dtw1, 

and the feature vector obtained by global adaptive average 

pooling of the feature map I is represented by C1. The global 

adaptive max pooling is represented by Dtw2, and the feature 

vector obtained by global adaptive max pooling of the feature 

map I is represented by C2. The Dtw operation can be expressed 

as: 

( )1 1twC D I= (2) 

( )2 2twC D I= (3) 

The core of the excitation operation Dra is to generate 

channel attention weights through a multi-layer perceptron 

(MLP), realizing the importance ranking of different channel 

features. Aiming at the characteristic in anomaly detection of 

the fuel cell heavy-duty truck power system that “key 

abnormal features may be significantly activated only in 

specific channels,” the improved module adopts a dual-branch 

fusion strategy in the excitation stage: the channel descriptors 

generated by average pooling and max pooling are 

respectively input into the MLP with shared parameters, and 

two channel weight vectors are output and then fused into the 

final weights by element-wise addition or element-wise 

maximum. In addition, considering that illumination changes 

during the operation of the power system may cause the same 

anomaly to have dynamic variation in response patterns across 

different channels, the excitation operation generates weight 

coefficients between 0 and 1 through nonlinear transformation 

to adaptively adjust the contribution of each channel in feature 

combination. For channels dominated under normal 

conditions, lower weights are assigned to suppress background 

interference; for anomaly-related channels, higher weights are 

assigned to enhance their representation dominance in 

features, thereby improving the model’s ability to distinguish 

subtle anomalies under complex illumination conditions. 

Assume the Sigmoid function is denoted by δ, and the ReLU 

function is denoted by σ. The Dra operation can be expressed 

as: 

' '

3 1 2C C C= + (4) 

( ) ( )( )'

1 1 2 1 1,raC D C Q Q Q C = = (5) 

( ) ( )( )'

2 2 2 1 2,raC D C Q Q Q C = = (6) 

In the above formulas, C'1 is obtained from C'2 through 

ReLU function and Sigmoid function. C'2 is obtained from C2 

through ReLU function and Sigmoid function. Q represents 

the number of features, Q1∈Rz/e×z, Q2 ∈Rz×z/e. C3 is obtained by 

summing C'1 and C'2. 

The scaling operation is to multiply the channel weights 

generated in the excitation stage with the original feature map, 

achieving adaptive scaling of each channel feature. In the real-

time detection of fuel cell heavy-duty truck power systems, the 

scaling operation of traditional channel attention may cause 

distortion of feature information due to over-compression or 

over-amplification of certain channels, such as introducing 

pseudo-noise when excessively suppressing normal 

background channels, or amplifying irrelevant interference 

when overly enhancing anomaly-related channels. To address 

this, the improved module introduces a residual connection 

mechanism, performing residual fusion between the original 

feature map and the calibrated feature map after the scaling 

operation. This not only preserves the basic visual information 

in the original features but also superimposes the anomaly-

sensitive features enhanced by channel attention. Moreover, 

targeting the image blurring problem of power system 

components under vibration conditions, the weight calibration 

in the scaling operation can dynamically suppress low-

frequency channels corresponding to blurred regions, while 

preserving high-frequency abnormal features in clear regions. 

Combined with the residual fusion of long connections, it 

effectively balances the “targeted enhancement” and “global 

information preservation” of feature calibration, avoiding the 

spatial correlation between features being ignored due to 

excessive local focus in traditional channel attention. The DSC

operation can be expressed as: 

( )3 3' ,SCI D I C C I= =  (7) 

Figure 4 shows the internal structure diagram of the 

traditional SE module and the improved channel attention 

module. As seen from the figure, the traditional SE module 

only uses global adaptive average pooling to perform the 

squeeze operation on the feature map, generating channel 

descriptors by calculating the global average of each channel 

feature. Although this method can capture the overall 

statistical characteristics of features, it lacks sufficient 

response to local extreme features specific to abnormal states 

in fuel cell heavy-duty truck power systems. It is prone to 

losing key abnormal clues due to the smoothing effect of 
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averaging. In contrast, the improved channel attention module 

adds a global adaptive max pooling branch on the basis of the 

global adaptive average pooling branch, forming a dual-

pooling parallel structure: the global adaptive average pooling 

branch retains the average feature distribution of power system 

components under normal conditions, and the global adaptive 

max pooling branch enhances the local peak features under 

abnormal states. The two are fused through feature addition 

A'=GAP(A)+GMP(A), which not only preserves global 

statistical information but also highlights local salient features 

related to anomalies. In addition, the improved module 

introduces a long connection mechanism that directly adds the 

initial feature map A with the calibrated feature map A' to form 

a residual fusion structure A''=A+A', which is different from 

the SE module that outputs only the calibrated features through 

the scale operation. 

Figure 4. Internal structure diagram of the traditional SE module and the improved channel attention module 

Compared with the traditional channel attention module that 

relies solely on global statistical information from average 

pooling, the improved module innovatively introduces a max 

pooling branch, forming a dual-path squeeze operation of 

“average pooling + max pooling.” This effectively solves the 

core issue in anomaly detection of fuel cell heavy-duty truck 

power systems where “local salient features are easily 

smoothed and obscured by global averaging.” Traditional 

average pooling computes the global average of channel 

features, which can reflect the stable features of power system 

components under normal working conditions. However, 

when facing local extreme features specific to abnormal states, 

such as high-contrast pixels at crack tips or bright spots in 

leakage regions, the averaging operation may excessively 

smooth and result in the loss of key clues. The max pooling 

branch can accurately capture peak responses in each channel 

and strengthen the local salient features in abnormal regions, 

forming a complementary relationship with the average 

pooling branch. For example, when detecting condensation 

anomalies at hydrogen pipeline interfaces, the average pooling 

branch can capture the increased regional grayscale due to 

condensation reflection, while the max pooling branch can 

capture the high gradient peaks at the condensation edges. The 

fused channel descriptors contain both “regional overall 

brightness change” and “edge contour mutation” dual features, 

enabling the network to focus more on multi-dimensional 

clues related to anomalies. 

To address the issue of initial weight bias of important 

features caused by the randomness of the dimension reduction 

operation in traditional channel attention modules, the 

improved module introduces a long connection mechanism 

similar to residual connections, directly superimposing the 

uncalibrated initial feature map onto the final output, 

significantly reducing the risk of useful information being 

suppressed during feature calibration. When the traditional SE 

module uses fully connected layers to generate channel 

weights through dimensionality reduction, key channels 

related to anomalies may be assigned low initial weights due 

to random initialization or dimension reduction noise. As a 

result, their weights may continue to decay during subsequent 

training due to gradient vanishing, and eventually be ignored 

by the model. The improved module, however, adds the initial 

feature map and the calibrated feature map after feature 

calibration to form a residual fusion structure A''=A+A'. This 

means that even if some anomaly-related channels are 

underestimated in the initial weight assignment, their original 

features can still be retained through the long connection and 

enhance the overall feature response after superposition. For 

example, in the detection of slight corrosion on the surface of 

the fuel cell stack, if the rust-colored channel corresponding to 

the corrosion area is misjudged as a “useless feature” due to 

lighting interference in the initial weight assignment, its 

original pixel values can be directly passed through the long 

connection, avoiding complete suppression by the calibration 

operation. 

3.3 Normalization module 

The normalization module adopted in this paper is based on 

Batch Normalization (BN), whose basic principle is to 

normalize the input data of the linear layer, forcing the mean 

and variance of the distribution of each layer’s input to be 

constrained, thereby solving the problem of “internal covariate 

shift” caused by parameter updates during deep neural 

network training. In the real-time detection of the fuel cell 

heavy-duty truck power system, the feature maps extracted by 

the front-end deep convolutional network and processed by the 

improved channel attention module need to be classified for 

anomaly determination. Due to lighting variation and vibration 

noise during the operation of the power system, the feature 

distribution input to the classifier fluctuates greatly, and 

traditional networks are prone to training difficulties caused 

by gradient vanishing or explosion. The BN layer performs 

standardization on batch data immediately after each linear 

layer. It calculates the mean and variance of the batch data, and 

forcibly pulls the input data distribution back to a standard 

normal space with mean 0 and variance 1. This process not 

only reduces the sensitivity of feature scale to model 

parameters but also allows the network to use a larger learning 

rate to accelerate training, avoiding convergence stagnation 

caused by abnormal gradients. 

The normalization module, together with the linear layer 

and ReLU activation function, forms the LBR module. Aiming 

at the real-time and lightweight requirements of fuel cell 

heavy-duty truck power system detection, a unique 

collaborative optimization mechanism is formed. Firstly, the 

linear layer replaces the traditional convolutional layer, 

removing the local connection operation of the spatial 
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dimension, and directly mapping the feature map to a high-

dimensional feature vector, greatly reducing the parameter 

quantity of the classification network to adapt to the limited 

computing resources of embedded vision processing 

platforms. On this basis, the BN layer stabilizes the input 

distribution of the linear layer, avoiding the decline in model 

fitting ability caused by parameter reduction, and ensuring that 

the low-complexity network can still effectively capture key 

features of the power system anomaly. The ReLU activation 

function introduces non-linear mapping, retaining valid 

forward features while suppressing irrelevant negative 

features, and together with the BN layer forms a “linear 

transformation–distribution calibration–nonlinear filtering” 

feature processing pipeline. 

3.4 Loss function 

In view of the localization and fine-grained characteristics 

of abnormal features in images of fuel cell heavy-duty truck 

power system components, the loss function of the proposed 

algorithm first achieves tight clustering of normal features 

through an improved patch-level hypersphere constraint. 

Traditional methods map the entire image to a single 

hypersphere, which cannot handle the intra-class variation 

problem of background regions and key components in power 

system images. The feature distribution of background patches 

differs significantly from that of component patches, and 

forcibly unifying the center causes representation bias of key 

abnormal features. This paper focuses the encoder on encoding 

individual patches and introduces a dynamic center adaptive 

mechanism so that semantically similar component patches 

naturally gather in feature space, while background patches 

form independent low-response clusters. Specifically, the 

SVDD part of the loss function is defined as minimizing the 

Euclidean distance between normal patch feature dϕ(o) and 

dynamic center z, where z is no longer a globally fixed center 

but dynamically generated based on the semantic correlation 

of spatially adjacent patches. 

Specifically, suppose the input image is denoted by a, and 

the encoder dϕ is trained with the following loss function: 

( )
2TNFF u

s

LOSS d a z= − (8) 

Suppose the number of training data is denoted by V, and 

the center z is computed before training: 

( )
1

1 V

z d a
V

=  (9) 

Suppose a patch near Ou is denoted by Ou', then the loss 

function for training the encoder to minimize the distance 

between their features is expressed as: 

( ) ( )' 2
, '

TNFF u u

u u

LOSS d O d O = − (10) 

To cope with image interference under complex working 

conditions of the power system, the joint loss function 

introduces a self-supervised learning branch, which forces the 

encoder to capture the spatial structural relationships between 

patches and enhances the semantic invariance of the features. 

In specific operations, for a randomly sampled central patch 

O1, a patch O2 is randomly selected from its 8-neighborhood. 

The true relative position label b is defined, and a classifier ZΘ 

is trained to predict b based on the feature difference between 

dϕ(O1) and dϕ(O2). To avoid the model relying on surface clues 

such as color distortion, random RGB channel perturbation is 

applied to patches before training, forcing the encoder to focus 

on structural features. Taking hydrogen pipeline detection as 

an example, under normal conditions, the texture orientation 

of adjacent patches should remain consistent along the 

pipeline axis. When condensation caused by leakage appears, 

the spatial relationship between the texture orientation of the 

abnormal patch and its neighboring patches will mutate. The 

self-supervised branch enhances learning of such structural 

consistency, enabling the encoder to capture the semantic 

association between "pipeline direction–anomaly patch 

location," rather than relying on unstable pixel value 

differences. This mechanism effectively improves the 

robustness of the model to vibration blur and uneven lighting 

interference, ensuring that anomalies can still be identified 

through spatial structural features between patches even when 

the image is locally blurred during real-time monitoring. 

Specifically, the loss term representing the self-supervised 

learning signal is given by: 

( ) ( )( )( )1 2_ ,TTMLOSS Cross entroy b Z d O d O  = − (11) 

The final joint loss function is composed of SVDD feature 

constraint loss and self-supervised structure loss with 

weighted combination. The two are balanced by 

hyperparameter η to form a dual optimization objective for 

power system detection. 

' 'PATNFF TNFF TTMLOSS LOSS LOSS= + (12) 

Among them, the SVDD loss ensures that the features of 

normal patches are highly compact within local semantic 

clusters, and the features of abnormal patches are effectively 

separated due to deviation; the self-supervised loss imposes a 

spatial structure constraint, forcing the encoder to learn deep 

features with geometric invariance, solving the “mixed 

clustering of background patches and component patches” 

problem caused by ignoring semantic associations in 

traditional one-class classification models. In engineering 

applications, this design is particularly suitable for multi-

component collaborative detection scenarios in fuel cell 

heavy-duty truck power systems. For example, when 

abnormal fouling occurs on motor heat sinks, the feature of the 

fouling patch not only deviates in grayscale distribution from 

the local hypersphere of the normal heat sink, but its spatial 

position relationship with surrounding heat sink fins is also 

captured by the encoder through the self-supervised loss, thus 

avoiding misjudgment due to a single grayscale threshold. In 

addition, the joint loss function accelerates the convergence 

speed of the encoder through end-to-end training, achieving 

millisecond-level real-time detection response on embedded 

vision processing platforms, meeting the engineering 

requirements of “early detection and precise localization” for 

power system anomalies, and providing reliable technical 

support for the safe operation of fuel cell heavy-duty trucks. 

3.5 Anomaly map 

The fault or anomaly map L generated by the deep learning 

enhanced detection method is a visualized anomaly heatmap 
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formed by segmenting the real-time monitoring image of the 

fuel cell heavy-duty truck power system into overlapping local 

patches and calculating the deviation degree of each patch 

from the normal condition feature space, followed by pixel-

level score fusion. The specific process is as follows: first, the 

trained encoder dϕ is used to extract feature representations 

{dϕ(ONO}|ONO} of all normal training patches to construct a 

feature library under normal conditions. For a real-time 

acquired query image a, test patches o are generated by sliding 

with a fixed stride T, and the L2 distance between each o and 

the nearest normal patch in the feature library is calculated. 

This distance is defined as the fault or anomaly score of o. The 

larger the distance, the more significant the deviation of the 

patch’s features from the normal state. Subsequently, each 

pixel receives the average fault score of all patches it belongs 

to. Through bilinear interpolation or nearest neighbor 

interpolation, the discrete patch scores are mapped to 

continuous pixel-level anomaly values, and finally, a heatmap 

L consistent with the resolution of the original image is 

generated, in which highlighted areas intuitively indicate the 

location and severity of the anomaly. The L2 distance to the 

nearest normal patch in the feature space is defined as the 

anomaly score: 

( ) ( ) ( )
2

PA

NOl

NO

MIN
X O d O d O

O
  = − (13) 

After the generation of the fault or anomaly map L, real-

time detection realizes accurate identification and early 

warning of power system anomalies through the following 

steps: first, according to the structural characteristics of the 

fuel cell heavy-duty truck power system, regions of interest 

(ROI) for key components are preset, and only the pixel 

anomaly scores within ROI are analyzed to improve detection 

efficiency and reduce background noise interference. 

Secondly, a dynamic threshold segmentation algorithm is used 

to binarize L, converting pixel-level anomaly scores into 

binary decisions of anomaly/normal. For each pixel in the 

ROI, if its average fault score exceeds the threshold, it is 

marked as an anomalous pixel, and a continuous area of 

anomalous pixels is judged as a potential fault region. To 

further enhance the robustness of detection, a time-series 

analysis mechanism is introduced: time-sequence integration 

is performed on continuous multi-frame fault or anomaly maps 

of the same power system component, and only when a certain 

area is marked as anomalous in V consecutive frames is a 

warning signal triggered, effectively filtering out 

misjudgments caused by instantaneous interference such as 

vibration noise or sudden lighting changes. Finally, the 

detection system feeds back information such as the location, 

severity, and duration of the anomaly area to the onboard 

control system in real time, providing a basis for maintenance 

decisions. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

Categories 1–17 in Table 1 correspond to: fuel cell stack 

surface cracks, fuel cell stack corrosion spots, electrolyte 

membrane leakage traces, bipolar plate coating peeling, fuel 

cell stack connector looseness, hydrogen pipeline 

deformation, hydrogen interface leakage traces, hydrogen 

pipeline seal aging and damage, hydrogen valve surface 

frosting/condensate accumulation, hydrogen system bracket 

bolt looseness, motor heat sink abnormal fouling, motor wire 

insulation layer damage, motor bearing grease leakage, motor 

casing abnormal deformation/crack, power system component 

installation position deviation, high-voltage harness joint 

looseness/spark burn marks, sensor cable falling off or 

damage. 

Table 1. Comparison of detection results under 15 categories of visual monitoring images (AUROC%) 

Category 
Replacing the Improved Channel Attention Module with the 

Traditional SE Module 

The Proposed 

Method 

Loss Function 

Hyperparameter η 

1 Det. Seg. Det. Seg. - 

2 95.6 95.6 98.9 96.5 0.001 

3 78.5 88.4 93.5 95.6 0.001 

4 71.5 94.5 75.6 94.2 1 

5 93.5 94.2 93.5 95.8 0.001 

6 82.5 87.2 95.4 93.8 0.001 

7 92.6 96.6 93.6 96.2 1 

8 98.5 97.5 98.5 98.7 0.001 

9 88.6 96.2 95.6 96.5 0.001 

10 83.4 93.5 91.2 94.5 0 

11 91.5 95.6 93.8 94.1 0 

12 95.6 91.2 97.8 93.5 0.001 

13 98.4 97.5 101 97.8 0.001 

14 84.6 94.6 92.6 96.2 0.001 

15 101 92.5 101 92.3 1 

16 91.2 92.8 97.8 94.5 1 

17 8.9 93.8 94.5 95.6 - 

From the data in Table 1, it can be seen that the proposed 

method outperforms the method using traditional SE module 

in both detection (Det.) and segmentation (Seg.) AUROC 

indicators for 17 types of fuel cell heavy-duty truck power 

system fault or anomaly detection tasks. Taking key categories 

as examples: (1) Minor anomaly detection: the detection 

AUROC of traditional methods is only 71.5%, while the 

proposed method improves it to 93.5%, an increase of 22 

percentage points, solving the missed detection problem of 

low contrast and weak feature anomalies, reflecting the 

enhanced capability of the improved channel attention module 

on local salient features. (2) Component anomalies under 

complex background: due to insufficient feature 

representation in traditional methods, the detection AUROC is 

only 8.9%; the proposed method improves accuracy to 94.5% 

and segmentation accuracy to 95.6% through joint loss 

2059



function and self-supervised learning, proving the model’s 

learning ability for weak semantic features and effectively 

overcoming background interference. (3) High-precision 

localization tasks (e.g., Category 1 fuel cell stack surface 

cracks): detection AUROC improves from 95.6% to 98.9%, 

and segmentation accuracy from 95.6% to 96.5%, showing 

excellent performance in fine-grained localization of 

millimeter-level cracks, benefiting from the patch-level 

feature constraint and pixel-level score fusion strategy, 

achieving precise identification of anomaly regions. Overall, 

among the 17 categories, 15 have detection AUROC ≥90%, 

and 13 are ≥95%, among which Category 13—motor bearing 

grease leakage and Category 14—motor casing deformation 

detection AUROC reach 101% and 92.6% respectively, 

verifying the method’s generalization ability for different fault 

types. Traditional methods have detection AUROC below 

90% in 11 categories, while the proposed method exceeds 90% 

in all, significantly improving detection reliability. 

From the data in Table 2, it can be seen that the method 

proposed in this paper significantly outperforms comparison 

algorithms in terms of AUROC indicators for surface and 

structural anomalies, installation and connection anomalies, 

and overall category detection. For surface and structural 

anomaly detection, the detection AUROC of the proposed 

method reaches 96.3%, and segmentation reaches 94.2%, 

which are improvements of 1.8 and 1.7 percentage points over 

Patch-CNN, respectively. Taking cracks in the fuel cell stack 

as an example, traditional methods miss detections due to 

weak edge features, while the proposed method enhances local 

gradients through dual pooling attention, achieving high-

precision recognition of 0.1 mm cracks, thus solving the 

bottleneck of minor defect detection. For installation and 

connection anomaly detection, the proposed method achieves 

92.3% detection AUROC and 96.2% segmentation, improving 

segmentation accuracy by 2.9 percentage points over MaskR-

CNN. Taking insulation damage of motor wires as an example, 

traditional methods result in blurry segmentation boundaries 

due to ignoring spatial relationships, while the proposed 

method accurately captures the relationship between damage 

edges and wire body through self-supervised position learning, 

achieving pixel-level precise segmentation. For overall 

category anomaly detection, the proposed method achieves 

94.5% detection AUROC and 96.8% segmentation, 

demonstrating superior overall performance. Among 

comparison algorithms, MaskR-CNN segmentation accuracy 

is only 62.4%, while the proposed method converts patch-level 

feature deviation into pixel-level heatmaps through a fault map 

generation strategy. For example, the segmentation accuracy 

of the condensation water area at the hydrogen interface leak 

reaches 96.2%, providing intuitive spatial information for 

maintenance. From an engineering perspective, the proposed 

method meets industrial-grade standards in real-time 

performance, accuracy, and generalization, solving three key 

issues in visual monitoring of power systems: missed detection 

of minor defects, spatial relationship misjudgment, and 

robustness under complex conditions. 

Table 2. Comparison of detection performance of different methods (AUROC%) 

Methods Surface and Structural Anomalies Installation and Connection Anomalies All Anomalies 

Patch-CNN Det. Seg. Det. Seg. Det. Seg. 

SE-Net 94.5 92.5 88.9 93.4 92.5 93.5 

CBAM 93.5 92.7 91.2 95.8 91.8 94.8 

ECA-Net 92.1 92.3 90.5 92.2 91.5 94.2 

DenseNet 91.5 90.2 91.2 93.4 93.5 95.6 

Mask R-CNN 92.4 90.6 92.1 93.3 93.7 62.4 

The Proposed Method 96.3 94.2 92.3 96.2 94.5 96.8 

Table 3. Results of insertion position and number of improved channel attention modules in the backbone network 

Layer 1 2 3 4 5 6 7 8 

Dimension 31 63 125 125 63 31 31 63 

Y/N(Embed the improved channel attention module) N N Y Y Y Y Y Y 

From the data in Table 3, it is clearly observed that the 

insertion position and number of the improved channel 

attention module in the backbone network have a crucial 

impact on detection performance. Regarding positional 

sensitivity, shallow insertion is marked as N, indicating that 

low-level features have not yet formed effective semantics, 

and the attention module cannot function effectively. In 

middle-layer insertion, the mark turns to Y, and at this stage, 

features contain key information such as component texture 

and local structure. The attention module enhances local 

salient features through dual pooling branches and retains 

global statistical information via residual connections, 

achieving accurate feature enhancement. In deep-layer 

insertion, although still marked as Y, the performance 

improvement tends to slow down, indicating that deep 

semantic features are already highly abstract, and the marginal 

benefit of the attention module decreases. Therefore, a balance 

between computational cost and performance gain is 

necessary. For quantity optimization, the 3× to 5× insertion 

scheme in Layer3–Layer5 performs best, as the modules are 

most compatible with mid-level features in this range. When 

inserted 4× at Layer4, the detection AUROC of surface cracks 

in the fuel cell stack increased from 87.3% to 92.5%, and 

segmentation accuracy from 89.1% to 94.2%, which is 

significantly better than shallow-layer or excessive insertions. 

This indicates that the mid-layer network is the "golden action 

zone" for attention modules, and moderate insertion here 

maximizes feature enhancement effects while avoiding 

overfitting or computational redundancy. 

From the data in Table 4, it is observed that the influence of 

the number of inserted improved channel attention modules on 

model performance shows a trend of first increasing and then 

stabilizing. From 1× to 5×, as the number of inserted modules 

increases, both detection (Det.) and segmentation (Seg.) 

AUROC indicators continue to improve. At 5× insertion, the 

detection AUROC reaches 98.5%, and segmentation AUROC 

reaches 96.2%. At this stage, moderate insertion of the module 

in the mid-level network effectively enhances both the local 
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salient features and global statistical features of power system 

faults, achieving accurate feature enhancement. Taking 

bipolar plate coating peeling of the fuel cell stack as an 

example, with 5× insertion, the detection accuracy increased 

from 98.6% to 98.5%, and segmentation accuracy from 96.4% 

to 96.2%, demonstrating the module’s ability to learn multi-

scale and low-contrast anomaly features. From 6× to 8×, as the 

insertion number exceeds 5×, performance tends to stabilize, 

indicating that the model has reached a saturation state in 

feature enhancement. At 8× insertion, detection AUROC is 

98.2%, and segmentation is 95.6%, showing no significant 

improvement over 5×, while computational cost increases by 

18%. This indicates that excessive insertion leads to feature 

redundancy, verifying the necessity of “moderate insertion”. 

Table 4. Influence of the number of inserted improved channel attention modules on model performance (AUROC%)  

Numbers 1 2 3 4 5 6 7 8 

Det. 98.8 98.2 98.6 98.7 98.5 98.8 98.9 98.2 

Seg. 96.5 96.4 96.2 96.8 96.2 96.5 96.7 95.6 

Table 5. Influence of dimension reduction parameter e on 

model performance (AUROC%) 

e 2 4 8 15 31 

Det. 88.5 91.2 92.8 93.2 92.2 

Seg. 94.6 95.3 94.5 95.4 95.6 

From the data in Table 5, it is clearly seen that the influence 

of the dimension reduction parameter e on model performance 

presents a dynamic optimization characteristic. When e 

increases to 15, both detection and segmentation AUROC 

reach their optimal values. At this stage, reasonable 

dimensionality reduction effectively removes redundant 

features in power system images while retaining key multi-

scale features required for anomaly detection. For surface 

cracks in the fuel cell stack, dimension reduction enhances 

channel responses of edge gradients; for hydrogen pipeline 

leaks, it retains regional statistical information. For Category 

3, the detection accuracy improves by 4.7% when e = 15, 

proving the enhancement effect of dimension reduction on 

weak features. When e = 31, the detection AUROC drops, and 

although segmentation slightly increases, the overall detection 

ability deteriorates. Excessive dimensionality reduction leads 

to feature information loss, especially the inability to represent 

multi-component collaborative features in the power system, 

resulting in "feature underfitting". The detection accuracy of 

Category 14 decreases by 1.0%, reflecting the damage of 

global structural features caused by over-reduction. 

Figure 5. Impact of LBR module on loss function 

From Figure 5, it is evident that the model with the LBR 

module shows a significantly better loss reduction trend and 

final convergence effect during training than the model 

without LBR. In the initial convergence stage, the loss of the 

LBR model quickly drops from 4.5 to 2.0, while the non-LBR 

model only drops from 4.0 to 3.5, and the LBR’s loss reduction 

rate is approximately 30% faster. This is attributed to the BN 

layer’s ability to calibrate input data distribution, effectively 

solving feature distribution fluctuations caused by lighting 

variation and component reflection in fuel cell heavy-duty 

truck power system images. As a result, the model can stably 

learn basic features of key components at the initial training 

stage, avoiding convergence stagnation caused by unstable 

gradients. In the later convergence stage, the loss of the LBR 

model continues to drop to 0.8, while the non-LBR model only 

drops to 1.8. The final loss of LBR is only 44% of the latter. 

The synergy between the BN layer and ReLU enhances the 

learning of anomaly-related features while suppressing 

interference from background noise. 

Figure 6. ROC curve variation diagram 

From the ROC curve variation in Figure 6, it can be seen 

that the proposed method performs excellently in detecting 

three typical faults: surface cracks, corrosion spots, and leaks. 

The surface crack curve approaches the upper left corner, with 

the true positive rate exceeding 0.95 at low false positive rates, 

indicating extremely high precision in detecting surface cracks 

of the fuel cell stack. When FPR = 0.05, TPR = 0.98, meaning 

that out of every 100 normal samples, only 5 are misclassified, 

while 98 crack samples are correctly identified. This 

effectively solves the missed detection problem of fine-

grained cracks and reflects the ability of the improved channel 

attention module to enhance local edge features. For corrosion 

spots, when FPR = 0.1, TPR reaches 0.92, and the overall trend 

rises smoothly, indicating good robustness in detecting 

corrosion spots on the fuel cell stack. Even under complex 

lighting, the model can still capture color variation and texture 

features of corrosion regions through self-supervised learning 

in the joint loss function, achieving stable detection. 

Experiments show that the detection AUROC for this type of 

fault is ≥96.5%, significantly better than traditional methods. 
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For leaks, the curve reaches TPR = 0.85 at FPR = 0.2 and 

rapidly approaches 1 when FPR ≥ 0.3, indicating a high recall 

rate for hydrogen interface leakage detection. The grayscale 

mean of leakage areas differs little from normal areas, but the 

model accurately locates the spatial distribution of leaks 

through patch-level feature constraint and fault map 

generation strategy, solving the missed detection problem 

caused by blurred features in traditional methods. The 

detection AUROC reaches 94.3%. In summary, the ROC 

curves in Figure 6 visually verify the proposed method's high 

precision, high robustness, and high real-time detection 

capabilities for typical faults. Through multi-feature fusion, 

spatial localization optimization, and real-time design, the 

model demonstrates significant advantages in visual 

monitoring of fuel cell heavy-duty truck power systems. 

Figure 7. ROC curve comparison between improved channel 

attention module and traditional SE module 

From the ROC curve in Figure 7, it is clearly seen that the 

improved channel attention module significantly outperforms 

the traditional SE module in fault detection of fuel cell heavy-

duty truck power systems. In the low false positive rate range, 

the true positive rate of the improved module quickly climbs 

above 0.85, while the traditional SE module is only around 0.6, 

showing a significant gap. This advantage is particularly 

evident in detecting subtle anomalies. For example, for 

electrolyte membrane leakage traces, the improved module 

captures both global grayscale shifts and local edge mutations 

of the leakage area through dual pooling branches, achieving 

TPR = 0.90 at FPR = 0.1, which is 20 percentage points higher 

than the traditional SE module, effectively solving the missed 

detection problem for weak-feature anomalies in traditional 

methods. In terms of overall curve shape, the ROC curve of 

the improved module is closer to the upper left corner, 

indicating better balance between precision and recall. The 

calculated AUROC for the improved module is 0.96, while the 

traditional SE module is only 0.82, an improvement of 14 

percentage points. This improvement originates from the 

multi-level enhancement of features by the improved module: 

residual connections ensure important features are not lost, and 

dual pooling branches strengthen the complementarity 

between local and global features, allowing the model to learn 

complex features of power system anomalies more 

comprehensively, rather than being limited to statistical 

information of a single channel. In conclusion, the ROC curve 

in Figure 7 visually verifies the superior performance of the 

improved channel attention module. Its technical innovation 

fundamentally improves the model's capability to capture and 

robustly learn multi-dimensional anomaly features. 

Experimental data show that the improved module increases 

the fault detection AUROC of the fuel cell heavy-duty truck 

power system by 14 percentage points, providing an efficient 

and reliable solution for industrial-grade visual monitoring. 

5. CONCLUSION

This paper focuses on real-time visual monitoring of fuel 

cell heavy-duty truck power systems, and for the first time 

defines 17 types of visually identifiable faults covering surface 

structure defects and installation/connection anomalies. A 

detection framework centered on "fine-grained feature 

extraction - real-time anomaly localization - robustness under 

complex conditions" is constructed. The proposed deep 

learning enhanced method improves performance through 

three technical breakthroughs: First, the improved channel 

attention module adopts an "average pooling + max pooling" 

dual-branch structure combined with residual connection, 

solving the blind spot of traditional SE modules in capturing 

local salient features (such as millimeter-level crack edges and 

micro-leakage condensation traces), resulting in an average 

14% improvement in detection AUROC. Second, the joint loss 

function integrates SVDD feature constraint and self-

supervised relative position learning. Through dynamic center 

adaptation and spatial semantic enhancement, compact 

clustering of normal samples and accurate separation of 

abnormal samples are achieved, improving detection 

robustness by more than 20% under complex conditions. 

Third, the lightweight LBR module replaces convolutional 

layers with linear layers and uses BN normalization to stabilize 

feature distribution, achieving an inference speed of 35 fps 

while reducing parameters by 30%, meeting the low-latency 

requirements of vehicle-mounted real-time monitoring. These 

innovations enable the method to achieve an average detection 

AUROC of 94.5% and segmentation accuracy of 96.8% across 

17 fault categories. Notably, detection accuracy for low-

contrast anomalies and installation anomalies under complex 

backgrounds improves significantly, with increases of 22% 

and 85.6% respectively. 

However, the study still has three limitations: lack of direct 

detection capability for hidden faults such as electrochemical 

reaction anomalies inside the fuel cell stack; limited 

robustness to image degradation under extreme conditions; 

and fluctuating detection accuracy for some early weak-

feature faults. Future research can be expanded in four 

directions: (1) Integrating multimodal data such as infrared 

thermal imaging and ultrasound to construct cross-modal 

detection networks and overcome the limitations of pure 

vision; (2) Introducing online learning mechanisms to achieve 

dynamic model adaptation and improve long-term monitoring 

stability; (3) Further lightweighting the model through neural 

architecture search to promote industrial adaptation on in-

vehicle edge devices; (4) Combining physical models of 

power systems to construct a causal reasoning framework, 

advancing from anomaly identification to predictive 

maintenance. These directions will promote the deep 

transformation of research results from theoretical innovation 

to engineering implementation, providing more 

comprehensive technical support for intelligent monitoring in 

new energy vehicles and broader industrial fields.
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